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1. Introduction

Zadeh [7] introduced the concept and fuzzy set in 1965. Since then this idea has been applied to other algebraic structure

such as groups, semigroups, rings, modules, vector spaces and topologies. With development of fuzzy set, it is widely

used in many fields. Filters correspond to sets of formulae closed with respect to Modus Ponens. So filters are important

tools in studying non-classical algebras. From the logical point view, various filters correspond to various sets of provable

formulae. At present, there are two way to generalize the types of filters: one is fuzzy set theory and the other is folding

theory. In the fuzzy approach, a lot of work has been done fuzzy filters which are particular cases of fuzzy set. Mordchaj

Wajsbreg [6] introduced the concept of Wajsberg algebras in 1935 and studied by Font, Rodriguez and Torrens in [5]. They

[5] defined lattice structure of Wajsberg algebras. Further, they [5] introduced the notion of an implicative filter of lattice

Wajsberg algebras and discussed some of their properties. Basheer Ahamed and Ibrahim [1, 2] introduced the definitions of

fuzzy implicative filter and an anti fuzzy implicative filter of lattice Wajsberg algebras and obtained some properties with

illustrations. Recently, the authors [3] introduced the notions of implicative and strong implicative filters of lattice Wajsberg

algebra, and investigated some properties of them. In the present paper, we discuss the properties of strong implicative

filter. We introduce the notion of fuzzy strong implicative filter of lattice Wajsberg algebra, and investigate some properties

with illustrations. Further, we discuss some related properties of strong implicative and fuzzy strong implicative filters of

lattice Wajsberg algebra with useful examples.
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2. Preliminaries

In this section, we review some basic definitions and properties which are helpful our subsequent discussions.

Definition 2.1 ([5]). Let (A,→, ∗, 1) be an algebra with a quasi complement “∗” and a binary operation “→” is called

Wajsberg algebra if and only if it satisfies the following axioms for all x, y, z ∈ A,

(1). 1→ x = x

(2). (x→ y)→ ((y → z)→ (x→ z)) = 1.

(3). (x→ y)→ y = (y → x)→ x.

(4). (x∗ → y∗)→ (y → x) = 1.

Proposition 2.2 ([5]). The Wajsberg algebra (A,→, ∗, 1) satisfies the following axioms for all x, y, z ∈ A,

(1). x→ x = 1.

(2). If x→ y = y → x = 1 then x = y.

(3). x→ 1 = 1.

(4). x→ (y → x) = 1.

(5). If x→ y = y → z = 1 then x→ z = 1

(6). (x→ y)→ ((z → x)→ (z → y)) = 1

(7). x→ (y → z) = y → (x→ z).

(8). x→ 0 = x→ 1∗ = x∗.

(9). (x∗)∗ = x.

(10). x∗ → y∗ = y → x.

Definition 2.3 ([5]). The Wajsberg algebra A is called a lattice Wajsberg algebra if it satisfies the following axioms for all

x, y ∈ A,

(1). A partial ordering “≤” on a lattice Wajsberg algebra A, such that x ≤ y if and only if x→ y = 1.

(2). (x ∨ y) = (x→ y)→ y.

(3). (x∧ y) = ((x∗ → y∗)→ y∗)∗. Thus, we have (A,∨,∧, ∗, 0, 1) is a lattice Wajsberg algebra with lower bound 0 and upper

bound 1.

Proposition 2.4 ([5]). The Wajsberg algebra (A,→, ∗, 1) satisfies the following axioms for all x, y, z ∈ A,

(1). If x ≤ y then x→ z ≥ y → z.

(2). If x ≤ y then z → x ≤ z → y.

(3). x ≤ y → z if and only if y ≤ x→ z.

(4). (x ∨ y)∗ = (x∗ ∧ y∗).
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(5). (x ∧ y)∗ = (x∗ ∨ y∗).

(6). (x ∨ y)→ z = (x→ z) ∧ (y → z).

(7). x→ (y ∧ z) = (x→ y) ∧ (x→ z).

(8). (x→ y) ∨ (y → x) = 1.

