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Abstract: The problem of MHD radiation flow over an exponentially sheet through a porous medium is considered. The consequences
of various parameters will be analyzed in Copper (Cu) and Silver (Ag) nanofluid. The non-linear governing equations of

flow of thermal fields are converted to ordinary differential equation using similarity transformations and their numerical
solution is obtained using MATLAB software “bvp4c” under the related boundary conditions. The interesting outcomes

for variant physical parameters are exhibited through plots and numerical tables.
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1. Introduction

Any fluid having elements with dimension less than 100nm is admitted as nanofluid. The base fluid or dispersing medium

can be present as aqueous or non-aqueous. Nanoparticles have been made of various materials such as, oxide, ceramics,

nitride ceramics etc. Convective heat transfer in nanofluid is a matter of consideration in science and engineering. Modern

heat transfer industries depend upon high performance heat transfer accessories. Maxwell [1] was the first to present the

idea of improving heat and mass transfer performance of fluid with the insertion of solid particles. Many authors [6–9]

did numerical analysis on natural convective heat transfer in nanofluids. The application of boundary layer flows and

heat transfer past a stretching surface has earned an enormous popularity owing to its broad applications in industry and

technology, for example, in metallurgical process such as annealing and tinning of copper wires, glass blowing, crystal growing,

manufacturing of plastic and rubber sheets etc. In aspects of these functions Sakiadis [14, 15] explored the boundary layer

flow of a viscous fluid done with a moving solid surface. Despite, entire research is confined to linear stretching of the sheet.

It is worth saying that the stretching is not compulsorily linear. Ibrahim [16] interpreted the radiation effect on viscous flow

of a nanofluid and heat transfer over a nonlinearly stretching sheet and he analyzed that addition in thermal parameter and

nonlinearly stretching sheets parameter leads to an increase in heat transfer rates. The consequences of variant parameters

governing the flow of a viscous fluid past a nonlinearly stretching sheet was analyzed by Vajravelu [17], Cortell [18, 19] and

Afzal [22]. The problem of flow over a quadratic stretching sheet was studied by Kumaran and Ramaniah [23]. Despite

all these studies, not too many analyses focused on an exponentially stretching sheet. Nadeem and Lee [24] has taken into

consideration the problem of boundary layer flow of nanofluid over an exponentially stretching surface and he analyzed
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that the boundary layer thickness reduces with increase in thermopheresis parameter. Bidin and Nazar [25], Nadeem [26],

Magyari and Keller [27], Sanjayanand and Khan [? ], Sajid and Hyat [? ], Partha [? ] and Elbashbeshy [? ] analyzed heat

transfer temperament past an exponentially stretching sheet. The main objective of the present chapter is to analyze the

consequences of variant parameters on MHD boundary layer flow over an exponentially stretching sheet through a porous

media in Copper (Cu) and Silver (Ag) nanofluid.

2. Formulation of the Problem

We consider the two-dimensional steady flow of Copper (Cu) and Silver (Ag) nanofluid past an exponentially stretching

sheet. Let the x-axis is taken along the stretching surface in the direction of motion and y-axis is normal to it. The plate

is stretched along the x-direction with a velocity Uw = U∞e
x
l defined at y = 0. A variable magnetic field B (x) = B0e

x
2l

is applied normal to the sheet, B0 being a constant. The thermo-physical properties of regular fluid and nanoparticles are

given in Table 1.

Physical properties Regular fluid(water) Copper (Cu) Silver (Ag)

cP (J/kg K) 4179 385 235

ρ (kg/m3) 997.1 8933 10500

k (W/mK) 0.613 400 429

β × 10−5(1/K) 21 1.67 1.89

Table 1: Thermo-physical properties of regular fluid and nanoparticles

The continuity, momentum, energy and concentration equations governing such type of flow can be written as

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
− υ

K
u− σB2 (x)

ρnf
u (2)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

(3)

u
∂c

∂x
+ v

∂c

∂y
= DB

∂2c

∂y2
− γ0(C − C8) (4)

qr is the radiative heat flux, C is the nanoparticle fluid concentration, νnf is the kinematic viscosity, µnf =
µf

(1−∅)2.5 is the

dynamic viscosity of the nanofluid, ρnf = (1 − ∅)ρf + ∅ρs is the density of the nanofluid, αnf =
knf

(ρcp)
nf

is the thermal

diffusivity with knf is the thermal conductivity of the fluid, where

knf = kf
(ks + 2kf )− 2φ (ks − kf )

(ks + 2kf ) + φ (ks − kf )
,

cp is the heat capacity at constant pressure and

(ρCp)nf = (ρCp)f (1− φ) + (ρCp)sφ

The corresponding boundary conditions are:

u = Uw (x, t) , v = 0, T = Tw (x, t) , C = Cw(x, t) at y = 0

u→ U (x) , T → T∞, C → C∞ at y →∞.
(5)
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The sheet of the temperature is

