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1. Introduction

Bundle methods ([1, 5, 9, 10, 13]) are iterative methods for non smooth convex minimization in a Hilbert space. A crucial

assumption in their convergence analysis is that the convex function to be minimized be everywhere finite. Constrained

problems can be reduced to that situation by penalty techniques, but in general only an approximation of the given problem

can be solved. Therefore it is natural to consider a diagonal version of such a method, mixing the basic method with a

sequence of approximations everywhere finite, changing the approximation at each iteration. The aim of the present work

is to analyses the convergence of such a diagonal process under assumptions general enough to include the cases of external

and exponential penalty approximations. The approach is based upon the unified framework of bundle methods given in

[1] which actually appears as an approximate form of the proximal method of Martinet-Rockafellar. Section 2 is devoted to

the diagonal version of this form. In section 3, we present the general algorithm of [1] for the approximation of a proximal

point which the general bundle method is based upon. This method is presented in section 4 as a special instance of the

method of section 2.

2. A Diagonal Approximate Version of the Prox Method

In this section, we improve a result of [6] (section 3). Let X be a real Hilbert space equipped with the inner product 〈·, ·〉

and the associated norm ‖ · ‖. For n = 1, 2, · · · , let fn ∈ Γ0(X) set of proper closed convex functions on X, λn > 0, εn ≥ 0

and x0 ∈ X. The sequence {xn} in X is defined recursively by

xn ∈ (I + λn∂εnf
n)−1xn−1, n = 1, 2, · · · (1)
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which is equivalent to

xn−1 − xn
λn

∈ ∂εnf
n(xn), n = 1, 2, · · · (2)

Remark 2.1. Such a sequence {xn} is (not uniquely) well defined, for example take xn := proxλnfnxn−1, and fn(xn) is

finite. The main object of the following sections is to show how to build up xn from xn−1 according to (1), (2) in finitely

many steps when εn is positive.

The two following lemmas will be of importance for the following.

Lemma 2.2. for all a, b, x in X, we have 2〈a− b, x− b〉 = ‖x− b‖2 − ‖x− a‖2 + ‖b− a‖2.

Lemma 2.3. Let {λn} be a sequence of positive reals and {αn} a sequence of reals. Let us set

tn :=

n∑
k=1

λk and bn :=

n∑
k=1

λkαk

tn
.

If lim
n→+∞

tn = +∞, then

(i). lim inf
n→+∞

αn ≤ lim inf
n→+∞

bn ≤ lim sup
n→+∞

bn ≤ lim sup
n→+∞

αn.

(ii). if α := lim
n→+∞

αn exists, then bn → α (Silverman-Toeplitz theorem [2]).

Proof. (i). It is enough to prove the first inequality. If lim inf
n→+∞

αn = −∞ we are done. Otherwise, for all integers

n > p > 1,
n∑
k=p

λk

tn
inf
k≥p

αk ≤

n∑
k=p

λkαk

tn
= bn −

p−1∑
k=1

λkαk

tn
.

Passing to the limit as n→ +∞, we get ∀ p ≥ 1, inf
k≥p

αk ≤ lim inf
n→+∞

bn. Then let p→ +∞.

(ii). is a direct consequence of (i).

Theorem 2.4. Let us assume there exists a proper function g on X such that

(i). ∀n, fn ≤ g or ∀n, domfn ⊃ dom g and fn
p.w.→ g.

(ii). inf
X
g ≤ lim inf

n→+∞
(infX f

n).

(iii). tn :=
n∑
k=1

λk −→ +∞.

(iv). lim
n→+∞

εn = 0.

Then

lim inf
n→+∞

fn(xn) = lim
n→+∞

n∑
k=1

λkf
k(xk)

tn = inf
X
g.

Proof. We follow here the technique of [3]. We have, from (2), ∀x ∈ X, ∀ k ∈ IN ,

λkf
k(x) ≥ λkfk(xk) + 〈xk−1 − xk, x− xk〉 − λkεk.

Thanks to Lemma 2.1,

2λkf
k(x) ≥ 2λkf

k(xk) + ‖x− xk‖2 − ‖x− xk−1‖2 + ‖xk−1 − xk‖2 − 2λkεk.
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Summing from k = 1 to n,
n∑
k=1

λkf
k(x) ≥

n∑
k=1

λkf
k(xk)− 1

2
‖x− x0‖2 −

n∑
k=1

λkεk.

Dividing by tn,
n∑
k=1

λkf
k(xk)

tn
≤

n∑
k=1

λkf
k(x)

tn
+
‖x− x0‖2

2tn
+

n∑
k=1

λkεk

tn
.

From assumptions and Lemma 2.2, we have, ∀x ∈ domg

inf
X
g ≤ lim inf

n→+∞
fn(xn)

≤ lim inf
n→+∞

n∑
k=1

λkf
k(xk)

tn
≤ lim sup

n→+∞

n∑
k=1

λkf
k(xk)

tn

≤ lim sup
n→+∞

[ n∑
k=1

λkf
k(x)

tn
+
‖x− x0‖2

2tn
+

n∑
k=1

λkεk

tn

]
≤ g(x).

