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1 Introduction

Let f be an entire function defined in the open complex plane C. The function Mf (r) on |z| = r known as

maximum modulus function corresponding to f is defined as follows:

Mf (r) = max
|z|=r

|f (z)| .

When f is meromorphic, Mf (r) can not be defined as f is not analytic. In this situation one may define another

function Tf (r) known as Nevanlinna’s Characteristic function of f, playing the same role as Mf (r) in the following

manner:

Tf (r) = Nf (r) +mf (r) .
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And given two meromorphic functions f and g the ratio
Tf (r)

Tg(r)
as r →∞ is called the growth of f with respect to

g in terms of their Nevanlinna’s Characteristic function.

When f is entire function, the Nevanlinna’s Characteristic function Tf (r) of f is defined as

Tf (r) = mf (r) .

We called the function Nf (r, a)

(
−
Nf (r, a)

)
as counting function of a-points (distinct a-points) of f . In many

occasions Nf (r,∞) and
−
Nf (r,∞) are denoted by Nf (r) and

−
Nf (r) respectively. We put

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+

−
nf (0, a) log r ,

where we denote by nf (r, a)
(
−
nf (r, a)

)
the number of a-points (distinct a-points) of f in |z| ≤ r and an∞ -point

is a pole of f and the quantity Θ (a; f) of a meromorphic function f is defined as follows

Θ (a; f) = 1− lim sup
r→∞

−
N (r, a; f)

T (r, f)
.

Also we denote by np (r, a; f) denotes the number of zeros of f − a in |z| ≤ r,where a zero of multiplicity < p is

counted according to its multiplicity and a zero of multiplicity > p is counted exactly p times.

Accordingly, Np (r, a; f) is defined in terms of np (r, a; f) in the usual way and we set for any a ∈ C ∪ {∞}

δp (a; f) = 1− lim sup
r→∞

Np (r, a; f)

T (r, f)
{ cf. [6]} ,

On the other hand, m
(
r, 1
f−a

)
is denoted by mf (r, a) and we mean mf (r,∞) by mf (r) , which is called the

proximity function of f . We also put

mf (r) =
1

2π

2π∫
0

log+
∣∣∣f (reiθ)∣∣∣ dθ, where

log+ x = max (log x, 0) for all x > 0 .

Further for any non-constant meromorphic function f , b ≡ b (z) is called small with respect to f if Tb (r) = Sf (r)

where Sf (r) = o {Tf (r)} i.e.,
Sf (r)

Tf (r)
→ 0 as r → ∞. Moreover for any non-constant meromorphic function f

, we call Mj [f ] = Aj (f)n0j

(
f (1)

)n1j

... .....
(
f (k)

)nkj
where TAj (r) = Sf (r), to be a differential monomial

generated by it where n0j , n1j ,......,nkj (k ≥ 1) be non-negative integers such that for each j,
k∑
i=0

nij ≥ 1 . In this

connection the numbers γMj =
k∑
i=0

nij and ΓMj =
k∑
i=0

(i+ 1)nij are called respectively the degree and weight of

Mj [f ] {[2], [8]} . The expression P [f ] =
s∑
j=1

Mj [f ] is called a differential polynomial generated by f . The numbers

γP = max
1<j<s

γMj and ΓP = max
1<j<s

ΓMj are called respectively the degree and weight of P [f ] {[2], [8]} . Also we call

the numbers γP = min
1<j<s

γMj and k (the order of the highest derivative of f ) the lower degree and the order

of P [f ] respectively. If γP = γP , P [f ] is called a homogeneous differential polynomial. Throughout the paper

we consider only the non-constant differential polynomials and we denote by P0 [f ] a differential polynomial not

containing f i.e. for which n0j = 0 for j = 1, 2, ......, s. We consider only those P [f ] , P0 [f ] singularities of whose
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individual terms do not cancel each other.

The order of a meromorphic function f which is generally used in computational purpose is defined in terms of

the growth of f with respect to the exponential function as

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞

log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)
.

