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Abstract: Let G be a connected graph. A subset S of V(@) is a locating set in G if for all u,v € V(G)\S, Ng(u) NS # Ng(v)NS.
A subset S of V(G) is a strictly locating set in G if S is a locating set in G and Ng(w) NS # S Yw € V(G)\S. The
minimum cardinality of a strictly locating set in G, denoted by sin(G), is called the strictly locating number of G. In this
paper, the concept of strictly locating set in a graph is investigated. Moreover, the strictly locating sets in the join and
corona of graphs are characterized and the strictly locating numbers of these graphs are determined.

MSC: 05C69.

Keywords: Locating set, strictly locating set, join, corona.

© JS Publication. Accepted on: 29.10.2018

1. Introduction

Let G = (V,E) be a simple graph. The open neighborhood of a vertex v of G is defined as the set Ng(v) =
{u € V(G)|uv € E(G)}, while the closed neighborhood of v in G is defined as N¢ [v] = Ng(v) U {v}. Any vertex u € Ng(v)
is called a neighbor of v. The open neighborhood of a set S C V(G) is defined as Ng(S) = U N¢(v), while the closed
neighborhood of a set S is defined as N¢ [S] = Ng(S)US. The distance dg(u,v) in G of two Versiecis u and v is the length of
the shortest u — v path in G. A subset S of V(G) is a locating set in a connected graph G if for every two vertices u and v of
V(G)\S, Na(u)NS # Na(v)NS. It is a strictly locating set if it is a locating set and Ng(u)NS # S for all u € V(G)\S. The
minimum cardinality of a locating set in G, denoted by In(G) is called the locating number of G. The minimum cardinality

of a strictly locating set in G, denoted by sin(G), is called the strictly locating number of G. A locating set of minimum

cardinality is called an [n-set in G and a strictly locating set of minimum cardinality is called an sin-set in G.

2. Results

The following results characterizes the strictly locating number of some graphs.
Remark 2.1. For any connected graph G of order n > 1, 1 < sin(G) < n.
Theorem 2.2 ([1]). Let G be a connected graph of order n > 2. If In(G) < sln(G), then 1+ In(G) = sin(G).

Lemma 2.3. For any complete graph K, of order n > 1, sin(K,) = n.
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Lemma 2.4. Let G be a connected non-trivial graph. Then sin(G) =1 if and only if G = K;.
Theorem 2.5. Let G be a connected graph of order n > 2. If sin(G) = 2, then 2 < |[V(G)| < 5.

Proof.  Suppose that sin(G) = 2. By Lemma 2.4, |V(G)| > 2. Suppose that [V (G)| > 5. Let S = {z,y} be a sin-set of G
and let w; € V(G)\S, where i = 1,2,3,4. Since Ng(w;) NS is either @, {z} or {y} for each i = 1,2, 3,4, there exist distinct
vertices k,j € {1,2,3,4} such that Ng(wi) NS = Ng(w;) NS, contrary to the assumption that S is a strictly locating set

in G. Thus, |V(G)| < 5. Therefore, 2 < |[V(G)| < 5. O
Theorem 2.6. Let G be a non-trivial connected graph. Then sin(G) =n if and only if G = K.

Proof.  Suppose that sin(G) = n and suppose that G # K,. Then 3 w,v € V(G) such that dg(w,v) = 2. Let
y € Ng(w)N N¢(v) and let S = V(G)\ {w}. Then S is a locating set in G. Since wv ¢ E(G), it follows that Ng(w)NS # S.
Thus, S is a strictly locating set in G. Hence, sin(G) < |S| = n — 1, contrary to the assumption. Therefore, G = K,.

The converse follows from Lemma 2.3. O
Theorem 2.7. Let G be a connected graph of order n = 4. Then sin(G) = 2 if and only if G 1is triangle free.

Theorem 2.8. Let G be a connected graph of order n = 5. Then sin(G) = 2 if and only if there exist distinct vertices x
and y of G such that [Ng(x) N Na(y)| =0 and |[Na(z)\{y}| = |[Na(y)\{z} = 1.

Proof.  Suppose sin(G) = 2. Then there exists distinct vertices z and y of G such that S = {z,y} is a sin-set in G.
Then |Ng(z) N Ng(y)| = 0. Suppose that [Ng(z)\ {y}| = 0. Since S is a sin-set, it follows that |Ng(y)\ {z}| = 1. Thus,
Fu,w € V(G)\ {z,y} such that u,w ¢ Ng(z) U N (y). Consequently, No(w)NS = & = Ng(u)NS. This is a contradiction

to the assumption that S is a locating set. Therefore, |Ng(z)\ {y}| = 1. Similarly, |Na(y)\ {z}| = 1. O

2.1. Strictly Locating Sets in the Join of Graphs

The join G + H of two graphs G and H is the graph with V(G + H) = V(G)UV(H) and E(G+ H) = E(G) UE(H) U
{wo|lu € V(G),v € V(H)}.