Corollary 2.5. Under assumptions (iii), (iv) of Theorem 2.1, if we assume

(i). {fn} is increasing, f := sup
n
fn and lim

n→+∞
(inf
X
fn) = inf

X
f or

(ii). {fn} is decreasing, ∀n domfn = domf and f = cl(inf
n
fn),

then

lim inf
n→+∞

fn(xn) = inf
X
f.

Remark 2.6. (ii) of Corollary 2.1 has already been obtained in [6] (Corollary 3.1). If
+∞∑
n=1

εn < +∞, then lim inf can be

replaced by lim. Moreover lim
n→+∞

f(xn) = inf
X
f .

Theorem 2.7. Let us assume

(i). Argminf 6= ∅.

(ii). ∀ x ∈ Argminf, ∃ θn(x) ≥ 0,

+∞∑
n=1

λnθn(x) < +∞, s.t. fn(x) ≤ inf
X
fn + θn.

(iii).

+∞∑
n=0

λnεn < +∞.

(iv). {fn} is decreasing, ∀n domfn = domf, f = cl(inf
n
fn),

+∞∑
n=1

λn = +∞,
+∞∑
n=1

εn < +∞, or 0 < λ ≤ λn and fn Mosco

converges to f .

Then fn(xn)→ inf
X
f and {xn} weakly converges to some x ∈ Argminf .

Proof. We have (cf. proof of Theorem 2.1), for all x ∈ X,

fn(x) ≥ fn(xn) +
1

2λn
(‖x− xn‖2 − ‖x− xn−1‖2 + ‖xn−1 − xn‖2)− εn.

Then, ∀x ∈ Argminf ,

‖xn − x‖2 ≤ ‖xn−1 − x‖2 − ‖xn−1 − xn‖2 + 2λn(θn + εn).
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As

+∞∑
n=1

λn(θn + εn) < +∞, then ‖xn−1 − xn‖ → 0, lim
n→+∞

‖xn − x‖ exists and the sequence {xn} is bounded. Let {xnk}

be a subsequence which weakly converges to some x. In the first case of (iv), that x belongs to Argminf is a consequence

of Remark 2.2 and the weak lower semi-continuity of f . Otherwise, from (2),

∀ x ∈ X, fnk (x) ≥ fnk (xnk ) + 〈xnk−1 − xnk

λnk

, x− xnk 〉 − εnk .

As 0 < λ ≤ λn then
xn−1 − xn

λn

s→ 0. Therefore thanks to Mosco convergence we get x ∈ Argminf and fn(xn) → infX f .

Finally, the uniqueness of weak accumulation point is standard [8, 12].

3. Approximation of proxλfx

(From [1]). Let f ∈ Γ0(X), λ > 0 and x ∈ X.

Choose ϕ0 in H0(f) := {ϕ ∈ Γ0(X);ϕ ≤ f}

For k := 0, 1, 2, · · ·

compute yk := proxλϕkx,

compute γk :=
x− yk
λ

(∈ ∂ϕk(yk)),

choose gk ∈ ∂f(yk),

choose ϕk+1 ∈ Hk+1(f) := {ϕ ∈ Γ0(X) satisfying (1), (2), (3)}

(1). ϕ ≤ f .

(2). lk(·) := ϕk(yk) + 〈γk, · − yk〉 ≤ ϕ(·).

(3). f(yk) + 〈gk, · − yk〉 ≤ ϕ(·).

Example 3.1 (from [1]). ϕ0 := f(x) + 〈gx, .− x〉 where gx ∈ ∂f(x). Therefore y0 = x− λgx.

(a). ϕk+1 := max{ϕk, f(yk) + 〈gk, · − yk〉}.

(b). ϕk+1 := max{lk, f(yk) + 〈gk, · − yk〉}.

(c). ϕk+1 := max{lk, f(yi) + 〈gi, · − yi〉, i ∈ Ik}.

where Ik ⊂ {1, · · · , k} and containing k. All these examples are based upon the cutting plane idea and lead to the very bundle

methods ([1]).

In the following we give a more direct proof of Proposition 4.3 of [1]. Let us note :

ϕ̃k(·) := ϕk(·) +
1

2λ
‖ · −x‖2 (3)

Proposition 3.2. If f is Lipschitz-continuous on bounded sets, for instance domf = X and X is finite dimensional, then

(i). 0 ≤ f(yk)− ϕk(yk) =: αk → 0.

(ii). yk
s→ proxλfx.
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Proof. (i). We have

f(x) ≥ ϕk+1(x) = ϕ̃k+1(x)

≥ ϕ̃k+1(yk+1)

≥ ϕ̃k(yk) +
1

2λ
‖yk+1 − yk‖2.

