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Abstract: Let G be a connected graph. A subset S of V (G) is a locating set in G if for all u, v ∈ V (G)\S, NG(u) ∩ S 6= NG(v) ∩ S.
A subset S of V (G) is a strictly locating set in G if S is a locating set in G and NG(w) ∩ S 6= S ∀w ∈ V (G)\S. The

minimum cardinality of a strictly locating set in G, denoted by sln(G), is called the strictly locating number of G. In this
paper, the concept of strictly locating set in a graph is investigated. Moreover, the strictly locating sets in the join and

corona of graphs are characterized and the strictly locating numbers of these graphs are determined.
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1. Introduction

Let G = (V,E) be a simple graph. The open neighborhood of a vertex v of G is defined as the set NG(v) =

{u ∈ V (G)|uv ∈ E(G)}, while the closed neighborhood of v in G is defined as NG [v] = NG(v) ∪ {v}. Any vertex u ∈ NG(v)

is called a neighbor of v. The open neighborhood of a set S ⊆ V (G) is defined as NG(S) =
⋃
v∈S

NG(v), while the closed

neighborhood of a set S is defined as NG [S] = NG(S)∪S. The distance dG(u, v) in G of two vertices u and v is the length of

the shortest u− v path in G. A subset S of V (G) is a locating set in a connected graph G if for every two vertices u and v of

V (G)\S, NG(u)∩S 6= NG(v)∩S. It is a strictly locating set if it is a locating set and NG(u)∩S 6= S for all u ∈ V (G)\S. The

minimum cardinality of a locating set in G, denoted by ln(G) is called the locating number of G. The minimum cardinality

of a strictly locating set in G, denoted by sln(G), is called the strictly locating number of G. A locating set of minimum

cardinality is called an ln-set in G and a strictly locating set of minimum cardinality is called an sln-set in G.

2. Results

The following results characterizes the strictly locating number of some graphs.

Remark 2.1. For any connected graph G of order n ≥ 1, 1 ≤ sln(G) ≤ n.

Theorem 2.2 ([1]). Let G be a connected graph of order n ≥ 2. If ln(G) < sln(G), then 1 + ln(G) = sln(G).

Lemma 2.3. For any complete graph Kn of order n ≥ 1, sln(Kn) = n.

∗ E-mail: saomega@usep.edu.ph

59

http://ijmaa.in/


Strictly Locating Sets in a Graph

Lemma 2.4. Let G be a connected non-trivial graph. Then sln(G) = 1 if and only if G ∼= K1.

Theorem 2.5. Let G be a connected graph of order n ≥ 2. If sln(G) = 2, then 2 ≤ |V (G)| ≤ 5.

Proof. Suppose that sln(G) = 2. By Lemma 2.4, |V (G)| ≥ 2. Suppose that |V (G)| > 5. Let S = {x, y} be a sln-set of G

and let wi ∈ V (G)\S, where i = 1, 2, 3, 4. Since NG(wi)∩ S is either ∅, {x} or {y} for each i = 1, 2, 3, 4, there exist distinct

vertices k, j ∈ {1, 2, 3, 4} such that NG(wk) ∩ S = NG(wj) ∩ S, contrary to the assumption that S is a strictly locating set

in G. Thus, |V (G)| ≤ 5. Therefore, 2 ≤ |V (G)| ≤ 5.

Theorem 2.6. Let G be a non-trivial connected graph. Then sln(G) = n if and only if G = Kn.

Proof. Suppose that sln(G) = n and suppose that G 6= Kn. Then ∃ w, v ∈ V (G) such that dG(w, v) = 2. Let

y ∈ NG(w)∩NG(v) and let S = V (G)\ {w}. Then S is a locating set in G. Since wv /∈ E(G), it follows that NG(w)∩S 6= S.

Thus, S is a strictly locating set in G. Hence, sln(G) ≤ |S| = n− 1, contrary to the assumption. Therefore, G = Kn.

The converse follows from Lemma 2.3.