Lahiri and Banerjee [7] introduced the relative order (respectively relative lower order) of a meromorphic function

with respect to an entire function to avoid comparing growth just with exp z. To compare the relative growth

of two meromorphic functions having same non zero finite relative order with respect to another entire function,

Datta and Biswas [3] introduced the notion of relative type of meromorphic functions with respect to an entire

function. Extending these notions of relative type as cited in the reference, Datta, Biswas and Hoque [4] gave the

definition of relative type of differential polynomials generated by entire and meromorphic functions.

For entire and meromorphic functions, the notion of their growth indicators such as order and type are classical

in complex analysis and during the past decades, several researchers have already been continuing their studies in

the area of comparative growth properties of composite entire and meromorphic functions in different directions

using the same. But at that time, the concept of relative order and consequently relative type of entire and

meromorphic functions with respect to another entire function was mostly unknown to complex analysts and they

are not aware of the technical advantages of using the relative growth indicators of the functions. Therefore the

growth of composite entire and meromorphic functions needs to be modified on the basis of their relative order

and relative type some of which has been explored in this paper. Actually in this paper we establish some newly

developed results based on the growth properties of relative type of differential polynomials generated by entire

and meromorphic functions.

2 Notation and preliminary remarks

We use the standard notations and definitions of the theory of entire and meromorphic functions which are

available in [5] and [9]. Henceforth, we do not explain those in details. Now we just recall some definitions which

will be needed in the sequel.

Definition 2.1. The order ρf and lower order λf of a meromorphic function f are defined as

ρf = lim sup
r→∞

log Tf (r)

log r
and λf = lim inf

r→∞

log Tf (r)

log r
.

The notion of type ( lower type) to determine the relative growth of two meromorphic functions having same

non zero finite order is classical in complex analysis and is given by

Definition 2.2. The type σf and lower type σf of a meromorphic function f are defined as

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞

Tf (r)

rρf
, 0 < ρf <∞.
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Given a non-constant entire function f defined in the open complex plane C, its Nevanlinna’s Characteristic

function is strictly increasing and continuous. Hence there exists its inverse function T−1
g : (Tg (0) ,∞)→ (0,∞)

with lim
s→∞

T−1
g (s) =∞.

Lahiri and Banerjee [7] introduced the definition of relative order of a meromorphic function f with respect

to an entire function g , denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all sufficiently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The definition coincides with the classical one [7] if g (z) = exp z.

In the case of relative order, it therefore seems reasonable to define suitably the relative type of a meromorphic

function with respect to an entire function to determine the relative growth of two meromorphic functions having

same non zero finite relative order with respect to an entire function. Datta and Biswas [3] gave such definitions

of relative type of a meromorphic function f with respect to an entire function g which is as follows:

Definition 2.3 ([3]). The relative type σg (f) of a meromorphic function f with respect to an entire function g

are defined as

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) <∞.

Likewise,one can define the lower relative type σg (f) in the following way:

σg (f) = lim inf
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) <∞.

Definition 2.4 ([1]). P [f ] is said to be admissible if

(i) P [f ] is homogeneous, or

(ii) P [f ] is non homogeneous and m (r, f) = S (r, f) .

3 Some Examples

In this section we present some examples in connection with definitions given in the previous section.

Example 3.1 (Order). Given any natural number n, let f(z) = exp zn. Then Mf (r) = exp rn. Therefore

putting R = 2 in the inequality Tf (r) ≤ logMf (r) ≤ R+r
R−rTf (R) {cf. [5]} we get that Tf (r) ≤ rn and Tf (r) ≥

1
3

(
r
2

)n
. Hence

ρf = lim sup
r→∞

log Tf (r)

log r
= n .

Further if we take g = exp[2] z, then Tg (r) ∼ exp r

(2π3r)
1
2

(r →∞) . Therefore

ρf =∞ .

Example 3.2 (Type (lower type)). Let us consider f = exp z. Then Tf (r) = r
π
. and ρf = 1. So

σf = lim sup
r→∞

Tf (r)

rρf
=

r
π

r
=

1

π
and σf = lim inf

r→∞

Tf (r)

rρf
=

r
π

r
=

1

π
.
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Similarly, if we consider g = 1
1+exp z

, then we can also see that

σg = σg =
1

π
.

