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1 Introduction

ZOUTENDIJK ALGORITHM

In the Zoutendijk method of finding feasible directions, at each iteration, the method generates an improving

feasible direction and then optimizes along that direction.

Definition 1.1. Consider the problem to minimize f(x) subject to x ∈ S, where f : Rn → R and S is a non empty

set in Rn. A non zero vector d is called a feasible direction at x ∈ S if there exists a δ > 0 such that x+ λd ∈ S

for all λ ∈ (0, δ). Furthermore, d is called an improving feasible direction at x ∈ S if there exists a δ > 0 such that

f(x+ λd) < f(x) and x+ λd ∈ S for all ∈ (0, δ). In Case of linear constraints, first consider the case where the

1Corresponding author E-Mail: drtripti2010@gmail.com (Tripti Sharma)



60 Int. J. Math. And Its App. Vol.2 No.4 (2014)/ Tripti Sharma and Semeneh Hunachew

feasible region S is defined by a system of linear constraints, so that the problem under consideration is of then

form:

Minimize f(x)

Subject to: Ax ≤ b

Qx = q

Where, A = m× n matrix, Q = l × n matrix, b = m−matrix, q = l−matrix.

Lemma 1.2. Consider the problem to minimize f(x) subject to Ax ≤ b and Qx = q. Let x be a feasible solution

and suppose that A1x = b1 and A2x < b2, where AT is decomposed in to (AT1 , A
T
2 ) and bT is decomposed in to

(bT1 , b
T
2 ). Then a non zero vector d is a feasible direction at x if and only if A1d ≤ 0 and Qd = 0. If ∇f(x)T d < 0,

then d is an improving direction.

Generating Improving Feasible Directions

Given a feasible point x as shown in lemma 1.2, a non zero vector d is an improving feasible direction if

∇f(x)T d < 0, A1d ≤ 0 and Qd = 0. A natural method for generating such a direction is to minimize ∇f(x)T d

subject to the constraints A1d ≤ 0 and Qd = 0. Note, however, that if a vector d̄ such that ∇f(x)T d̄ < 0, A1d̄ ≤ 0,

Qd̄ = 0 exists, then the optimal objective value of the forgoing problem is −∞ by considering λd̄, where λ→∞.

Thus a constraint that bounds the vector d or the objective function must be introduced. Such a restriction

is usually referred to as a normalization constraint. There are the following three problems for generating an

improving feasible direction. Each of the problems uses a different normalization constraint.

Problem (P1):

Minimize ∇f(x)T d

Subject to: A1x ≤ b

Qx = q; −1 ≤ dj ≤ 1 for j = 1, 2, ..., n

Problem (P2):

Minimize ∇f(x)T d

Subject to: A1x ≤ b

Qx = q, dT d ≤ 1

Problem (P3):

Minimize ∇f(x)T d

Subject to: A1x ≤ b

Qx = q; ∇f(x)T d ≥ −1

Problem P1 and P2 are linear in the variables d1, ..., dn and can be solved by the simplex method. Problem P2

contains a quadratic constraint but could be considerably simplified. Since d = 0 is a feasible solution to each of
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the above problems and since its objective value is equal to zero, the optimal objective value of problems P1, P2

and P3 cannot be positive. If the minimal objective function value of P1, P2 and P3 is negative then by lemma

1.2; an improving g feasible direction is generated. On the other hand, if the minimal objective function value is

equal to zero, then x is a KKT point as shown below.

Lemma 1.3. Consider the problem to minimize f(x) subject to Ax ≤ b and Qx = q. Let x be a feasible solution

such that A1x = b1 and A2x < b2, where AT = (AT1 , A
T
2 ) and bT = (bT1 , b

T
2 ). Then for each i = 1, 2, 3, x is a

KKT point if and only if the optimal objective value of problem Pi is equal to zero.

Line Search: Let xk be the current vector, and let dk be an improving feasible direction. The next xk+1 is given

by xk + λkdk, where the step size λk is obtained by solving the following one dimensional problem:

Minimize f(xk + λkdk)

Subject to: A(xk + λkdk) ≤ b

Q(xk + λkdk) = q; λ ≥ 0

Now, suppose that AT is decomposed in to (AT1 , A
T
2 ) and bT is decomposed into (bT1 , b

T
2 ) such that A1xk = b1

and A2xk ≤ b2. Then the above problem could be simplified as follows:

First note that Qxk = q and Qxk = 0, So that the constraint Q(xk + λkdk) = q is redundant. Since A1xk = b1

and A1dk ≤ 0, then A1(xk+λkdk) ≤ b1 for all λ ≥ 0. Hence, we only need to restrict λ so that λA2dk ≤ b2−A2xk

and the above problem reduce to the following line search problem i.e;

