

International Journal of *Mathematics* And its Applications

Strictly Locating Sets in a Graph

	Stephanie A. Omega ^{1,*} and Ina Marie P. Kintanar ²
 Department of Mathematics and Statistics, University of Southeastern Philippines, Obrero, Davao City, Philippines. 2 Department of Mathematics, University of the Philippines-Cebu, Lahug, Cebu City, Philippines. 	
Abstract:	Let G be a connected graph. A subset S of $V(G)$ is a locating set in G if for all $u, v \in V(G) \setminus S$, $N_G(u) \cap S \neq N_G(v) \cap S$. A subset S of $V(G)$ is a strictly locating set in G if S is a locating set in G and $N_G(w) \cap S \neq S \ \forall w \in V(G) \setminus S$. The minimum cardinality of a strictly locating set in G, denoted by $sln(G)$, is called the strictly locating number of G. In this paper, the concept of strictly locating set in a graph is investigated. Moreover, the strictly locating sets in the join and corona of graphs are characterized and the strictly locating numbers of these graphs are determined.
MSC:	05C69.

Keywords: Locating set, strictly locating set, join, corona. (c) JS Publication.

Accepted on: 29.10.2018

Introduction 1.

Let G = (V, E) be a simple graph. The open neighborhood of a vertex v of G is defined as the set $N_G(v) =$ $\{u \in V(G) | uv \in E(G)\}$, while the closed neighborhood of v in G is defined as $N_G[v] = N_G(v) \cup \{v\}$. Any vertex $u \in N_G(v)$ is called a *neighbor* of v. The open neighborhood of a set $S \subseteq V(G)$ is defined as $N_G(S) = \bigcup_{n \in I} N_G(v)$, while the closed neighborhood of a set S is defined as $N_G[S] = N_G(S) \cup S$. The distance $d_G(u, v)$ in G of two vertices u and v is the length of the shortest u - v path in G. A subset S of V(G) is a *locating set* in a connected graph G if for every two vertices u and v of $V(G) \setminus S, N_G(u) \cap S \neq N_G(v) \cap S$. It is a strictly locating set if it is a locating set and $N_G(u) \cap S \neq S$ for all $u \in V(G) \setminus S$. The minimum cardinality of a locating set in G, denoted by ln(G) is called the *locating number* of G. The minimum cardinality of a strictly locating set in G, denoted by sln(G), is called the strictly locating number of G. A locating set of minimum cardinality is called an ln-set in G and a strictly locating set of minimum cardinality is called an sln-set in G.

2. Results

The following results characterizes the strictly locating number of some graphs.

Remark 2.1. For any connected graph G of order $n \ge 1$, $1 \le sln(G) \le n$.

Theorem 2.2 ([1]). Let G be a connected graph of order $n \ge 2$. If ln(G) < sln(G), then 1 + ln(G) = sln(G).

Lemma 2.3. For any complete graph K_n of order $n \ge 1$, $sln(K_n) = n$.

E-mail: saomega@usep.edu.ph

Lemma 2.4. Let G be a connected non-trivial graph. Then sln(G) = 1 if and only if $G \cong K_1$.

Theorem 2.5. Let G be a connected graph of order $n \ge 2$. If sln(G) = 2, then $2 \le |V(G)| \le 5$.

Proof. Suppose that sln(G) = 2. By Lemma 2.4, $|V(G)| \ge 2$. Suppose that |V(G)| > 5. Let $S = \{x, y\}$ be a *sln*-set of G and let $w_i \in V(G) \setminus S$, where i = 1, 2, 3, 4. Since $N_G(w_i) \cap S$ is either \emptyset , $\{x\}$ or $\{y\}$ for each i = 1, 2, 3, 4, there exist distinct vertices $k, j \in \{1, 2, 3, 4\}$ such that $N_G(w_k) \cap S = N_G(w_j) \cap S$, contrary to the assumption that S is a strictly locating set in G. Thus, $|V(G)| \le 5$. Therefore, $2 \le |V(G)| \le 5$.

Theorem 2.6. Let G be a non-trivial connected graph. Then sln(G) = n if and only if $G = K_n$.