Example 3.3 (Relative order). Suppose f = g = exp[2] z then Tf (r) = Tg (r) ∼ exp r

(2π3r)
1
2

(r →∞) . Now we

obtain that

Tg (r) ≤ logMg (r) ≤ 3Tg (2r) {cf. [5]}

i.e., Tg (r) ≤ exp r ≤ 3Tg (2r) .

Therefore

T−1
g Tf (r) ≥ log

(
exp r

(2π3r)
1
2

)

i.e., lim inf
r→∞

log T−1
g Tf (r)

log r
≥ 1

and

T−1
g Tf (r) ≤ 2 log

(
3 exp r

(2π3r)
1
2

)

i.e., lim sup
r→∞

log T−1
g Tf (r)

log r
≤ 1 .

Hence

ρg (f) = λg (f) = 1 .

Example 3.4 (Relative type ( relative lower type)). Let f = g = exp z. Now Tf (r) = Tg (r) = Texp z (r) = r
π
.

Therefore

T−1
g Tf (r) = T−1

g

( r
π

)
= r .

So

ρg (f) = lim sup
r→∞

log T−1
g Tf (r)

log r
= 1.

Hence

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
= 1 and σg (f) = lim inf

r→∞

T−1
g Tf (r)

rρg(f)
= 1.

4 Lemmas

In this section we present a lemma which will be needed in the sequel.

Lemma 4.1 ([4]). If f be a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f) =
∑
a 6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a 6=∞

δ (a; f) = 1 and g be an entire function of regular growth having

non zero finite order and Θ (∞; g) =
∑
a 6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1. Then the relative order of

P0 [f ] with respect to P0 [g] are same as those of f with respect to g where P0 [f ] and P0 [g] are homogeneous.
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Lemma 4.2 ([4]). If f be a meromorphic function either of finite order or of non-zero lower order such that∑
a 6=∞

Θ (a; f) = 2 and g be an entire function of regular growth having non zero finite order and
∑
a6=∞

Θ (a; g) = 2.

Then the relative order of P0 [f ] with respect to P0 [g] are same as those of f with respect to g where P0 [f ] and

P0 [g] are admissible.

Lemma 4.3 ([4]). If f be a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and g be an entire function of regular growth having

non zero finite type and Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1. Then the relative type and

relative lower type of P0 [f ] with respect to P0 [g] are
(
γP0[f]

γP0[g]

) 1
ρg times that of f with respect to g if ρg (f) is

positive finite and P0 [f ] and P0 [g] are homogeneous.

Lemma 4.4 ([4]). If f be a meromorphic function either of finite order or of non-zero lower order such that∑
a 6=∞

Θ (a; f) = 2 and g be an entire function of regular growth having non zero finite type and
∑
a6=∞

Θ (a; g) = 2,

then the relative type and relative lower type of P0 [f ] with respect to P0 [g] are
(

ΓP0[f]

ΓP0[g]

) 1
ρg times that of f with

respect to g if ρg (f) is positive finite and P0 [f ] and P0 [g] are admissible.

5 Theorems

In this section, we present the main results of the paper. In the paper, it is needless to mention that the

admissibility and homogeneity of P0[f ] will be needed as per the requirements of the theorems.

Theorem 5.1. Suppose f be a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a 6=∞

δ (a; f) = 1. Also let h be an entire function of regular growth

having non zero finite type with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and g be any entire

function such that 0 < σh (f ◦ g) ≤ σh (f ◦ g) <∞, 0 < σh (f) ≤ σh (f) <∞ and ρh (f ◦ g) = ρh (f). Then

σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

.

Proof. From the definition of σh (f), σh (f ◦ g) and in view of Lemma 4.1, Lemma 4.3 we have for arbitrary

positive ε and for all sufficiently large values of r that

T−1
h Tf◦g (r) > (σh (f ◦ g)− ε) (r)ρh(f◦g) (5.1)

and

T−1
P0[h]TP0[f ] (r) ≤

(
σP0[h] (P0[f ]) + ε

)
(r)ρP0[h](P0[f ])
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i.e., T−1
P0[h]TP0[f ] (r)

≤

((
γP0[f ]

γP0[h]

) 1
ρh

· σh (f) + ε

)
(r)ρh(f) . (5.2)

Now from (5.1), (5.2) and in view of the condition ρh (f ◦ g) = ρh (f) , it follows for all large values of r that

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

>
(σh (f ◦ g)− ε)((

γP0[f]

γP0[h]

) 1
ρh · σh (f) + ε

) .