(9). x→ (y ∨ z) = (x→ y) ∨ (x→ z).

(10). (x ∧ y)→ z = (x→ y) ∨ (x→ z).

(11). (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

(12). (x ∧ y)→ z = (x→ y)→ (x→ z).

Definition 2.5 ([4]). A lattice Wajsberg algebra A is called a lattice H-Wajsberg algebra, if it satisfies x∨y∨((x ∧ y)→ z) = 1

for all x, y, z ∈ A. In a lattice H-Wajsberg algebra A, the following hold

(1). x→ (x→ y) = (x→ y).

(2). x→ (y → z) = (x→ y)→ (x→ z).

Definition 2.6 ([5]). Let A be a lattice Wajsberg algebra. A subset F of A is called an implicative filter of A if it satisfies

the following axioms for all x, y ∈ A.

(1). 1 ∈ F .

(2). x ∈ F and x→ y ∈ F imply y ∈ F .

Definition 2.7 ([3]). Let A be a lattice Wajsberg algebra. A subset F of A is called a strong implicative filter of A if it

satisfies the following axioms for all x, y, z ∈ A.

(1). 1 ∈ F .

(2). x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F .

Definition 2.8 ([7]). Let X be a set. A function µ : X → [0, 1] is called a fuzzy subset on X, for each x ∈ X, the value of

µ(x) describes a degree of membership of x in µ.

Definition 2.9 ([7]). Let µ be a fuzzy set in a set A. Then for t ∈ [0, 1], the set µt = {x ∈ A/µ(x) ≥ t} is called level subset

of µ.

Definition 2.10 ([7]). Let µ be a fuzzy set in a set A. Then for t ∈ [0, 1], the set µt = {x ∈ A/µ (x) ≤ t} is called the lower

t-level cut of µ.

Definition 2.11 ([1]). Let A be a lattice Wajsberg algebra. A fuzzy subset µ of A is called a fuzzy implicative filter of A if

it satisfies the following axioms for all x, y ∈ A.

(1). µ(1) ≥ µ(x).

(2). µ(z) ≥ min{µ(y), µ(y → z)}.

Proposition 2.12 ([1]). Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A, then for all x, y ∈ A, x ≤ y

implies µ(x) ≤ µ(y).
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Proposition 2.13 ([3]). Let A be a lattice Wajsberg algebra, F1 and F2 are any two implicative filters of A, F1 ⊆ F2. If F1

is a strong implicative filter, so is F2.

Definition 2.14 ([4]). Let A1 and A2 be lattice Wajsberg algebras, f : A1 → A2 be a mapping from A1 to A2, if for any

x, y ∈ A1, f(x→ y) = f(x)→ f(y) holds, then f is called an implication homomorphism from A1 to A2.

Definition 2.15 ([4]). Let A1 and A2 be lattice Wajsberg algebras, f : A1 → A2 be an implication homomorphism from A1

to A2, is called a lattice implication homomorphism from A1 to A2 if it satisfies the following axioms for all x, y ∈ A1,

(1). f(x ∧ y) = f(x) ∧ f(y).

(2). f(x ∨ y) = f(x) ∨ f(y).

(3). f(x∗) = [f(x)]∗.

3. Main Results

3.1. Fuzzy implicative filter

In this section, we obtain some properties of fuzzy implicative filters.

Proposition 3.1. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A if and only if it satisfies the following

for any x, y, z ∈ A,

(1). µ(1) ≥ µ(x).

(2). µ(x→ z) ≥ min{µ(x→ y), µ(y → z)}.

Proof. Let µ be a fuzzy implicative filter of A, from (i) of Definition 2.11, we get (1) and for any x, y, z ∈ A, we have

µ(x→ z) ≥ min{µ(y → z), µ((y → z)→ (x→ z))} (1)

Now,

(x→ y)→ ((y → z)→ (x→ z)) = (x→ y)→ ((z → y)→ (x→ y))

= (z → y)→ ((x→ y)→ (x→ y))

= (z → y)→ 1 = 1.