Proof. Suppose that sln(G) = n and suppose that $G \neq K_n$. Then $\exists w, v \in V(G)$ such that $d_G(w, v) = 2$. Let $y \in N_G(w) \cap N_G(v)$ and let $S = V(G) \setminus \{w\}$. Then S is a locating set in G. Since $wv \notin E(G)$, it follows that $N_G(w) \cap S \neq S$. Thus, S is a strictly locating set in G. Hence, $sln(G) \leq |S| = n - 1$, contrary to the assumption. Therefore, $G = K_n$. The converse follows from Lemma 2.3.

Theorem 2.7. Let G be a connected graph of order n = 4. Then sln(G) = 2 if and only if G is triangle free.

Theorem 2.8. Let G be a connected graph of order n = 5. Then sln(G) = 2 if and only if there exist distinct vertices x and y of G such that $|N_G(x) \cap N_G(y)| = 0$ and $|N_G(x) \setminus \{y\}| = |N_G(y) \setminus \{x\}| = 1$.

Proof. Suppose sln(G) = 2. Then there exists distinct vertices x and y of G such that $S = \{x, y\}$ is a *sln*-set in G. Then $|N_G(x) \cap N_G(y)| = 0$. Suppose that $|N_G(x) \setminus \{y\}| = 0$. Since S is a *sln*-set, it follows that $|N_G(y) \setminus \{x\}| = 1$. Thus, $\exists u, w \in V(G) \setminus \{x, y\}$ such that $u, w \notin N_G(x) \cup N_G(y)$. Consequently, $N_G(w) \cap S = \emptyset = N_G(u) \cap S$. This is a contradiction to the assumption that S is a locating set. Therefore, $|N_G(x) \setminus \{y\}| = 1$. Similarly, $|N_G(y) \setminus \{x\}| = 1$.

2.1. Strictly Locating Sets in the Join of Graphs

The join G + H of two graphs G and H is the graph with $V(G + H) = V(G) \cup V(H)$ and $E(G + H) = E(G) \cup E(H) \cup \{uv|u \in V(G), v \in V(H)\}.$

Theorem 2.9. Let G and H be connected non-trivial graphs. A set $S \subseteq V(G + H)$ is a strictly locating set in G + H if and only if $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$ are strictly locating sets in G and H, respectively.

Proof. Let $S \subseteq V(G+H)$ be a strictly locating set in G+H. Let $S_1 = V(G) \cap S$. Suppose that $S_1 = \emptyset$. Then for any two distinct vertices $a, b \in V(G)$, $N_{G+H}(a) \cap S = N_{G+H}(b) \cap S = S$, contrary to the assumption that S is a strictly locating set. Thus, $S_1 \neq \emptyset$. Similarly, $S_2 = V(H) \cap S \neq \emptyset$. Next, suppose that S_1 or S_2 , say S_1 is not a locating set in G. Then there exist distinct vertices $u, v \in V(G)$ such that $N_G(u) \cap S_1 = N_G(v) \cap S_1$. Since $S_2 \subseteq N_{G+H}(u)$ and $S_2 \subseteq N_{G+H}(v)$, it follows that $N_{G+H}(u) \cap S = (N_G(u) \cap S_1) \cup S_2 = (N_G(v) \cap S_1) \cup S_2 = N_{G+H}(v) \cap S$. Hence, $N_{G+H}(u) \cap S = N_{G+H}(v) \cap S$. This is a contradiction since S is a strictly locating set in G + H. Therefore, S_1 and S_2 are locating sets in G and H, respectively. Now, suppose that S_1 or S_2 is not a strictly locating set in G and H, respectively, say S_1 is not a strictly locating set in G. Then $\exists y \in V(G) \setminus S_1$ such that $N_G(y) \cap S_1 = S_1$. Since $S_2 \subseteq N_{G+H}(y) \cap S$, it follows that $N_{G+H}(y) \cap S = S_1 \cup S_2 = S$. This is a contradiction since S is a strictly locating set in G + H. Hence, S_1 and S_2 are strictly locating sets in G and H, respectively.