Theorem 2.7. Let G be a connected graph of order n = 4. Then sln(G) = 2 if and only if G is triangle free.

Theorem 2.8. Let G be a connected graph of order n = 5. Then sln(G) = 2 if and only if there exist distinct vertices x

and y of G such that |NG(x) ∩NG(y)| = 0 and |NG(x)\ {y}| = |NG(y)\ {x}| = 1.

Proof. Suppose sln(G) = 2. Then there exists distinct vertices x and y of G such that S = {x, y} is a sln-set in G.

Then |NG(x) ∩NG(y)| = 0. Suppose that |NG(x)\ {y}| = 0. Since S is a sln-set, it follows that |NG(y)\ {x}| = 1. Thus,

∃ u,w ∈ V (G)\ {x, y} such that u,w /∈ NG(x)∪NG(y). Consequently, NG(w)∩S = ∅ = NG(u)∩S. This is a contradiction

to the assumption that S is a locating set. Therefore, |NG(x)\ {y}| = 1. Similarly, |NG(y)\ {x}| = 1.

2.1. Strictly Locating Sets in the Join of Graphs

The join G + H of two graphs G and H is the graph with V (G + H) = V (G) ∪ V (H) and E(G + H) = E(G) ∪ E(H) ∪

{uv|u ∈ V (G), v ∈ V (H)}.

Theorem 2.9. Let G and H be connected non-trivial graphs. A set S ⊆ V (G+H) is a strictly locating set in G+H if and

only if S1 = V (G) ∩ S and S2 = V (H) ∩ S are strictly locating sets in G and H, respectively.

Proof. Let S ⊆ V (G+H) be a strictly locating set in G+H. Let S1 = V (G)∩S. Suppose that S1 = ∅. Then for any two

distinct vertices a, b ∈ V (G), NG+H(a)∩S = NG+H(b)∩S = S, contrary to the assumption that S is a strictly locating set.

Thus, S1 6= ∅. Similarly, S2 = V (H) ∩ S 6= ∅. Next, suppose that S1 or S2, say S1 is not a locating set in G. Then there

exist distinct vertices u, v ∈ V (G) such that NG(u) ∩ S1 = NG(v) ∩ S1. Since S2 ⊆ NG+H(u) and S2 ⊆ NG+H(v), it follows

that NG+H(u)∩ S = (NG(u)∩ S1)∪ S2 = (NG(v)∩ S1)∪ S2 = NG+H(v)∩ S. Hence, NG+H(u)∩ S = NG+H(v)∩ S. This is

a contradiction since S is a strictly locating set in G + H. Therefore, S1 and S2 are locating sets in G and H, respectively.

Now, suppose that S1 or S2 is not a strictly locating set in G and H, respectively, say S1 is not a strictly locating set in G.

Then ∃ y ∈ V (G)\S1 such that NG(y) ∩ S1 = S1. Since S2 ⊆ NG+H(y) ∩ S, it follows that NG+H(y) ∩ S = S1 ∪ S2 = S.

This is a contradiction since S is a strictly locating set in G + H. Hence, S1 and S2 are strictly locating sets in G and H,

respectively.

For the converse, suppose that S1 and S2 are strictly locating sets in G and H, respectively. Let S = S1 ∪ S2 and let

a, b ∈ V (G + H)\S with a 6= b. If a, b ∈ V (G), then NG(a) ∩ S1 6= NG(b) ∩ S1. Thus, NG+H(a) ∩ S = (NG(a) ∩ S1) ∪ S2 6=

(NG(b) ∩ S1) ∪ S2 = NG+H(b) ∩ S. Similarly, if a, b ∈ V (H), then NG+H(a) ∩ S 6= NG+H(b) ∩ S. Suppose that a ∈ V (G)
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and b ∈ V (H). Since S1 is a strictly locating set in G, it follows that S1 * NG+H(a). Thus, S1 ⊆ NG+H(b) implies that

NG+H(a) ∩ S 6= NG+H(b) ∩ S. Hence, S = S1 ∪ S2 is a locating set in G + H. Finally, let x ∈ V (G + H)\S. Suppose that

x ∈ V (G). Since S1 is a strictly locating set in G, it follows that NG(x)∩S1 6= S1. Thus, NG+H(x)∩S = (NG(x)∩S1)∪S2 6= S.