As ε (> 0) is arbitrary , we obtain from above that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

>
σh (f ◦ g)(

γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.3)

Again for a sequence of values of r tending to infinity ,

T−1
h Tf◦g (r) ≤ (σh (f ◦ g) + ε) (r)ρh(f◦g) (5.4)

and for all sufficiently large values of r ,

T−1
P0[h]TP0[f ] (r) >

(
σP0[h] (P0[f ])− ε

)
(r)ρP0[h](P0[f ])

i.e., T−1
P0[h]TP0[f ] (r)

≥

((
γP0[f ]

γP0[h]

) 1
ρh

· σh (f)− ε

)
(r)ρh(f) . (5.5)

Combining (5.4) and (5.5) and in view of the condition ρh (f ◦ g) = ρh (f) , we get for a sequence of values of r

tending to infinity that
T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ (σh (f ◦ g) + ε)((
γP0[f]

γP0[h]

) 1
ρh · σh (f)− ε

) .

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.6)

Also for a sequence of values of r tending to infinity that

T−1
P0[h]TP0[f ] (r) ≤

(
σP0[h] (P0[f ]) + ε

)
(r)ρP0[h](P0[f ])

i.e., T−1
P0[h]TP0[f ] (r)

≤

((
γP0[f ]

γP0[h]

) 1
ρh

· σh (f) + ε

)
(r)ρh(f) . (5.7)

Now from (5.1), (5.7) and in view of the condition ρh (f ◦ g) = ρh (f) , we obtain for a sequence of values of r

tending to infinity that
T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≥ (σh (f ◦ g)− ε)((
γP0[f]

γP0[h]

) 1
ρh · σh (f) + ε

) .
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As ε (> 0) is arbitrary, we get from above that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≥ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.8)

Also for all sufficiently large values of r ,

T−1
h Tf◦g (r) ≤ (σh (f ◦ g) + ε) (r)ρh(f◦g) . (5.9)

As the condition ρh (f ◦ g) = ρh (f) , it follows from (5.5) and (5.9) for all sufficiently large values of r that

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ (σh (f ◦ g) + ε)((
γP0[f]

γP0[h]

) 1
ρh · σh (f)− ε

) .

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.10)

Thus the theorem follows from (5.3) , (5.6) , (5.8) and (5.10) .

Remark 5.2. If we take
∑
a6=∞

Θ (a; f) = 2 and
∑
a6=∞

Θ (a;h) = 2 instead of Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 respectively in Theorem

5.1 and the other conditions remain the same, then with the help of Lemma 4.2 and Lemma 4.4 one can easily

prove that

σh (f ◦ g)(
ΓP0[f]

ΓP0[h]

) 1
ρh · σh (f)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
ΓP0[f]

ΓP0[h]

) 1
ρh · σh (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
ΓP0[f]

ΓP0[h]

) 1
ρh · σh (f)

.

The following theorem can be proved in the line of Theorem 5.1 and so its proof is omitted:

Theorem 5.3. Suppose g be an entire function either of finite order or of non-zero lower order such that∑
a 6=∞

Θ (a; g) = 2. Also let h be an entire function of regular growth having non zero finite type with
∑
a6=∞

Θ (a;h) = 2

and f be any meromorphic function such that 0 < σh (f ◦ g) ≤ σh (f ◦ g) < ∞, 0 < σh (g) ≤ σh (g) < ∞ and

ρh (f ◦ g) = ρh (g). Then

σh (f ◦ g)(
ΓP0[g]

ΓP0[h]

) 1
ρh · σh (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
ΓP0[g]

ΓP0[h]

) 1
ρh · σh (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
ΓP0[g]

ΓP0[h]

) 1
ρh · σh (g)

.
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Remark 5.4. If we consider Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 and Θ (∞;h) =∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 instead of
∑
a6=∞

Θ (a; g) = 2 and
∑
a6=∞

Θ (a;h) = 2 respectively

in Theorem 5.3 and the other conditions remain the same then with the help of Lemma 4.1 and Lemma 4.3 it can

easily be proved that

σh (f ◦ g)(
γP0[g]

γP0[h]

) 1
ρh · σh (g)

≤ lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
γP0[g]

γP0[h]

) 1
ρh · σh (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
γP0[g]

γP0[h]

) 1
ρh · σh (g)

.