For the converse, suppose that S_1 and S_2 are strictly locating sets in G and H, respectively. Let $S = S_1 \cup S_2$ and let $a, b \in V(G + H) \setminus S$ with $a \neq b$. If $a, b \in V(G)$, then $N_G(a) \cap S_1 \neq N_G(b) \cap S_1$. Thus, $N_{G+H}(a) \cap S = (N_G(a) \cap S_1) \cup S_2 \neq (N_G(b) \cap S_1) \cup S_2 = N_{G+H}(b) \cap S$. Similarly, if $a, b \in V(H)$, then $N_{G+H}(a) \cap S \neq N_{G+H}(b) \cap S$. Suppose that $a \in V(G)$

and $b \in V(H)$. Since S_1 is a strictly locating set in G, it follows that $S_1 \nsubseteq N_{G+H}(a)$. Thus, $S_1 \subseteq N_{G+H}(b)$ implies that $N_{G+H}(a) \cap S \neq N_{G+H}(b) \cap S$. Hence, $S = S_1 \cup S_2$ is a locating set in G + H. Finally, let $x \in V(G + H) \setminus S$. Suppose that $x \in V(G)$. Since S_1 is a strictly locating set in G, it follows that $N_G(x) \cap S_1 \neq S_1$. Thus, $N_{G+H}(x) \cap S = (N_G(x) \cap S_1) \cup S_2 \neq S$. Similarly, if $x \in V(H)$, then $N_{G+H}(x) \cap S \neq S$. Therefore, S is a strictly locating set in G + H.

Corollary 2.10. Let G and H be connected non-trivial graphs. Then sln(G + H) = sln(G) + sln(H).

Proof. Let S be a sln-set in G + H and let $S_1 = V(G) \cap S$ and $S_2 = V(H) \cap S$. By Theorem 2.9, S_1 and S_2 are strictly locating sets in G and H, respectively. Thus, $sln(G) + sln(H) \le |S_1| + |S_2| = |S| = sln(G + H)$. Next, let S_1 be a sln-set in G and S_2 be a sln-set in H. Then $S = S_1 \cup S_2$ is a strictly locating set in G + H by Theorem 2.9. Hence, $sln(G + H) \le |S| = |S_1| + |S_2| = sln(G) + sln(H)$. Therefore, sln(G + H) = sln(G) + sln(H).

Theorem 2.11. Let H be a connected non-trivial graph and let $K_1 = \langle v \rangle$. Then $S \subseteq V(H + K_1)$ is a strictly locating set in $H + K_1$ if and only if $v \in S$ and $S_1 = V(H) \cap S$ is a strictly locating set in H.

Proof. Let $S \subseteq V(H + K_1)$ be a strictly locating set in $H + K_1$. Suppose that $v \notin S$. Then $N_{H+K_1}(v) \cap S = S$. This is a contradiction since S is a strictly locating set in $H + K_1$. Hence, $v \in S$. Next let $x, y \in V(H + K_1) \setminus S$. Then $x, y \in V(H) \setminus S_1$ where $S_1 = V(H) \cap S$. Since S is a strictly locating set in $H + K_1$,

$$N_{H+K_1}(x) \cap S = (N_{H+K_1}(x) \cap S_1) \cup \{v\} \neq N_{H+K_1}(y) \cap S = (N_{H+K_1}(y) \cap S_1) \cup \{v\}.$$

Hence, $N_H(x) \cap S_1 \neq N_H(y) \cap S_1$. Therefore, S_1 is a locating set in H. Now, suppose there exists $u \in V(H) \setminus S_1$ such that $N_H(u) \cap S_1 = S_1$. Then $N_{H+K_1}(u) \cap S = (N_H(u) \cap S_1) \cup \{v\} = S_1 \cup \{v\} = S$. This is a contradiction since S is a strictly locating set in $H + K_1$. Therefore, S_1 is a strictly locating set in H.

For the converse, suppose that $S = S_1 \cup \{v\}$ and $S_1 = V(H) \cap S$ is a strictly locating set in H. Let $x, y \in V(H + K_1) \setminus S = V(H) \setminus S_1$. Then $N_H(x) \cap S_1 \neq N_H(y) \cap S_1$. Thus,

$$N_{H+K_1}(x) \cap S = (N_H(x) \cap S_1) \cup \{v\} \neq (N_H(y) \cap S_1) \cup \{v\} = N_{H+K_1}(y) \cap S$$

Hence, S is a locating set in $H + K_1$. Finally, let $u \in V(H + K_1) \setminus S = V(H) \setminus S_1$. Since S_1 is a strictly locating set in H, it follows that $N_H(u) \cap S_1 \neq S_1$. Hence, $N_{H+K_1}(u) \cap S = (N_H(u) \cap S_1) \cup \{v\} \neq S$. Therefore, S is a strictly locating set in $H + K_1$.