Similarly, if x ∈ V (H), then NG+H(x) ∩ S 6= S. Therefore, S is a strictly locating set in G + H.

Corollary 2.10. Let G and H be connected non-trivial graphs. Then sln(G + H) = sln(G) + sln(H).

Proof. Let S be a sln-set in G + H and let S1 = V (G) ∩ S and S2 = V (H) ∩ S. By Theorem 2.9, S1 and S2 are

strictly locating sets in G and H, respectively. Thus, sln(G) + sln(H) ≤ |S1| + |S2| = |S| = sln(G + H). Next, let S1 be

a sln-set in G and S2 be a sln-set in H. Then S = S1 ∪ S2 is a strictly locating set in G + H by Theorem 2.9. Hence,

sln(G + H) ≤ |S| = |S1|+ |S2| = sln(G) + sln(H). Therefore, sln(G + H) = sln(G) + sln(H).

Theorem 2.11. Let H be a connected non-trivial graph and let K1 = 〈v〉. Then S ⊆ V (H + K1) is a strictly locating set

in H + K1 if and only if v ∈ S and S1 = V (H) ∩ S is a strictly locating set in H.

Proof. Let S ⊆ V (H +K1) be a strictly locating set in H +K1. Suppose that v /∈ S. Then NH+K1(v)∩ S = S. This is a

contradiction since S is a strictly locating set in H +K1. Hence, v ∈ S. Next let x, y ∈ V (H +K1)\S. Then x, y ∈ V (H)\S1

where S1 = V (H) ∩ S. Since S is a strictly locating set in H + K1,

NH+K1(x) ∩ S = (NH+K1(x) ∩ S1) ∪ {v} 6= NH+K1(y) ∩ S = (NH+K1(y) ∩ S1) ∪ {v} .

Hence, NH(x) ∩ S1 6= NH(y) ∩ S1. Therefore, S1 is a locating set in H. Now, suppose there exists u ∈ V (H)\S1 such that

NH(u) ∩ S1 = S1. Then NH+K1(u) ∩ S = (NH(u) ∩ S1) ∪ {v} = S1 ∪ {v} = S. This is a contradiction since S is a strictly

locating set in H + K1. Therefore, S1 is a strictly locating set in H.

For the converse, suppose that S = S1 ∪ {v} and S1 = V (H) ∩ S is a strictly locating set in H. Let x, y ∈ V (H + K1)\S =

V (H)\S1. Then NH(x) ∩ S1 6= NH(y) ∩ S1. Thus,

NH+K1(x) ∩ S = (NH(x) ∩ S1) ∪ {v} 6= (NH(y) ∩ S1) ∪ {v} = NH+K1(y) ∩ S

Hence, S is a locating set in H + K1. Finally, let u ∈ V (H + K1)\S = V (H)\S1. Since S1 is a strictly locating set in H, it

follows that NH(u) ∩ S1 6= S1. Hence, NH+K1(u) ∩ S = (NH(u) ∩ S1) ∪ {v} 6= S. Therefore, S is a strictly locating set in

H + K1.

Corollary 2.12. Let H be a connected non-trivial graph and K1 = 〈v〉. Then sln(H + K1) = sln(H) + 1.

Proof. Follows from Theorem 2.11.

Corollary 2.13. Let G be a connected graph of order n ≥ 1 and let Kn be a complete graph of order n ≥ 1. Then

sln(G + Kn) = sln(G) + n.

Proof. Follows from Theorem 2.9 and Theorem 2.11.