Tw = T8 + T0e
x
2l (6)

where T0 is the reference temperature, Tw is the surface temperature and T∞ is the temperature of the fluid outside the

boundary layer. The wall surface concentration Cw(x, t) is given by the expression

Cw = C∞ + C0e
x
2l (7)

cw is the wall surface concentration and C∞ is the concentration of the fluid outside the boundary layer and

γ0(x) = γe
x
l (8)

where γ0(x) is the variable reaction rate, L is the reference length and γ is a constant. The radiative heat flux under rossel

and approximation [32] has the form:

qr = − 4σ

3k1

∂T 4

∂y
(9)

where k1 and σ are the mean absorption coefficient and the Stefan-Boltzman constant. We assume that the temperature

difference within the flow is sufficiently small such that T 4 can be expressed as a linear function of temperature. Hence

expanding T 4 in Taylor series about T∞ and neglecting higher order terms, we get

T 4 ∼= 4T8
3 − 3T 8

4 (10)

Using Equations (5) and (6), Equation (3) reduces to:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

16σT8
3∂2T

3k1
(
ρcp
)
nf
∂y2

(11)

Now introducing the following similarity transformations

η =

√
u0

2υl
e

x
2l y, u = u0e

x
l f ′ (η) , v = −

√
υu0

2l
e

x
2l f (η) + ηf ′ (η) , θ (η) =

T − T8

TW − T8
, h (η) =

C − C∞
Cw − C∞

(12)

Using Equations (11)-(13), the governing equations becomes

f ′′′ − (1− φ)2.5
{

1− φ+ φ
ρs
ρf

}[
2f ′

2 − ff ′′ +Mf ′
]

= 0 (13)

θ′′ +
1(

1 + 4
3
Nr
)Pr kf

knf

{
1− φ+ φ

(ρCp)s
(ρCp)f

}{
fθ′ − f ′θ

}
= 0 (14)

h′′ + Le
{
fh′ − f ′h− ζh

}
= 0 (15)

And the transformed boundary conditions are

f ′(0) = 1, θ (0) = 1, h (0) = 1 at η = 0

f (∞) = 0, θ (∞) = 0, h (∞) = 0 at η =∞
(16)

Where Pr =
νf
αf

is the Prandtl number, Nr = 4σT8
3

kk1
is the parameter of radiation, Le =

υf
DB

is the Lewis number, and

M = σB0
2

u0ρnf
+

νnf

k0u0
is the combined magnetic and porosity parameter. ζ is the instantaneous reaction rate parameter. The

physical quantities of interest are the skin friction coefficient, the local Nusselt number and Sherwood number which are

defined as

Cf =
µ

ρfe
2x
l U

2

0

(
∂u

∂y

)
y=0

, Nu = − x

(TW − T∞)

(
∂T

∂y

)
y=0

, Sh = − x

(CW − C∞)

(
∂C

∂y

)
y=0

(17)

With µ and k are the dynamic viscosity and thermal conductivity, respectively. Using non-dimensional variables, we have

√
2Re1/2x Cf = f ′′ (0) ,

Nu
√

2Re
1/2
x

= −
(

1 +
4

3
Nr

)
x

2l
θ′ (0) ,

Sh
√

2Re
1/2
x

= −
√
x

2l
h′(0) (18)
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3. Method of Solution

The sets of Equations (13)-(15) with boundary conditions 16 constitute a two-point boundary value problem. These equations

are solved using “bvp4c” function of MATLAB software package. “bvp4c” is a finite difference code that implements

Lobattollla formula and the collocation polynomials allocate a C1-continuous solution that is fourth-order accurate uniformly

in the interval of integration. Mesh selection and error control are based on residual of the continuous solution. The function

“bvp4c” has three input variables namely: M-file enumerating an ordinary differential equation system of the design, M-file

enumerating the boundary values, and an initial approximation of the result prepared with the MATLAB function “bvpinit”.

The variables are defined as:

y1 = f, y2 = f ′, y3 = f ′′, y′3 = f ′′′ (19)

y4 = θ, y5 = θ′, y′5 = θ′′ (20)

y6 = φ, y7 = φ′, y′7 = φ′′ (21)

Using (19), (20) and (21), the Equations (13)-(15) can be written as

y′3 − (1− φ)2.5
{

1− φ+ φ
ρs
ρf

}(
2y2

2 − y1y3 +My2
)

= 0 (22)

y′5 +
1(

1 + 4
3
Nr
)Pr kf

knf

{
1− φ+ φ

(ρCp)s
(ρCp)f

}
{y1y5 − y2y4} = 0 (23)

y′7 + Le {y2y6 − y1y7 − ζy7} = 0 (24)

Bvp4c implements a collocation method for the solution of BVPs subject to general nonlinear, two-point boundary condition.

The approximate solution is a continuous function that is a cubic polynomial on each subinterval of a mesh. It satisfies

the differential equations at both ends and the midpoint of each subinterval and its boundary conditions. The solver then

estimates the error of the numerical solution on each subinterval. If the solution does not satisfy the tolerance criteria, the

solver adapts the mesh and repeats the procedure.