{ϕ̃k(yk)} is then an increasing sequence and, as x is fixed, ϕ̃k(yk) is bounded above. Therefore {ϕ̃k(yk)} converges in

IR and

‖yk+1 − yk‖ → 0. (4)

Moreover, for fixed y, we have

ϕ̃k(yk) +
1

2λ
‖y − yk‖2 −

1

2λ
‖y − x‖2 = lk(y) ≤ ϕk+1(y) ≤ f(y).

{yk} is then bounded and thanks to (1) and (3),

f(yk+1)− f(yk) ≥ ϕk+1(yk+1)− f(yk) ≥ 〈gk, yk+1 − yk〉.

Therefore, from (4) and Lipschitz-continuity of f on bounded sets, we get ϕk+1(yk+1) − f(yk) → 0. But 0 ≤

f(yk)− ϕk(yk) = f(yk)− f(yk−1) + f(yk−1)− ϕk(yk). Using anew the Lipschitz-continuity of f on bounded sets,

we get the result.

(ii). We have
x− yk

λ
∈ ∂ϕk(yk) which, thanks to (1), implies

x− yk
λ

∈ ∂αkf(yk). Let y := proxλfx. We have
x− y
λ
∈

∂f(y). Therefore, [4] (Lemma 5.3.1), 0 ≤ ‖yk − y‖2 ≤ λαk.

4. General Bundle Method

(From [1]). Let f be a closed proper convex function on X and {λn} be a sequence of positive reals. Let x0 ∈ X and

m ∈]0, 1[.

The sequence {xn} is recursively defined as follows:

xn−1 −→ xn :

for all k := 0, 1, · · · ,

choose ϕk ∈ Hk(f)

compute yk := proxλnϕkxn−1.

Let kn be the least integer k ≥ 0 such that

(∗) f(xn−1)− f(yk) ≥ m[f(xn−1)− ϕk(yk)] (≥ 0).

If (∗) is never satisfied, kn := +∞, stop.

Otherwise, xn := ykn and n := n+ 1.

Remark 4.1. If, for all k, we choose ϕk = f , then ∀n ∈ IN, kn = n and we recover the prox method applied to f :

xn := proxλnfxn−1, n = 1, · · · .

Actually we will show that this method is a special instance of the approximate form of the prox method introduced in section

2 (with fn = f, ∀ n), and therefore, convergence results will follow directly from Theorems 2.1. et 2.2.
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Theorem 4.2. Let us consider the sequence {xn} generated by the general bundle method.

(i). If there exists n such that kn := +∞, then if domf = X, xn−1 minimizes f .

(ii). Otherwise if

+∞∑
n=1

λn = +∞, then f(xn) → inf f . If 0 < λ ≤ λn ≤ λ < +∞ and Argminf 6= ∅, then xn
w→ x ∈

Argminf.

Proof. (i). Is a consequence of Proposition 3.1 taking λ = λn and x = xn−1. Indeed, if we assume that from some n−1,

the test (∗) is never more satisfied, we get

f(xn−1)− f(yk) < m(f(xn−1)− ϕk(yk)), ∀k ≥ 0

which is equivalent to

(1−m)[f(xn−1)− f(yk)] < m[f(yk)− ϕk(yk)], ∀k ≥ 0.

Then, passing to the limit when k → +∞, we have (cf. Proposition 3.1)

(1−m)[f(xn−1)− f(proxλnfxn−1)] ≤ 0

from which we get f(xn−1) ≤ f(proxλnfxn−1). Therefore xn−1 is a fixed point of proxλnf viz. minimizes f .

(ii). As

γkn :=
xn−1 − xn

λn
∈ ∂ϕkn(xn)

we have

xn−1 − xn
λn

∈ ∂αnf(xn)

where 0 ≤ αn := f(xn)− ϕkn(xn). In words, {xn} satisfied scheme (2) with εn := αn. From (∗) we get

0 ≤ αn ≤
1−m
m

[f(xn−1)− f(xn)]

therefore {f(xn)} is decreasing. If {f(xn)} is not bounded from below then f(xn)→ −∞ = infX f . Otherwise apply

Theorems 2.1 et 2.2 with fn = f = g, because
+∞∑
n=1

αn < +∞.

Remark 4.3. Theorem 4.1 above is nothing but Theorem 4.4 in [1]. Point (ii) is obtained here more simply.
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[5] K.C. Kiwiel, Proximity control in bundle methods for convex non differentiable minimization, Mathematical Program-

ming, 46(1)(1990), 105-122.

56



M. Amin Bahraoui

[6] B. Lemaire, About the convergence of the proximal method, Advance in optimization, Proceedings Lambrecht 1991,

Lecture Notes in Economics and Mathematical Systems 382, Springer-Verlag, (1992), 39-51.

[7] B. Lemaire, Coupling optimization methods and variational convergence, in Trends in Mathematical Optimization,

International Series of Numerical Mathematics, 84(c)(1988), 163-179.

[8] B. Lemaire, The proximal algorithm, International Series of Numerical Mathematics, 87(1989), 73-86.
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