Corollary 2.12. Let H be a connected non-trivial graph and $K_1 = \langle v \rangle$. Then $sln(H + K_1) = sln(H) + 1$.

Proof. Follows from Theorem 2.11.

Corollary 2.13. Let G be a connected graph of order $n \ge 1$ and let K_n be a complete graph of order $n \ge 1$. Then $sln(G + K_n) = sln(G) + n$.

Proof. Follows from Theorem 2.9 and Theorem 2.11.

2.2. Strictly Locating Sets in the Corona of Graphs

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph $G \circ H$ obtained by taking one copy of G and m copies of H, then joining the *ith* vertex of G to every vertex of the *ith* copy of H. For every $v \in V(G)$, denote by H^v the copy of H whose vertices are attached one by one to the vertex v. Denote by $v + H^v$ the subgraph of the corona $G \circ H$ corresponding the join $\langle \{v\} \rangle + H^v$.

Theorem 2.14. Let G and H be non-trivial connected graphs. Then $S \subseteq V(G \circ H)$ is a strictly locating set in $G \circ H$ if and only if $V(G \circ H) \setminus S$ admits at most a single element x with $N_{G \circ H}(x) \cap S = \emptyset$ and $S = A \cup B \cup C \cup D$, where, $A \subseteq V(G)$, $B = \bigcup \{B_v : v \in A \text{ and } B_v \text{ is a locating set in } H^v\}, C = \bigcup \{E_w : w \notin A, N_G(w) \cap A \neq \emptyset \text{ and } E_w \text{ is a locating set in } H^w\}$ and $D = \bigcup \{D_w : w \neq A, N_G(w) \cap A = \emptyset$ and D_w is strictly locating set in $H^w\}$.

Proof. Suppose that S is a strictly locating set in $G \circ H$. Let $A = V(G) \cap S$ and let $v \in A$. Let $B_v = V(H^v) \cap S$ and let $x, y \in V(H^v) \setminus B_v$ with $x \neq y$. Then $x, y \notin S$. Since S is a locating set in $G \circ H$, $(N_{H^v}(x) \cap B_v) \cup \{v\} = N_{G \circ H}(x) \cap S \neq N_{G \circ H}(y) \cap S = (N_{H^v}(y) \cap B_v) \cup \{v\}$. Hence, B_v is a locating set in H^v . Next, let $w \notin A$. Consider the following cases:

Case 1. Suppose that $N_G(w) \cap A \neq \emptyset$.

Let $E_w = V(H^w) \cap S$ and $x, y \in V(H^w) \setminus E_w$ with $x \neq y$. Then $x, y \notin S$. Since S is a strictly locating set and $w \notin S$, $N_{H^w}(x) \cap E_w = N_{G \circ H}(x) \cap S \neq N_{G \circ H}(y) \cap S = N_{H^w}(y) \cap E_w$. Thus, E_w is a locating set in H^w .

Case 2. Suppose that $N_G(w) \cap A = \emptyset$.

Let $D_w = V(H^w) \cap S$. As in Case 1, D_w is a locating set in H^w . Suppose there exists $x \in V(H^w)$ such that $N_{H^w}(x) \cap D_w = N_{G \circ H}(x) \cap S = D_w$. Since $w \notin S$ and $N_G(w) \cap A = \emptyset$, $N_{G \circ H}(x) \cap S = N_{G \circ H}(w) \cap S = D_w$. Thus, S is not a locating set in $G \circ H$, contrary to our assumption. Thus, D_w is a strictly locating set in H^w .

