International Journal of Mathematics And its Applications

# Approximation of the Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n-3}$ 

Kumari Sreeja S Nair ${ }^{1, *}$<br>1 Department of Mathematics, Government College, Kariavattom, Thiruvananthapuram, Kerala.


#### Abstract

In this paper we give a rational approximation to an alternating series, by applying a correction function to the series. The introduction of correction function certainly improves the value of sum of the series and gives a better approximation to it.


Keywords: Correction function, error function, remainder term, rational approximation.
(C) JS Publication.

## 1. Introduction

Commenting on the Lilavati rule for finding the value of circumference of a circle from its diameter, the commentator Sankara refers to various infinite series for computing the circumference from the diameter. One such series attributed to illustrious mathematician Madhava of $14^{\text {th }}$ century is $C=\frac{4 d}{1}-\frac{4 d}{3}+\frac{4 d}{5}-\cdots \pm \frac{4 d}{2 n-1} \mp \frac{4 d\left(\frac{2 n}{2}\right)}{(2 n)^{2}+1}$, where + or - indicates that $n$ is odd or even and $C$ is the circumference of a circle of diameter $d$.

## 2. The Alternating Series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n-3}$

The alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n-3}$ is a convergent series and converges to $\frac{[\pi+2 \ln (\sqrt{2}+1)]}{4 \sqrt{2}}$
Definition 2.1. The remainder term after $n$ terms of the series is $R_{n}=(-1)^{n} G_{n}$ where $G_{n}$ is the correction function after $n$ terms.

Definition 2.2. If $G_{n}$ denotes the correction function, then the error function is defined as $E_{n}=G_{n}+G_{n+1}-\frac{1}{4 n+1}$.
Theorem 2.3. The correction function for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n-3}$ is $G_{n}=\frac{1}{8 n-2}$.
Proof. For a fixed $n$ and for any $r \in R$ and for $G_{n}(r)=\frac{1}{8 n+2-r}$ the error function $E_{n}(r)$ is minimum for $r=4$. Thus the correction function for the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4 n-3}$ is $G_{n}=\frac{1}{8 n-2}$. The corresponding error function is $\left|E_{n}\right|=\frac{16}{256 n^{3}+192^{2}-16 n-12}$. Hence the proof.

[^0]Remark 2.4. Clearly $G_{n}<\frac{1}{4 n+1}$, absolute value of $(n+1)^{\text {th }}$ term. Also $\frac{1}{8 n+2}<\frac{1}{8 n-2}<\frac{1}{8 n-6}$ i.e. $\frac{1}{2}\left\{\left|t_{n+1}\right|\right\}<$ $G_{n}<\frac{1}{2}\left\{\left|t_{n}\right|\right\}$ where tn denotes $n^{\text {th }}$ term of the series.

Theorem 2.5. The error function $E_{n}(r)$ is continuous at $r=4$.
Proof. The proof is left to the reader.
Theorem 2.6. The error function $E_{n}(r)$ has a local minimum at the point $r=4$.
Proof. The proof is obtained from the proof of Theorem 2.3.
Now for $G_{n}(r)=\frac{1}{6 n+2-r}$ where $r \in R$ and $n$ is fixed, we have the error function $E_{n}(r)$ is minimum for $r=3$. Thus the correction function for the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{3 n-2}$ is $G_{n}=\frac{1}{6 n-1}$. The corresponding error function is $\left|E_{n}\right|=$ $\frac{9}{108 n^{3}+108 n^{2}+9 n-5}$. Hence the proof.
Remark 2.7. Clearly $G_{n}<\frac{1}{3 n+1}$, absolute value of $(n+1)^{\text {th }}$ term. Also $\frac{1}{6 n+2}<\frac{1}{6 n-1}<\frac{1}{6 n-4}$ i.e. $\frac{1}{2}\left\{\left|t_{n+1}\right|\right\}<$ $G_{n}<\frac{1}{2}\left\{\left|t_{n}\right|\right\}$.

Proposition 2.8. The error function $\left|E_{n}(r)\right|$ is continuous at $r=3$.

Theorem 2.9. The error function $\left|E_{n}(r)\right|$ has a local minimum at the point $r=3$.
Proof. The proof is obtained from Theorem 2.3.

## References

[1] Konrad Knopp, Theory and Application of Infinite series, Courier Corporation, (1990).
[2] G. H. Hardy, A Course of Pure Mathematics, Cambridge University Press, (1908).
[3] K. Knopp, Infinite sequences and series, Dover, (1956).


[^0]:    * E-mail: manchavilakamsreeja@gmail.com