Theorem 5.5. Suppose f be a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a6=∞

δ (a; f) = 1. Also let h be an entire function of regular growth

having non zero finite type with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and g be any entire

function such that 0 < σh (f ◦ g) <∞, 0 < σh (f) <∞ and ρh (f ◦ g) = ρh (f). Then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

.

Proof. From the definition of σP0[h] (P0[f ]) and in view of Lemma 4.1 and Lemma 4.3, we get for a sequence of

values of r tending to infinity that

T−1
P0[h]TP0[f ] (r) >

(
σP0[h] (P0[f ])− ε

)
(r)ρP0[h](P0[f ])

i.e., T−1
P0[h]TP0[f ] (r)

≥

((
γP0[f ]

γP0[h]

) 1
ρh

· σh (f)− ε

)
(r)ρh(f) . (5.11)

Now from (5.9), (5.11) and in view of the condition ρh (f ◦ g) = ρh (f) , it follows for a sequence of values of r

tending to infinity that
T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ (σh (f ◦ g) + ε)((
γP0[f]

γP0[h]

) 1
ρh · σh (f)− ε

) .

As ε (> 0) is arbitrary, we obtain that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.12)

Again for a sequence of values of r tending to infinity ,

T−1
h Tf◦g (r) > (σh (f ◦ g)− ε) (r)ρh(f◦g) . (5.13)

So combining (5.2) and (5.13) and in view of the condition ρh (f ◦ g) = ρh (f) , we get for a sequence of values of

r tending to infinity that
T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

>
(σh (f ◦ g)− ε)((

γP0[f]

γP0[h]

) 1
ρh · σh (f) + ε

) .
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Since ε (> 0) is arbitrary, it follows that

lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

>
σh (f ◦ g)(

γP0[f]

γP0[h]

) 1
ρh · σh (f)

. (5.14)

Thus the theorem follows from (5.12) and (5.14).

Remark 5.6. If we take
∑
a6=∞

Θ (a; f) = 2 and
∑
a6=∞

Θ (a;h) = 2 instead of Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 respectively in Theorem

5.5 and the other conditions remain the same then with the help of Lemma 4.2 and Lemma 4.4 one can easily

prove that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ σh (f ◦ g)(
ΓP0[f]

ΓP0[h]

) 1
ρh · σh (f)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

.

The following theorem can be carried out in the line of Theorem 5.5 and therefore we omit its proof.

Theorem 5.7. Suppose g be an entire function either of finite order or of non-zero lower order such that∑
a 6=∞

Θ (a; g) = 2. Also let h be an entire function of regular growth having non zero finite type with
∑
a6=∞

Θ (a;h) = 2

and f be any meromorphic function such that 0 < σh (f ◦ g) <∞, 0 < σh (g) <∞ and ρh (f ◦ g) = ρh (g). Then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
ΓP0[g]

ΓP0[h]

) 1
ρh · σh (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

.

Remark 5.8. If we consider Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 and Θ (∞;h) =∑
a 6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 instead of
∑
a 6=∞

Θ (a; g) = 2 and
∑
a6=∞

Θ (a;h) = 2 respectively

in Theorem 5.7 and the other conditions remain the same then with the help of Lemma 4.1 and Lemma 4.3 one

can easily prove that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ σh (f ◦ g)(
γP0[g]

γP0[h]

) 1
ρh · σh (g)

≤ lim sup
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

.