Let $B = \bigcup \{B_v : v \in A \text{ and } B_v \text{ is a locating set in } H^v\}, C = \bigcup \{E_w : w \notin A, N_G(w) \cap A \neq \emptyset$ and E_w is a locating set in $H^w\}$ and $D = \bigcup \{D_w : w \notin A, N_G(w) \cap A = \emptyset$ and D_w is strictly locating set in $H^w\}.$ Then $S = A \cup B \cup C \cup D$. Moreover, since S is a strictly locating set, $V(G \circ H) \setminus S$ admits at most a single element whose neighborhood does not intersect with S.

For the converse, suppose that $S = A \cup B \cup C \cup D$, where A, B, C and D are the sets possessing the properties described. Let $x, y \in V(G \circ H) \setminus S$ with $x \neq y$ and let $u, v \in V(G)$ such that $x \in V(u + H^u)$ and $y \in V(v + H^v)$. Suppose u = v. Consider the following cases:

Case 1. Suppose that $v \in S$.

Then $x, y \in V(H^v) \setminus B_v$, where B_v is a locating set in H^v . Hence, $N_{H^v}(x) \cap B_v \neq N_{H^v}(y) \cap B_v$. Thus, $N_{G \circ H}(x) \cap S = (N_{H^v}(x) \cap B_v) \cup \{v\} \neq (N_{H^v}(y) \cap B_v) \cup \{v\} = N_{G \circ H}(y) \cap S.$

Case 2. Suppose that $v \notin S$.

If $x, y \in V(H^v)$, then $x, y \notin S_v = V(H^v) \cap S$, where $S_v (E_v \text{ or } D_v)$ is a locating set in H^v by assumption. Thus, $N_{G \circ H}(x) \cap S = N_{H^v}(x) \cap S_v \neq N_{H^v}(y) \cap S_v = N_{G \circ H}(y) \cap S$. Suppose that x = v and $y \in V(H^v)$. If $N_G(v) \cap S \neq \emptyset$, say $w \in N_G(v) \cap S$, then $w \in [N_{G \circ H}(x) \cap S] \setminus [N_{G \circ H}(y) \cap S]$. Thus, $N_{G \circ H}(x) \cap S \neq N_{G \circ H}(y) \cap S$. If $N_G(v) \cap S = \emptyset$, then $S_v = V(H^v) \cap S = D_v$ is a strictly locating set by assumption. Thus, $N_{G \circ H}(x) \cap S = D_v \neq N_{H^v}(y) \cap S_v = N_{G \circ H}(y) \cap S$. Suppose now that $u \neq v$. Consider the following cases:

Case 1. Suppose that $u, v \in S$.

Then $x \neq u$ and $y \neq v$. Since $u \in N_{G \circ H}(x)$ and $v \in N_{G \circ H}(y)$, we have $N_{G \circ H}(x) \cap S \neq N_{G \circ H}(y) \cap S$.

Case 2. Suppose that $u \notin S$ or $v \notin S$.

We may suppose that $u \notin S$. Then $S_u = V(H^u) \cap S$ is (equal to E_u or D_u). If x = u, then there exists $c \in S_u$ such that $c \in N_{G \circ H}(x) \setminus N_{G \circ H}(y)$. Suppose $x \neq u$. If $v \in S$, then $v \in N_{G \circ H}(y) \setminus N_{G \circ H}(x)$. Suppose $v \notin S$. If $N_{G \circ H}(x) \cap S \neq \emptyset$ and $N_{G \circ H}(y) \cap S \neq \emptyset$, then $N_{G \circ H}(x) \cap S \neq N_{G \circ H}(y) \cap S$. If one of $N_{G \circ H}(x) \cap S$ and $N_{G \circ H}(y) \cap S$ is empty, then the other is non-empty by assumption. Therefore, in all cases S is a locating set in $G \circ H$.

Now, let $t \in V(G \circ H) \setminus S$ and let $v \in V(G)$ such that $t \in V(v + H^v)$. Suppose t = v. Then $v \notin S$. Thus, $S_v = V(H^v) \cap S$ is a locating set in H^v where S_v is $(E_v \text{ or } D_v)$. Consider the following cases:

Case 1. Suppose $S_v = E_v$.

Then G non-trivial implies that $N_G(v) \cap A \neq \emptyset$, say $w \in N_G(v) \cap A = N_G(t) \cap A$. Since H is non-trivial, it follows that $V(H^w) \cap S = E_w \neq \emptyset$. Let $y \in E_w \subseteq S$. Then $y \notin N_{G \circ H}(t) \cap S$. Hence, $N_{G \circ H}(t) \cap S \neq S$.