Minimize f(xk + λkdk)

Subject to: 0 ≤ λ ≤ λmax,

where λmax =

 min
{
b̃1
d̃1

: d̃1 > 0
}
, if d̃ > 0

∞, if d̃ ≤ 0

b̃ = b2 −A2xk and d̃ = A2xk

(1.1)

In case of Linear Constraints

Consider the problem (P):

Minimize f(x)

Subject to: Ax ≤ b; Qx = q

Initial Step: Find a starting feasible solution x1 with Ax1 ≤ b and Qx1 = q. Let k = 1 and go to the main step:

Main Step:

1. Given xk, suppose that AT and bT are decomposed in to (AT1 , A
T
2 )(bT1 , b

T
2 ) So that A1xk = b1 and A2xk ≤ b2.

Let dk be an optimal solution to the following problem(note that problem p2 or p3 could be used instead):

Minimize ∇f(x)T d

Subject to: A1d ≤ 0

Qd = 0

− 1 ≤ dj ≤ 1 for j = 1, ..., n
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If ∇f(x)T dk = 0, Stop; xk is KKT point, with the dual variables to the forgoing problem giving the corre-

sponding Lagrange multipliers. Let λk be an optimal solution to the following line search problem: Otherwise,

go to step 2

Let λk be an optimal solution to the following line search problem:

Minimize f(xk + λdk)

subject to: 0 ≤ λ ≤ λmax

Where λmax is determined according to (2.1a). Let xk+1 = xk + λkdk. Identify the new set of binding

constraints at xk+1, and update A1 and A2 accordingly. Replace k by k + 1 and go to step 1.

Problems with non-linear inequality constraints

The following theorem gives the sufficient condition for a vector d to be an improving feasible direction.

Theorem 1.4. Consider the following problem

Minimize f(x)

subject to: gi(x) ≤ 0 for i = 1, ...,m.

Let x be a feasible solution, and let I be the set of binding or active constraints, that is I = {i : gi(x) = 0}.

Furthermore, suppose that f and gi for i ∈ I are differentiable at x and that each gi for i /∈ I is continuous at x.

If ∇f(x)T d < 0 and ∇gi(x)T d < 0 for i ∈ I, then d is an improving direction.

Theorem 1.5. Consider the problem to minimize f(x) subject to gi(x) ≤ 0 for i = 1, 2, 3, ...,m. Let x be a

feasible solution and let I = {i : gi(x) = 0}. Consider the following direction finding problem:

Minimize z

Subject to: ∇f(x)T d− z ≤ 0

∇gi(x)T d− z ≤ 0 for i ∈ I

− 1 ≤ dj ≤ 1 for j = 1, ..., n

Then x is a Fritz John point if and only if the optimal objective value to the above problem is zero.

In Case of Non-linear Inequality Constraints

Initial step: Choose a starting point x1 such that gi(x1) ≤ 0 for i = 1, 2, 3, ...,m. Let k = 1 and go to the main

step.

Main step:

1. I = {i : gi(xk) = 0} and solve the following problem:

Minimize z

Subject to: ∇f(xk)T d− z ≤ 0

∇gi(xk)T d− z ≤ 0 for i ∈ I

− 1 ≤ dj ≤ 1 for j = 1, ..., n

Let (zk, dk) be an optimal solution. If zk = 0, stop; xk is a fritz John point. If zk < 0, then go to step 2.
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2. Let λk be an optimal solution to the following line search problem:

Minimize f(xk + λdk)

Subject to: 0 ≤ λ ≤ λmax

Where, λmax = sup{λ : gi(xk + λdk) ≤ 0 for i = 1, 2, 3, ...,m}. Let xk+1 = xk + λkdk, replace k by k + 1 and

go to step 1.

2 Topkis-Veintt’s modification of the feasible direction

algorithm

A modification of Zoutendijks method of feasible directions was proposed by Topkis and Veinott [1967] and

guarantees convergence to a Fritz John point. The problem under consideration is given by

Minimize f(x)

Subject to: gi(x) ≤ 0 for i = 1, ...,m

Generating a Feasible Direction

Given a feasible point x, a direction is found by solving the following direction finding linear programming problem

DF(x):

Problem DF(x): Minimize z

Subject to: ∇f(x)T d− z ≤ 0

∇gi(x)T d− z ≤ −gi(x) for i = 1, ...,m

− 1 ≤ dj ≤ 1 for j = 1, ..., n

Here both binding and non binding constraints play a role in determining the direction of movement. As opposed

to the method of feasible direction of approaching the boundary of a currently nonbinding constraint.