4. Results and Discussion

In order to bring out prime characteristic of the flow over an exponentially stretching sheet in a porous media with Copper

Cu and Silver Ag nanoparticles are depicted in Figures 1-7 for variant values of volume fraction φ, combined porosity

parameter and magnetic parameter M , Prandtl number Pr, thermal radiation parameter Nr, Lewis number Le. Table 2

shows computational values of −f ′′(0) and −θ′(0) and −h′(0) for Copper and Silver nanoparticles with different values for

φ.

φ −f ′′(0) −θ′(0) −h′(0)

Cu Ag Cu Ag Cu Ag

0.0 1.3817 1.3817 0.8134 0.8134 1.4953 1.4953

0.1 1.5964 1.6648 0.7765 0.7681 1.4814 1.4759

0.2 1.6552 1.7528 0.7353 0.7178 1.4767 1.4691

0.3 1.6015 1.7093 0.6953 0.6666 1.4810 1.4724

0.4 1.4678 1.5742 0.6502 0.6142 1.4921 1.4832

Table 2: Pr = 0.7, Nt = Nb = Nr = 0.5, Le = 2, M = 1
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Figure 1 depicts the variation in combined magnetic and porosity parameter M when φ = 0.1. It is obvious from the figure

that the velocity profile decreases with an increase in value of η, this exhibits a reduction of the thickness of the momentum

boundary layer.

Figure 1: M = 0.1, 0.2, 0.3, φ = 0.1 velocity profile for

variation in combined magnetic and porosity parameter

Figure 2: φ = 0.1, 0.2, 0.3, M = 0.2 velocity profile for

variation in solid volume fraction φ

Figure 3: φ = 0.1, 0.2, 0.3, Pr = 3, Nr = 0.5 = Nt = Nb,

Le = 2 Temperature profile for variation in solid volume

fraction φ

Figure 4: Pr = 1, 2, 3, Nt = Nb = Nr = 0.5, Le = 2, φ = 0.1

Temperature profile for variation in Prandtl number Pr

Figure 5: Nr = 0.5, 1, 2, Nt = Nb = 0.5, Le = 2, Pr = 1,

φ = 0.1. Temperature profile for variation in radiation

parameter Nr

Figure 6: ζ = 0.2, 0.4, 0.6, Le = 2. Concentration profile for

variation in ζ
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Figure 7: Le = 1, 2, 3, ζ = 0.2. Concentration profile for

variation in Lewis number Le

Figure 8: Pr = 6.25, M = 0.2, Nr = 0.5, Le = 1, 1.2. Skin

friction for variation in φ

Figure 9: Pr = 6.25, M = 0.2, Nr = 0.5, Le = 1, 1.2. Nusselt

number for variation in φ

Figure 10: Pr = 6.25, M = 0.2, Nr = 0.5, Le = 1, 1.2.

Sherwood number for variation in φ

Figure 2 reveals the variation in solid volume fraction φ, the figure itself expresss that the velocity profile decreases with an

increase in value of η.This happens due to the presence of solid nano-particles which leads to further thinning of the velocity

boundary layer thickness. Figure 3 exhibits for variation in solid volume fraction φ on temperature profile, from the figure

it is obvious that the temperature profile declines with an increase in value of η and the thermal boundary layer thickness

increases with the increase in value of φ. Figure 4 is plotted for variation in Prandtl number Pr. As an actual important

thermo-physical property of a fluid, Prandtl number expresses the ratio of momentum diffusivity to thermal diffusivity in

the regime.It is apparent from the figure that the thermal boundary layer thickness increases as Pr increases.

Figure 5 exhibits the changes that are seen in temperature profile owe to increase in values of thermal radiation parameter

Nr. It is apparent from the figure 5 that the fluid temperature increases with the increasing Nr because the conduction effect

of the nanofluid increases in the presence of thermal radiation Nr and the thermal boundary layer thickness is increased

with the increasing Nr. Figure 6 is depicted the variation in chemical reaction parameter on concentration profiles. It is

witnessed that the concentration boundary layer thickness reduces with increase in chemical reaction parameter γ. Figure

7 exhibits the variation in Lewis number Le. Lewis number signifies the relative contribution of thermal diffusion rate to

species diffusion rate in the boundary layer regime and it is evident from the figure that the concentration profile decreases

with increasing η and boundary layer for h(η) is decreased. Figures 8-10 is for variation in −f ′′ (0), −θ′ (0), −h′(0) against

φ for variant thermo-physical properties of water and nanoparticles.
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5. Conclusion

In this chapter, the consequences of MHD fluid flow over a stretching sheet in presence of thermal radiation in porous media

have been analyzed. The investigation is performed for variant mentioned parameters and some conclusions are summarized

as follow:

(1). The thermal boundary layer thickness increases with increase in Prandtl number.

(2). Nusselt number decreases with increase in solid volume fraction.
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