Case 2. Suppose $S_v = D_v$.

Then $N_G(v) \cap A = N_G(t) \cap A = \emptyset$. Since G is non-trivial, $\exists w \in V(G)$ with $w \neq t$ and $wt \in E(G)$. Also, H non-trivial implies that $V(H^w) \cap S = D_w \neq \emptyset$. Let $y \in D_w \subseteq S$. Then $y \notin N_{G \circ H}(t) \cap S$. Therefore, $N_{G \circ H}(t) \cap S \neq S$.

Suppose that $t \neq v$. Consider the following cases:

Case 1. Suppose $v \in S$.

Then $t \in V(H^v) \setminus B_v$, where $B_v = V(H^v) \cap S$. Since G is non-trivial, $\exists w \in V(G)$ with $w \neq v$ and $wv \in E(G)$. Since H is non-trivial, it follows that B_w , D_w or E_w are non-empty. Hence, $\exists y \in B_w$ (D_w or E_w) such that $y \notin N_{G \circ H}(t) \cap S$. Therefore, $N_{G \circ H}(t) \cap S \neq S$.

Case 2. Suppose $v \notin S$.

Then $t \in V(H^v) \setminus S_v$, where S_v is either D_v or E_v . Suppose that $S_v = E_v$. Then $N_G(v) \cap A \neq \emptyset$. Let $y \in N_G(v) \cap A$. Since H is non-trivial, $B_y = V(H^v) \cap S \neq \emptyset$. Let $u \in B_y$. Then $u \notin N_{G \circ H}(t) \cap S$. Hence, $N_{G \circ H}(t) \cap S \neq S$. Suppose that $S_v = D_v$. Let $w \in V(G)$ such that $vw \in E(G)$. Then D_w or E_w is non-empty. Thus, $\exists r \in D_w$ or E_w such that $r \notin V_{G \circ H}(t) \cap S$. Therefore, $N_{G \circ H}(t) \cap S \neq S$.

Therefore, in all cases, S is a strictly locating set in $G \circ H$.

Corollary 2.15. Let G and H be non-trivial connected graphs. Then $|V(G)| \ln(G) \leq s\ln(G \circ H) \leq |V(G)| s\ln(G)$.

Proof. Let S be a minimum strictly locating set in $G \circ H$. Then $S = A \cup B \cup C \cup D$, where A, B, C and D are the sets described in Theorem 2.14. By Theorem 2.2, $sln(H) \leq ln(H) + 1$. Since $ln(H) \leq sln(H)$, it follows that

$$\begin{aligned} sln(G \circ H) &= |S| \\ &= |A| + |B| + |C| + |D| \\ &\geq |A| + |A| \ln(H) + (|V(G)| - |A|) \ln(H) \\ &= |A| (1 + \ln(H)) + (|V(G)| - |A|) \ln(H) \\ &\geq |A| sln(H) + (|V(G)| - |A|) \ln(H) \\ &\geq |A| \ln(H) + (|V(G)| - |A|) \ln(H) \\ &= |V(G)| \ln(H). \end{aligned}$$

Next, let T be a *sln*-set in H. For each $v \in V(G)$, let $T_v \subseteq V(H^v)$ with $\langle T_v \rangle \cong \langle T \rangle$. Then $S = \bigcup_{v \in V(G)} T_v$ is a strictly locating set in $G \circ H$ by Theorem 2.14. Therefore, $|V(G)| \ln(H) \leq sln(G \circ H) \leq |S| = |V(G)| sln(H)$.

Corollary 2.16. Let G and H be non-trivial connected graphs with ln(H) = sln(H). Then $sln(G \circ H) = |V(G)| sln(H)$.

References

S. R. Canoy and G. A. Malacas, Determining the intruder's location in a given network, NRCP Research Journal, 13(1), 1-8.

^[2] T. W. Haynes, M. A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics, 154(8)(2006), 1293-1300.

 ^[3] S. J. Seo and P. J. Slater, Open neighborhood locating-dominating sets, Australasian Journal of Combinatorics, 46(2010), 109-119.