Then, from (1) of Definition 2.3, we have (x→ y) ≤ (y → z)→ (x→ z). From the Proposition 2.12, we get

µ((y → z)→ (x→ z)) ≥ µ(x→ y) (2)

Using (2) in (1), we have µ(x→ z) ≥ min{µ(y → z), µ((y → z)→ (x→ z))} ≥ min{µ(x→ y), µ(y → z)}.

Conversely, if µ satisfies (1) and (2), for any x ∈ A, then from (1), we have µ(1) ≥ µ(x). For any x, y, z ∈ A, put x = 1 in

(2), we get µ(1→ z) ≥ min{µ(1→ y), µ(y → z)}. Then µ(z) ≥ min{µ(y), µ(y → z)}. Thus µ is a fuzzy implicative filter of

a lattice Wajsberg algebra A.

Proposition 3.2. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A if and only if it satisfies the following

for any x, y, z ∈ A,
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(1). µ(1) ≥ µ(x).

(2). µ(z) ≥ min{µ(x), µ(y), µ(x→ (y → z))}.

Proof. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A, then (1) is obvious and for any x, y, z ∈ A,

µ(z) ≥ min{µ(x), µ(x→ z)}, µ(x→ z) ≥ min{µ(y), µ(y → (x→ z))} = min{µ(y), µ(x→ (y → z))}. (By (7) of Proposition

2.2). Hence, we have µ(z) ≥ min{µ(x), µ(y), µ(x→ (y → z))}.

Conversely, µ satisfies (1) and (2), for any x ∈ A, from (1), we have µ(1) ≥ µ(x). For any x, y, z ∈ A, put x = y in (2)

then we have µ(z) ≥ min{µ(x), µ(x → (x → z)}. From (x → z) → (x → (x → z)) = 1 and from (1) of Definition 2.3

and Proposition 2.12, we get x → z ≤ x → (x → z) and µ(x → z) ≤ µ((x → (x → z)). Thus µ(z) ≥ min{µ(x), µ(x →

(x → z)} ≥ min{µ(x), µ(x → z)}. Therefore µ(z) ≥ min{µ(x), µ(x → z)}. Hence µ is a fuzzy implicative filter of a lattice

Wajsberg algebra A.

Proposition 3.3. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A if and only if it satisfies the following

for any x, y, z ∈ A,

(1). µ(1) ≥ µ(x).

(2). µ(z → x) ≥ min{µ((z → y)→ x), µ(y)}.

Proof. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A, then (1) is obvious,

To Prove: µ(z → x) ≥ min{µ((z → y)→ x), µ(y)}.

For any x, y, z ∈ A, we have

µ(z → x) ≥ min{µ(y → (z → x)), µ(y)} (3)

Now for any x, y, z ∈ A,

((z → y)→ x)→ ((z → y)→ (z → x)) = ((z → y)→ x)→ (z → ((z → y)→ x))

= z → (((z → y)→ x)→ ((z → y)→ x))

= z → 1 = 1.

From (1) of Definition 2.3, we get ((z → y) → x) ≤ (z → y) → (z → x). Then from the Proposition 2.12, we have

µ((z → y) → x) ≤ µ((z → y) → (z → x)). We know that z → (y → x) ≥ (z → y) → (z → x). Then from the Proposition

2.12, we get µ(z → (y → x)) ≥ µ((z → y) → (z → x)). Thus µ(z → (y → x)) ≥ µ((z → y) → x). From (7) of Proposition

2.2, we have

µ(y → (z → x)) ≥ µ((z → y)→ x) (4)

Using (4) in (3), we have µ(z → x) ≥ min{µ((z → y)→ x), µ(y)}.

Conversely, µ satisfies (1) and (2). Obviously, µ(1) ≥ µ(x). Taking z = 1 in (2) and from the (1) of Definition 2.1, we get

µ(x) ≥ min{µ(y), µ(y → x)}. Hence µ is a fuzzy implicative filter of A.

Proposition 3.4. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A. If x ≤ y → z for any x, y, z ∈ A, then

µ(z) ≥ min{µ(x), µ(y)}.