The following theorem is a natural consequence of Theorem 5.1 and Theorem 5.5:

Theorem 5.9. Suppose f be a meromorphic function either of finite order or of non-zero lower order such that

Θ (∞; f) =
∑
a6=∞

δp (a; f) = 1 or δ (∞; f) =
∑
a 6=∞

δ (a; f) = 1. Also let h be an entire function of regular growth

having non zero finite type with Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 and g be any entire

function such that 0 < σh (f ◦ g) ≤ σh (f ◦ g) <∞, 0 < σh (f) ≤ σh (f) <∞ and ρh (f ◦ g) = ρh (f). Then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ min

{
A · σh (f ◦ g)

σh (f)
, A · σh (f ◦ g)

σh (f)

}
≤ max

{
A · σh (f ◦ g)

σh (f)
, A · σh (f ◦ g)

σh (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

where A = 1(
γP0[f]
γP0[h]

) 1
ρh

.



An Approach to the Relative Type Oriented Growth Analysis of Differential Polynomials 47

Remark 5.10. If we take
∑
a 6=∞

Θ (a; f) = 2 and
∑
a6=∞

Θ (a;h) = 2 instead of Θ (∞; f) =
∑
a 6=∞

δp (a; f) = 1 or

δ (∞; f) =
∑
a6=∞

δ (a; f) = 1 and Θ (∞;h) =
∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 respectively in Theorem

5.9 and the other conditions remain the same then with the help of Lemma 4.2 and Lemma 4.4 one can easily

prove that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

≤ min

{
B · σh (f ◦ g)

σh (f)
, B · σh (f ◦ g)

σh (f)

}
≤ max

{
B · σh (f ◦ g)

σh (f)
, B · σh (f ◦ g)

σh (f)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[f ] (r)

where B = 1(
ΓP0[f]
ΓP0[h]

) 1
ρh

.

Analogously one may state the following theorem without its proof.

Theorem 5.11. Suppose g be an entire function of finite order or of non-zero lower order and
∑
a6=∞

Θ (a; g) = 2.

Also let h be an entire function of regular growth having non zero finite type with
∑
a6=∞

Θ (a;h) = 2 and f be any

meromorphic function such that 0 < σh (f ◦ g) ≤ σh (f ◦ g) <∞, 0 < σh (g) ≤ σh (g) <∞ and ρh (f ◦ g) = ρh (g).

Then

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ min

{
C · σh (f ◦ g)

σh (g)
, C · σh (f ◦ g)

σh (g)

}
≤ max

{
C · σh (f ◦ g)

σh (g)
, C · σh (f ◦ g)

σh (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

where C = 1(
ΓP0[g]
ΓP0[h]

) 1
ρh

.

Remark 5.12. If we consider Θ (∞; g) =
∑
a6=∞

δp (a; g) = 1 or δ (∞; g) =
∑
a6=∞

δ (a; g) = 1 and Θ (∞;h) =∑
a6=∞

δp (a;h) = 1 or δ (∞;h) =
∑
a6=∞

δ (a;h) = 1 instead of
∑
a6=∞

Θ (a; g) = 2 and
∑
a6=∞

Θ (a;h) = 2 respectively in

Theorem 5.11 and the other conditions remain the same then with the help of Lemma 4.1 and Lemma 4.3 one can

easily prove that

lim inf
r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

≤ min

{
D · σh (f ◦ g)

σh (g)
, D · σh (f ◦ g)

σh (g)

}
≤ max

{
D · σh (f ◦ g)

σh (g)
, D · σh (f ◦ g)

σh (g)

}
≤ lim sup

r→∞

T−1
h Tf◦g (r)

T−1
P0[h]TP0[g] (r)

where D = 1(
γP0[g]
γP0[h]

) 1
ρh

.

6 Conclusion

Actually this paper deals with the extension of the works on the growth properties differential polynomials

generated by entire and meromorphic functions on the basis of their relative types. These theories can also be

modified by the treatment of the notions of generalized relative type and (p,q)-th relative type. In addition some

extensions of the same may be done in the light of slowly changing functions. Moreover the notion of relative type
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of differential polynomials generated by entire and meromorphic functions may has a wide range of applications

in complex dynamics, factorization theory of entire functions of single complex variable, the solution of complex

differential equations etc. which might be a strong and effective area of further research.
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