Topkis-Veinotts Algorithm

Initial Step:

Choose a point x1 such that gi(x1) ≤ 0 for i = 1, ...,m. Let k = 1 and go to the main step

Main step:

1. Let (zk, dk) be an optimal solution to the following linear programming problem :

Minimize z

Subject to: ∇f(xk)T d− z ≤ 0

∇gi(xk)T d− z ≤ −gi(xk) for i = 1, ...,m

− 1 ≤ dj ≤ 1 for j = 1, ..., n

If zk = 0, stop: xk is a Fritz John point. Otherwise, zk ≤ 0 and go to step 2.
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2. Let λk be an optimal solution to the following line search problem:

Minimize f(xk + λdk)

Subject to: 0 ≤ λ ≤ λmax,

Here λmax = sup{λ : gi(xk + λdk) ≤ 0 for i = 1, ...,m}. Let xk+1 = xk + λkdk, replace k by k + 1 and go to

step 1.

Theorem 2.1. Let x be a feasible solution to the problem to minimize f(x) subject to gi(x) ≤ 0 for i = 1, ...,m.

Let (z̄, d̄) be an optimal solution to the problem DF (x). If z̄ ≤ 0, then d̄ is an improving feasible direction. Also,

z̄ = 0 if and only if x is a Fritz John point.

Lemma 2.2. Let s be a non empty set in Rn and let f : Rn → R be continuously differentiable. Consider the

problem to minimize f(x) subject to x ∈ S. Further more, consider any feasible direction algorithm whose map

A = MD is defined as follows . Given x, (x, d) ∈ D(x) means that d is an improving feasible direction of f at x.

Furthermore, y ∈ M(x, d) means that y = x + λ̄d, where λ̄ solves the line search problem to minimize f(x + λd)

subject to λ ≥ 0 and x + λd ∈ S. Let {xk} be any sequence generated by such an algorithm, and let {dk} be the

corresponding sequence of directions. Then there cannot exist a subsequence {(xk, dk)}K satisfying the following

properties:

i) xk → x for k ∈ K

ii) dk → d for k ∈ K

iii) xk + λdk ∈ S for all λ ∈ [0, δ] and for each k ∈ K for some δ > 0

iv) ∇f(x)T d < 0

Theorem 2.3. Let f, gi : Rn → R for i = 1, ...,m be continuously differentiable, and consider problem to

minimize f(x) subject to gi(x) ≤ 0 for i = 1, ...,m. Suppose that the sequence {xk} is generated by the algorithm

of Topkis and Veinott. Then any accumulation point of {xk} is a Fritz John point.

3 Successive Quadratic Programming (SQP) Algorithm

SQP methods, also known as sequential, or recursive, quadratic programming approaches, employ Newtons

method (or quasi-Newton methods) to directly solve the KKT conditions for the original problem. As a result,

the accompanying sub-problem turns out to be the minimization of a quadratic approximation to the Lagrange

function optimized over a linear approximation to the constraints. Hence, this type of process is also known as

a projected Lagrangian, or Lagrange-Newton approach. By its nature this method produces both primal and

dual(Lagrange multiplier) solutions.

SQP for equality constrained problem

Consider the following equality constrained problem (P):

P: Minimize f(x) (ECP)

subject to: h(x) = 0, x ∈ Rn
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Where f : Rn → R and h : Rn → Rm are assumed to be continuously twice differentiable (smooth) functions.

An understanding of this problem is essential in the design of SQP methods for general non-linear programming

problems. The KKT optimality conditions for problem P require a primal solution x ∈ Rn and a Lagrange

multiplier vector λ ∈ Rm such that

∇f(x) +

m∑
i=1

λi∇hi(x) = 0

hi(x) = 0, i = 1, ...,m

(3.1)

If we use the Lagrangian

L(x, λ) = f(x) +

m∑
i=1

λihi(x) (3.2)

we can write the KKT conditions (4.1a) more compactly as

 ∇xL(x, λ)

∇λL(x, λ)

 = 0 (EQKKT) The main idea

behind SQP is to model problem (ECP) at the given point x(k) by a quadratic programming subproblem and

then use the solution to this problem to construct a more accurate approximation x(k+1).If we perform a Taylor

series expansion of the system (EQKKT) about (x(k), λ(k)) we obtain ∇xL(x(k), λ(k))

∇λL(x(k), λ(k))

 +

 ∇2
xL(x(k), λ(k)) ∇h(x(k))