Proof. Let µ be a fuzzy implicative filter of a lattice Wajsberg algebra A, for any x, y, z ∈ A, µ(z) ≥ min{µ(y), µ(y → z)}.

Given that x ≤ y → z then from the Proposition 2.12, we have µ(y → z) ≥ µ(x). Hence µ(z) ≥ min{µ(y), µ(y → z)} ≥

min{µ(y), µ(x)}. That is, µ(z) ≥ min{µ(x), µ(y)}.
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3.2. Fuzzy strong implicative filter

In this section, we introduce fuzzy strong implicative filter of lattice Wajsberg algebra and investigate some properties with

illustrations.

Definition 3.5. Let A be a lattice Wajsberg algebra. A fuzzy subset µ of A is called a fuzzy strong implicative filter of A if

it satisfies the following for all x, y, z ∈ A,

(1). µ(1) ≥ µ(x).

(2). µ(x→ z) ≥ min{µ(x→ y), µ(x→ (y → z))}.

Example 3.6. Consider a set A = {0, a, b, c, d, 1} with Figure 1 as a partial ordering. Define a quasi complement “∗” and

a binary operation “→” on A as in Tables 1 and 2.

Figure 1:

x x∗

0 1

a c

b d

c a

d b

1 0

Table 1: Complement

−→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 a c c 1

b c 1 1 c c 1

c b a b 1 a 1

d a 1 a 1 1 1

1 0 a b c d 1

Table 2: Implication

Define ∨ and ∧ operations on A as follow, (x ∨ y) = (x→ y) → y, (x ∧ y) = ((x∗ → y∗)→ y∗)∗ for all x, y ∈ A. Then, A

is a lattice Wajsberg algebra. Consider the fuzzy subset µ on A as,

µ (x) =

 0.7 if x = 1

0.3 otherwise

for all x ∈ A. Then µ is fuzzy strong implicative filter. In the same Example 3.2, consider the fuzzy subset µ on A as,

µ (x) =

 0.8 if x ∈ {1, a, c}

0.4 if x ∈ {0, b, d}

Then, we have µ is not fuzzy strong implicative filter of lattice Wajsberg algebra A. Since, we have µ (c→ b) = 0.4. But,

min {µ (c→ d) , µ (c→ (d→ b)} = min {µ (a) , µ (1)} = 0.8. Therefore, we get µ (c→ b) � min {µ (c→ d) , µ (c→ (d→ b)}.

Proposition 3.7. Let A be a lattice Wajsberg algebra, and let µ be a fuzzy strong implicative filter of A, then µ is a fuzzy

implicative filter of A.

Proof. Let µ be a fuzzy strong implicative filter of a lattice Wajsberg algebra A then µ(x → z) ≥ min{µ(x → y), µ(x →

(y → z))}. Take x = 1, then from (1) of Definition 2.1, we have µ(z) ≥ min{µ(1→ y), µ(1→ (y → z))} = min{µ(y), µ(y →

z)}. Thus µ is a fuzzy implicative filter of A.

Proposition 3.8. Let A be a lattice Wajsberg algebra. Then A is a lattice H-Wajsberg algebra if and only if each fuzzy filter

of A is a fuzzy strong implicative filter.
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Proof. Let A be a lattice H -Wajsberg algebra and µ be a fuzzy filter of A, then from (2) of Definition 2.5, we have

x → (y → z) = (x → y) → (x → z). It follows that min{µ(x → y), µ(x → (y → z))} = min{µ(x → y), µ((x → y) → (x →

z))} ≤ µ(x→ z). Hence µ is a fuzzy strong implicative filter.

Conversely, assume that each fuzzy filter of A is a fuzzy strong implicative filter. Define a mapping µ : A→ [0, 1] as

µ(x) =

 0.8 if x = 1

0 if x 6= 1

for all x ∈ A. Then µ is a fuzzy filter of A and hence it is a fuzzy strong implicative filter. It follows that {1} = µ0.8 is an

implicative filter of A. This implies that A is a lattice H -Wajsberg algebra.