Theorem 2.9. Let G and H be connected non-trivial graphs. A set S C V(G + H) is a strictly locating set in G+ H if and

only if S1 =V (G)NS and So = V(H) NS are strictly locating sets in G and H, respectively.

Proof. Let S C V(G+ H) be a strictly locating set in G+ H. Let S; = V(G)NS. Suppose that S; = @. Then for any two
distinct vertices a,b € V(G), Nag+u(a)NS = Ne+u(b)NS = S, contrary to the assumption that .S is a strictly locating set.
Thus, S1 # @. Similarly, S = V(H) NS # @. Next, suppose that S; or Sz, say S1 is not a locating set in G. Then there
exist distinct vertices u,v € V(G) such that Ng(u) NSt = Ng(v) N Sy. Since Sz C Ng4m(u) and S2 C Ng4u(v), it follows
that Noym(u)NS = (Ng(u)NS1)US2 = (Na(v)NS1)US2 = Neyu(v)NS. Hence, Na+u(u) NS = Neym(v)NS. This is
a contradiction since S is a strictly locating set in G + H. Therefore, S1 and S» are locating sets in G and H, respectively.
Now, suppose that S; or S> is not a strictly locating set in G and H, respectively, say Si is not a strictly locating set in G.
Then 3 y € V(G)\S1 such that Ng(y) N S1 = Si. Since S2 C Ng+u(y) NS, it follows that Neyu(y) NS = S1US2 = S.
This is a contradiction since S is a strictly locating set in G + H. Hence, S1 and Sz are strictly locating sets in G and H,
respectively.

For the converse, suppose that S; and Sy are strictly locating sets in G and H, respectively. Let S = S; U S3 and let
a,b e V(G+ H)\S with a #0b. If a,b € V(G), then Ng(a) NSt # Ng(b) N S1. Thus, Negtu(a) NS = (Na(a) N S1) U S2 #
(Ng(b) N S1) U S2 = Ngym(b) NS, Similarly, if a,b € V(H), then Negym(a) NS # Ng4+ru(b) NS. Suppose that a € V(G)
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and b € V(H). Since S; is a strictly locating set in G, it follows that S 7@ Ngyr(a). Thus, S1 C Ngym(b) implies that
Ne+u(a) NS # Ne1u(b) NS. Hence, S = S1 U S, is a locating set in G + H. Finally, let x € V(G 4+ H)\S. Suppose that
z € V(G). Since S is a strictly locating set in G, it follows that N¢(z)NS1 # S1. Thus, Netu(z)NS = (Na(z)NS1)US2 # S.
Similarly, if z € V(H), then Ngyu(z) NS # S. Therefore, S is a strictly locating set in G + H. O

Corollary 2.10. Let G and H be connected non-trivial graphs. Then sin(G + H) = sin(G) + sin(H).

Proof. Let S be a sln-set in G + H and let S;1 = V(G)N S and So = V(H) N S. By Theorem 2.9, S; and S are
strictly locating sets in G and H, respectively. Thus, sin(G) + sin(H) < |S1| + |S2| = |S| = sin(G + H). Next, let S1 be
a sln-set in G and S3 be a sin-set in H. Then S = 51 U Sy is a strictly locating set in G + H by Theorem 2.9. Hence,
sin(G+ H) < |S| = |S1| + |S2] = sin(G) + sin(H). Therefore, sin(G + H) = sin(G) + sin(H). O

Theorem 2.11. Let H be a connected non-trivial graph and let K1 = (v). Then S C V(H + K1) is a strictly locating set

in H+ K1 if and only ifv € S and S1 =V (H) NS is a strictly locating set in H.

Proof. Let S C V(H + K1) be a strictly locating set in H + K1. Suppose that v ¢ S. Then Nu4k,(v) NS = S. This is a
contradiction since S is a strictly locating set in H + K;. Hence, v € S. Next let z,y € V(H + K1)\S. Then z,y € V(H)\S:

where S1 = V(H)NS. Since S is a strictly locating set in H + K,
Nuik, (x) NS = (Nu+x, (x) N S1) U{v} # Nuik, (y) NS = (Nu+xk, (y) N S1) U {v}.

Hence, Ng(x) N S1 # Nu(y) N Si. Therefore, S is a locating set in H. Now, suppose there exists u € V/(H)\S1 such that
Ng(u) NSy =S1. Then Ny, (u) NS = (Ng(u)NS1) U{v} =S U{v} =S. This is a contradiction since S is a strictly
locating set in H + K;. Therefore, S; is a strictly locating set in H.