∇h(x(k))T 0

 δx

δλ

 = 0

Where δx = x(k+1) − x(k), δλ = λ(k+1) − λ(k) and ∇2
xL(x, λ) = ∇2f(x) +

m∑
i=1

λi∇2hi(x) is the Hessian matrix of

the Lagrangian function. Taylor series expansion can be written equivalently as ∇2
xL(x(k), λ(k)) ∇h(x(k))

∇h(x(k))T 0

 δx

δλ

 =

 −∇f(x(k))−∇h(x(k))λ(k)

−h(x(k))


or, setting d = δx and bearing in mind that

λ(k+1) = δλ + λ(k)

 ∇2
xL(x(k), λ(k)) ∇h(x(k))

∇h(x(k))T 0

 d

λ(k+1)

 =

 −∇f(x(k))

−h(x(k))

 (3.3)

Algorithm of SQP method

1. Determine (x(0), λ(0))

2. Set K = 0

3. Repeat until convergence test is satisfied

4. Solve the system (3.2) to determine (d(k), λ(k+1))

5. Set x(k+1) = x(k) + d(k)

6. Set k = k + 1

7. End ( got to step 2)

In SQP methods, problem (ECP) is modelled by a quadratic programming sub-problem (QPS for short), whose

optimality conditions are the same as in the system (4.1c). The algorithm is also the same as that of SQP method,
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but instead of solving the system (4.1c) in step 4, we solve the following quadratic programming sub-problem

(QPS):

Minimize ∇f(x(k))T d+
1

2
dT∇2

xL(x(k), λ(k))d

Subject to: h(x(k)) +∇h(x(k))T d = 0

(3.4)

Since the first order conditions for the previous problem at (x(k), λ(k)) are given by the system (3.3) and therefore

d(k) is a stationary point of (3.4). If d(k) satisfies second order sufficient conditions, then d(k) minimizes problem

(3.4). We also observe that the constraints in (3.4) are derived by a first order Taylor series approximation of the

constraints of the original problem (ECP). The objective function of the QPS is a truncated second order Taylor

series expansion of the Lagrangian function.

Convergence Rate Analysis

Under appropriate conditions, we can argue a quadratic convergence behavior for the or going algorithm. Specif-

ically, suppose that x̄ is a regular KKT solution for problem p which together with a set of Lagrange multipliers,

x̄ satisfies the second order sufficient conditions. Then ∇W (x̄, λ̄) =

 ∇2
xL(x̄, λ̄) ∇h(x̄)

∇h(x̄)T 0

 is non-singular.

To see this, let us show that the system ∇W (x̄, λ̄)

 d1

d2

 = 0 has the unique solution given by (dT1 , d
T
2 ) = 0.

Consider any solution (dT1 , d
T
2 ). Since x̄ is a regular solution, ∇h(x̄)T has full rank; so if d1 = 0, then d2 = 0 as well.

If d1 6= 0, Since ∇h(x̄)T d1 = 0, we have by the second order sufficient conditions that dT1∇2L(x̄)d1 > 0. However

since ∇2L(x̄)d1 +∇h(x̄)T d2 = 0, we have that ∇2L(x̄)d1 = −dT2∇h(x̄)d1 = 0, a contradiction. Hence ∇W (x̄, λ̄)

is non-singular and thus for (xk, λk) sufficiently close to (x̄, λ̄), ∇W (xk, λk) is non-singular.

Extension to Include Inequality Constraints

The sequential quadratic programming framework can be extended to general non-linear constrained problem

P: Minimize f(x)

Subject to: hi(x) = 0, i = 1, ...,m

gi(x) ≤ 0, i = 1, ..., l

(3.5)

Where, f, hi, gi are continuously twice differentiable for each i. For instance, given an iterative (xk, uk, vk) where

uk ≥ 0 and vk are respectively, the Lagrange multiplier estimates for the inequality and the equality constrains,
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we consider the following quadratic sub-problem.

Minimize f(xk) +∇f(xk)T d+
1

2
dT∇2

xL(xk, λk)d

Subject to:

hi(xk) +∇hi(xk)T d = 0, i = 1, ...,m

gi(xk) +∇gi(xk)T d ≤ 0, i = 1, ..., l

(3.6)

Where ∇2
xL(xk, λk) = ∇2f(xk) +

l∑
i=1

uki∇
2gi(xk) +

m∑
i=1

vki∇
2hi(xk). Note that the KKT conditions for this

problem require that in addition to primal feasibility, we find Lagrange multipliers u and v such that

∇f(xk) +∇2
xL(xk, λk)d+

l∑
i=1

ui∇gi(xk) +

m∑
i=1

vi∇hi(xk) = 0

ui[gi(xk) +∇gi(xk)Td] = 0, i = 1, .., l u ≥ 0, v unrestricted. (3.7)

Hence, if dk solves (3.5) with Lagrange multipliers uk+1 and vk+1 and if dk = 0, then xk along with (uk+1, vk+1)

yields a KKT solution for the original problem (P). Otherwise, we set xk+1 = xk + dk as before, increment k by

1, and repeat the process .In similar manner, It can be shown that if x̄ is a regular KKT solution which, together

with (ū, v̄) satisfies the second order sufficiency conditions, and if (xk, uk, vk) is initialized sufficiently close to

(x̄, ū, v̄), the forgoing iterative process will converge quadratically to close (x̄, ū, v̄).