Proposition 3.9. A fuzzy subset µ of a lattice Wajsberg algebra A is a fuzzy strong implicative filter of A if and only if,

for each t ∈ [0, 1], µt is either empty or strong implicative filter of A.

Proof. Let µ be a fuzzy strong implicative filter of A and µt 6= φ for all t ∈ [0, 1]. It is clear that 1 ∈ µt since µ(1) ≥ t.

Let x, y, z ∈ A be such that x→ y ∈ µt and x→ (y → z) ∈ µt. Then, we have µ(x→ y) ≥ t and µ(x→ (y → z)) ≥ t. Thus,

we get µ(x→ z) ≥ min{µ(x→ y), µ(x→ (y → z))} ≥ t, that is, x→ z ∈ µt. Thus µt is a strong implicative filter of A.

Conversely, suppose that for each t ∈ [0, 1], µt is either empty or a strong implicative filter of A. For any x ∈ A, let

µ(x) = t. Then, we get x ∈ µt. Since µt 6= φ is a strong implicative filter of A, therefore 1 ∈ µt and hence µ(1) ≥ t = µ(x).

Thus µ(1) ≥ µ(x) for all x ∈ A. Now, it is enough to show µ satisfies µ(x → z) ≥ min{µ(x → y), µ(x → (y → z))}. If

not, then there exist x′, y′, z′ ∈ A such that µ(x′ → z′) < min{µ(x′ → y′), µ(x′ → (y′ → z′))}. Taking t0 = 1
2
{µ(x′ →

z′) + min{µ(x′ → y′), µ(x′ → (y′ → z′))}}. Then, we have that µ(x′ → z′) < t0 < min{µ(x′ → y′), µ(y′ → (x′ → z′))}.

Hence, x′ → z′ /∈ µt0 , x
′ → y′ ∈ µt0 and y′ → (x′ → z′) ∈ µt0 , that is, µt0 is not a fuzzy implicative filter of A, which is a

contradiction. Therefore, µ is a fuzzy strong implicative filter of A.

Proposition 3.10. Let µ and ρ be fuzzy implicative filters of a lattice Wajsberg algebra A with µ ≤ ρ and µ(1) = ρ(1). If

µ is a fuzzy strong implicative filter of A, then so is ρ.

Proof. To prove: ρ is a fuzzy strong implicative filter of A. It is enough to show that for any t ∈ [0, 1], ρt is either empty

or a strong implicative filter of A. If the level subset ρt is nonempty, then µt 6= φ and µt ⊆ ρt, if x ∈ µt, then t ≤ µ(x) and

so t ≤ ρ(x) that is, x ∈ νt. Hence µt ⊆ ρt. Since µ is a fuzzy strong implicative filter of A, by the hypothesis it follows from

Proposition 3.4 that µt is an implicative filter of A. From the Proposition 2.13, we have ρt is also an implicative filter of A.

Hence ρ is a fuzzy strong implicative filter of A.

Proposition 3.11. Let A be a lattice Wajsberg algebra and µ be a fuzzy subset of A, if µ is a fuzzy strong implicative filter,

then the following are satisfied and equivalent:

(1). µ is a fuzzy implicative filter and for any x, y ∈ A, µ(x→ y) ≥ µ(x→ (x→ y));

(2). µ is a fuzzy implicative filter and for any x, y, z ∈ A, µ((x→ y)→ (x→ z)) ≥ µ(x→ (y → z));

(3). µ(x) ≤ µ(1) and for any x, y, z ∈ A, µ(x→ y) ≥ min{µ(z → (x→ (x→ y))), µ(z)}.

Proof. (1)⇒ (2) Let µ beafuzzy strong implicative filter of A. Then from the Definition 3.5, we have

µ(1) ≥ µ(x) and µ(x→ z) ≥ min{µ(x→ y), µ(x→ (y → z))} (5)
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Put x = 1 in (5), we get µ(z) ≥ min{µ(y), µ(y → z)} for all x, y, z ∈ A. Therefore µ is a fuzzy implicative filter of A.