For the converse, suppose that S = S1 U {v} and S = V(H) N S is a strictly locating set in H. Let z,y € V(H 4+ K1)\S =
V(H)\Si. Then Ng(z) NS1 # Nu(y) NSi. Thus,

Nitry (2) NS = (Nu (z) 051) U{v} # (Nu(y) N S1) U{v} = Ntk (y) NS

Hence, S is a locating set in H + K. Finally, let u € V(H + K1)\S = V(H)\S1. Since 51 is a strictly locating set in H, it
follows that Ng(u) NS1 # S1. Hence, Nuyk,(u) NS = (Ng(u) NS1) U{v} # S. Therefore, S is a strictly locating set in
H+ K. O

Corollary 2.12. Let H be a connected non-trivial graph and K1 = (v). Then sin(H + K1) = sin(H) + 1.
Proof.  Follows from Theorem 2.11. O

Corollary 2.13. Let G be a connected graph of order n > 1 and let K, be a complete graph of order n > 1. Then
sin(G + Ky) = sin(G) + n.

Proof. Follows from Theorem 2.9 and Theorem 2.11. O

2.2. Strictly Locating Sets in the Corona of Graphs

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph G o H obtained by
taking one copy of G and m copies of H, then joining the ith vertex of G to every vertex of the ith copy of H. For every
v € V(G), denote by H" the copy of H whose vertices are attached one by one to the vertex v. Denote by v + H” the

subgraph of the corona G o H corresponding the join ({v}) + H".
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Theorem 2.14. Let G and H be non-trivial connected graphs. Then S C V(G o H) is a strictly locating set in G o H if and
only if V(G o H)\S admits at most a single element x with Ngomu(z) NS =@ and S = AU BUC U D, where, A C V(G),
B = U{B, :v € Aand B, is a locating set in H"}, C = U{Ey :w ¢ A, Ng(w) N A # @ and E, is a locating set in H"}

and D =U{Dy : w # A, Ng(w) N A = @ and D,, is strictly locating set in H"}.

Proof. Suppose that S is a strictly locating set in G o H. Let A = V(G)N S and let v € A. Let
B, = V(H")N S and let z,y € V(H")\B, with # # y. Then z,y ¢ S. Since S is a locating set in G o H,
(Ngv(z) N By) U{v} = Naor(z) NS # Naor(y) NS = (Nuv(y) N By) U {v}. Hence, B, is a locating set in H”. Next, let
w ¢ A. Consider the following cases:

Case 1. Suppose that Ng(w) N A # &.

Let B, = V(HY)N S and z,y € V(H")\Ew with z # y. Then z,y ¢ S. Since S is a strictly locating set and w ¢ S,
Nyw(x) N Ew = Ngor () NS # Ngor(y) NS = Nyw(y) N Ew. Thus, E, is a locating set in H".

Case 2. Suppose that Ng(w) N A = @.

Let D, = V(H¥)NS. As in Case 1, D, is a locating set in HY. Suppose there exists x € V(H"Y) such that
Npw(z) N Dy = Ngou(z) NS = Dy. Since w ¢ S and Ng(w) N A = &, Ngor(x) NS = Ngor(w) NS = Dy. Thus, S is
not a locating set in GG o H, contrary to our assumption. Thus, D,, is a strictly locating set in H".

Let B = U{Bv:v€ Aand B, isalocatingsetin H}, C = |JH{Ew : w ¢ A Ngw) N A #
@ and E, is alocating set in H”} and D = |J{Dw : w ¢ A, Ng(w) N A = @ and D,, is strictly locating set in H"}.
Then S = AUBUC U D. Moreover, since S is a strictly locating set, V(G o H)\S admits at most a single element whose
neighborhood does not intersect with S.

For the converse, suppose that S = AU BUC U D, where A, B,C and D are the sets possessing the properties described.
Let z,y € V(G o H)\S with z # y and let u,v € V(G) such that z € V(u+ H") and y € V(v + H”). Suppose u = v.
Consider the following cases:

Case 1. Suppose that v € S.

Then z,y € V(H”)\B,, where B, is a locating set in H”. Hence, Ngv(z) N By, # Ngv(y) N B,. Thus,
Ngorr(z) NS = (Ngv (x) N By) U {v} # (Ngv(y) N By) U{v} = Neom(y) N S.

Case 2. Suppose that v ¢ S.