Lemma 3.1. Given an iterate xk, consider the quadratic subproblem QP given by (3.6) where ∇2
xL(xk, λk) is re-

placed by any positive definite approximation Bk. Let d solve this problem with Lagrange multipliers u and v associ-

ated with the inequality and the equality constraints, respectively. If d 6= 0, and if µ ≥ max{u1, ..., ul, |v1|, ..., |vm|},

then d is a descent direction at x = xk for the merit function FE given above.

4 Summary

Zoutendijks Feasible Directions

• Basic idea:

3 move along steepest descent direction until constraints are encountered

3 at constraint surface, solve sub-problem to find descending feasible direction

3 repeat until KKT point is found

• Method

3 Sub-problem linear: efficiently solved

3 Determine active set before solving sub-problem!

3 When a = 0 : KKT point found

3 Method needs feasible starting point.

• Convergence
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3 The direction-finding problem only uses the binding constraints.

3 Nearly binding constraints can cause very short steps to be taken and also drastic changes in direction.

3 This causes the algorithmic map not to be closed.

3 This can cause jamming and slow convergence.

3 Idea: Use constraints that are nearly binding in the direction-finding problem.

3 Even this is not enough to guarantee convergence

Method of Topkis and Veinott

• Try to eliminate drastic changes in direction by accounting for all constraints.

• Use the following direction-finding problem:

Minimize z

Subject to:

∇f(x∗)T d− z ≤ 0

∇gi(x∗)T d− z ≤ −gi(x∗), −1 ≤ dj ≤ 1

This is enough to guarantee convergence to an FJ point.

• Convergence of Topkis and Veinott

3 Note that the solution to the direction-finding problem is feasible and improving.

3 Also, the optimal solution is 0 if and only if the current point is an FJ point.

3 Taking all the constraints into account eliminates drastic changes in direction and ensures that the

algorithmic map is closed.

3 Under the assumption that all the functions involved are continuously differentiable, a sequence {xk}

is generated by this algorithm, then allaccumulation points are FJ points.

Method of Topkis and Veinott

• Basic idea

3 The basic idea is analogous to Newtons method for unconstrained optimization.

3 In unconstrained optimization, only the objective function must be approximated, in the NLP, both

the objective and the constraint must be modeled.

3 An sequential quadratic programming method uses a quadratic for the objective and a linear model

of the constraint ( i.e., a quadratic program at each iteration)

3 Solve the KKT conditions directly using a Newton method.

3 This leads to a method which amounts to minimizing a second-order approximation of the Lagrangian.

3 From this, we can get a quadratic convergence rate
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Minimize f(x)

Subject to:

hi(x) = 0, i = 1, ...,m

gi(x) ≤ 0, i = 1, ..., l

⇐
=

Minimize f(xk) +∇f(xk)T d+
1

2
dT∇2

xL(xk, λk)d

Subject to:

hi(xk) +∇hi(xk)T d = 0, i = 1, ...,m

gi(xk) +∇gi(xk)T d ≤ 0, i = 1, ..., l

=⇒ x(k+1) = x(k) + d(k)

Basic SQP Algorithm

1. Choose initial point x0 and initial multiplier estimates λ0

2. Set up matrices for QP sub-problem

3. Solve QP sub-problem → dk, λk+1

4. Set xk+1 = xk + dk

5. Check convergence criteria −→ Finished. Otherwise go to 2.

5 Conclusion

Comparison of Zounendijk and SQP method :

S.No Criteria Zoutendijk SQP

1 Feasible starting point? Yes No

2 Nonlinear constraints? Yes Yes

3 Equality constraints? Hard Yes

4 Uses active set? Yes Yes

5 Iterates feasible? Yes No

6 Derivatives needed? Yes Yes

Table: Comparison of Zounendijk and SQP method

Generally, SQP seen as best general-purpose method for constrained problems. It relies on a profound theoretical

foundation and provides powerful algorithmic tools for the solution of large-scale technologically relevant problems.

Since other feasible direction methods are losing popularity, SQP is still a good option.
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