From µ(x → z) ≥ µ(x → (x→ z), put z = y, we have µ(x → y) ≥ µ(x → (x → y)). If for any x, y, z ∈ A, µ(x → y) ≥

µ(x → (x → y)). Then, we have µ((x → y) → (x → z)) = µ(x → ((x → y) → z)) ≥ µ(x → (x → ((x → y) → z))), and

x→ (x→ ((x→ y)→ z)) = x→ ((x→ y)→ (x→ z)) = x→ ((y → x)→ (y → z)) ≥ x→ (y → z). From the Proposition

2.12, we have µ(x→ (x→ ((x→ y)→ z))) ≥ µ(x→ (y → z)). Therefore, µ((x→ y)→ (x→ z)) ≥ µ(x→ (y → z)).

(2) ⇒ (3). Let (2) be hold. Then, it is clear that µ(1) ≥ µ(x). If for any x, y, z ∈ A, we have µ((x → y) → (x → z)) ≥

µ(x→ (y → z)). Put y = x, then, we get

µ((x→ x)→ (x→ z)) ≥ µ(x→ (x→ z))

µ(x→ z) ≥ µ(x→ (x→ z)) (From (i) of Proposition 2.2 and Definition 2.1)

Hence for any x, y ∈ A, µ(x → y) ≥ µ(x → (x → y)). Since µ is a fuzzy implicative filter and then, we have µ(x → (x →

y)) ≥ min{µ(z → (x→ (x→ y))), µ(z)}. Hence µ(x→ y) ≥ min{µ(z → (x→ (x→ y))), µ(z)}.

(3) ⇒ (1) Let (3) be hold. Then for any x, y, z ∈ A, we have µ(x → y) ≥ min{µ(z → (x → (x → y))), µ(z)}. Put x = 1

then, we get µ(y) ≥ min{µ(z → y), µ(z)} (From (1) of Proposition 2.2 and Definition 2.1). Also, we have µ (1) ≥ µ (x).

Hence µ is a fuzzy implicative filter. Since for any x, y, z ∈ A, µ(x → y) ≥ min{µ(z → (x → (x → y))), µ(z)}. Put z = 1

then, we get µ(x→ y) ≥ µ(x→ (x→ y)) (From (1) of Definition 2.1 and µ (1) ≥ µ (x)).

Proposition 3.12. Let A1 and A2 be any two lattice Wajsberg algebras, f is a lattice implication homomorphism from A1 to

A2. Let µ1 and µ2 be the fuzzy subsets of A1 and A2 respectively. If µ2 is fuzzy strong implicative filter of A2, then f−1(µ2)

is a fuzzy strong implicative filter of A1.

Proof. For any x ∈ A1, from f(1) = 1, we have f−1(µ2)(x) = µ2(f(x)) ≤ µ2(1) = µ2(f(1)) = f−1(µ2)(1). That is,

f−1(µ2)(1) ≥ f−1(µ2)(x) for any x ∈ A1. For any x, y, z ∈ A1 and µ2 ⊆ A2 is a fuzzy strong implicative filter, we have

f−1(µ2)(x→ z) = µ2(f(x→ z))

= µ2(f(x)→ f(z)) ≥ min{µ2(f(x)→ f(y)), µ2(f(x)→ (f(y)→ f(z)))}

= min{µ2(f(x→ y)), µ2(f(x)→ f(y → z))}

= min{µ2(f(x→ y)), µ2(f(x→ (y → z)))}

= min{f−1(µ2)(x→ z), f−1(µ2)(x→ (y → z))}.

Hence f−1(µ2) is a fuzzy strong implicative filter of A1.

4. Conclusion

In this paper, we have introduced the notion of fuzzy strong implicative filter of lattice Wajsberg algebra, and discussed some

of their properties with examples. Also, we have obtained a characterization of fuzzy implicative filters and fuzzy strong

implicative filters in lattice Wajsberg algebras. Further, we have shown that some related properties of fuzzy implicative

and fuzzy strong implicative filters of lattice Wajsberg algebra.
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