If z,y € V(H"), then z,y ¢ S, = V(H")N S, where S, (F, or D,) is a locating set in H” by assumption. Thus,
Ngon(x) NS = Nyv(z) NSy # Nuv(y) NSy = Naor(y) N S. Suppose that x = v and y € V(H"). If Ng(v) NS # &, say
w € Ng(v) NS, then w € [Ngor(z) N S\[Naor (y) N'S]. Thus, Naor(x) NS # Naor(y) NS. If Ng(v) NS = &, then
S, =V(H")N S = D, is a strictly locating set by assumption. Thus, Ngor () NS = Dy # Nuv(y) NSy = Ngoru(y) N S.
Suppose now that u # v. Consider the following cases:

Case 1. Suppose that u,v € S.

Then z # u and y # v. Since u € Ngon(z) and v € Ngon (y), we have Ngom(z) NS # Neou(y) N S.

Case 2. Supppose that u ¢ Sorv ¢ S.

We may suppose that v ¢ S. Then S, = V(H") NS is (equal to E, or D). If x = u, then there exists ¢ € S, such that
¢ € Ngor(z)\Nconu(y). Suppose z # u. If v € S, then v € Ngor (y)\Naon(z). Suppose v ¢ S. If Ngor(xz) NS # @ and
Necor(y) NS # &, then Ngom(x) NS # Naor(y) NS. If one of Ngor(z) NS and Ngor(y) N S is empty, then the other is
non-empty by assumption. Therefore, in all cases S is a locating set in G o H.

Now, let t € V(G o H)\S and let v € V(@) such that t € V(v+ H"). Suppose t = v. Then v ¢ S. Thus, S, = V(H")NS is
a locating set in H” where S, is (E, or D, ). Consider the following cases:

Case 1. Suppose S, = FE,.



Stephanie A. Omega and Ina Marie P. Kintanar

Then G non-trivial implies that Ng(v) N A # &, say w € Ng(v) N A = Ng(t) N A. Since H is non-trivial, it follows that
VH*)NS =FE, # 2. Let y € E, CS. Then y ¢ Ngou(t) N S. Hence, Ngou(t) NS # S.

Case 2. Suppose S, = D,,.

Then Ng(v) N A = Ng(t) N A = @. Since G is non-trivial, 3 w € V(G) with w # t and wt € E(G). Also, H non-trivial
implies that V(H*)NS =D, # &. Let y € D, C S. Then y ¢ Ngon(t) N S. Therefore, Naor (t) NS # S.

Suppose that ¢ # v. Consider the following cases:

Case 1. Suppose v € S.

Then ¢t € V(H")\B,, where B, = V(H")N S. Since G is non-trivial, 3 w € V(G) with w # v and wv € E(G). Since H
is non-trivial, it follows that B, D. or E, are non-empty. Hence, 3 y € By, (Dw or Ey) such that y ¢ Ngom(t) N S.
Therefore, Ngou(t) NS # S.

Case 2. Suppose v ¢ S.

Then t € V(H")\S,, where S, is either D, or E,. Suppose that S, = E,. Then Ng(v) N A # @. Let y € Na(v) N A.
Since H is non-trivial, By, = V(H") NS # &. Let u € By. Then u ¢ Ngou(t) N'S. Hence, Ngon(t) NS # S. Suppose
that S, = D,. Let w € V(G) such that vw € E(G). Then D, or E is non-empty. Thus, 3 r € D,, or E, such that
r & Vaor(t) N'S. Therefore, Ngog(t) NS # S.

Therefore, in all cases, S is a strictly locating set in G o H. O

Corollary 2.15. Let G and H be non-trivial connected graphs. Then |V (G)|In(G) < sin(G o H) < |V(G)] sln(G).

Proof. Let S be a minimum strictly locating set in G o H. Then S = AU BUC U D, where A, B,C and D are the sets

described in Theorem 2.14. By Theorem 2.2, sin(H) < In(H) + 1. Since in(H) < sin(H), it follows that

sin(G o H) = |9|
= |Al+ [B]+|C| + |D|
> |A[ + |AlIn(H) + (IV(G)| = |A])In(H)
= [A| (L +In(H)) + (V(G)| — [A])In(H)
> |Alsin(H) + ([V(G)| — |A])In(H)
> |Alln(H) + ([V(G)| — |A])In(H)

= [V(G)|In(H).

Next, let T' be a sln-set in H. For each v € V(G), let T, C V(H") with (T,,) = (T'). Then S = J T, is a strictly

veV(G)

locating set in G o H by Theorem 2.14. Therefore, |V (G)|In(H) < sin(Go H) < |S| = |V(G)| sin(H). O

Corollary 2.16. Let G and H be non-trivial connected graphs with In(H) = sin(H). Then sin(G o H) = |V (G)| sin(H).
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