2.2. Strictly Locating Sets in the Corona of Graphs

Let G and H be graphs of order m and n, respectively. The corona of two graphs G and H is the graph G ◦H obtained by

taking one copy of G and m copies of H, then joining the ith vertex of G to every vertex of the ith copy of H. For every

v ∈ V (G), denote by Hv the copy of H whose vertices are attached one by one to the vertex v. Denote by v + Hv the

subgraph of the corona G ◦H corresponding the join 〈{v}〉+ Hv.

61



Strictly Locating Sets in a Graph

Theorem 2.14. Let G and H be non-trivial connected graphs. Then S ⊆ V (G◦H) is a strictly locating set in G◦H if and

only if V (G ◦H)\S admits at most a single element x with NG◦H(x) ∩ S = ∅ and S = A ∪ B ∪ C ∪D, where, A ⊆ V (G),

B = ∪{Bv : v ∈ A and Bv is a locating set in Hv}, C = ∪{Ew : w /∈ A,NG(w) ∩A 6= ∅ and Ew is a locating set in Hw}

and D = ∪{Dw : w 6= A,NG(w) ∩A = ∅ and Dw is strictly locating set in Hw}.

Proof. Suppose that S is a strictly locating set in G ◦ H. Let A = V (G) ∩ S and let v ∈ A. Let

Bv = V (Hv) ∩ S and let x, y ∈ V (Hv)\Bv with x 6= y. Then x, y /∈ S. Since S is a locating set in G ◦ H,

(NHv (x) ∩ Bv) ∪ {v} = NG◦H(x) ∩ S 6= NG◦H(y) ∩ S = (NHv (y) ∩ Bv) ∪ {v}. Hence, Bv is a locating set in Hv. Next, let

w /∈ A. Consider the following cases:

Case 1. Suppose that NG(w) ∩A 6= ∅.

Let Ew = V (Hw) ∩ S and x, y ∈ V (Hw)\Ew with x 6= y. Then x, y /∈ S. Since S is a strictly locating set and w /∈ S,

NHw (x) ∩ Ew = NG◦H(x) ∩ S 6= NG◦H(y) ∩ S = NHw (y) ∩ Ew. Thus, Ew is a locating set in Hw.

Case 2. Suppose that NG(w) ∩A = ∅.

Let Dw = V (Hw) ∩ S. As in Case 1, Dw is a locating set in Hw. Suppose there exists x ∈ V (Hw) such that

NHw (x) ∩Dw = NG◦H(x) ∩ S = Dw. Since w /∈ S and NG(w) ∩ A = ∅, NG◦H(x) ∩ S = NG◦H(w) ∩ S = Dw. Thus, S is

not a locating set in G ◦H, contrary to our assumption. Thus, Dw is a strictly locating set in Hw.

Let B =
⋃
{Bv : v ∈ A and Bv is a locating set in Hv} , C =

⋃
{Ew : w /∈ A,NG(w) ∩ A 6=

∅ and Ew is a locating set in Hw} and D =
⋃
{Dw : w /∈ A,NG(w) ∩ A = ∅ and Dw is strictly locating set in Hw}.

Then S = A ∪ B ∪ C ∪D. Moreover, since S is a strictly locating set, V (G ◦H)\S admits at most a single element whose

neighborhood does not intersect with S.

For the converse, suppose that S = A ∪ B ∪ C ∪D, where A,B,C and D are the sets possessing the properties described.

Let x, y ∈ V (G ◦ H)\S with x 6= y and let u, v ∈ V (G) such that x ∈ V (u + Hu) and y ∈ V (v + Hv). Suppose u = v.

Consider the following cases:

Case 1. Suppose that v ∈ S.

Then x, y ∈ V (Hv)\Bv, where Bv is a locating set in Hv. Hence, NHv (x) ∩ Bv 6= NHv (y) ∩ Bv. Thus,

NG◦H(x) ∩ S = (NHv (x) ∩Bv) ∪ {v} 6= (NHv (y) ∩Bv) ∪ {v} = NG◦H(y) ∩ S.

Case 2. Suppose that v /∈ S.

If x, y ∈ V (Hv), then x, y /∈ Sv = V (Hv) ∩ S, where Sv (Ev or Dv) is a locating set in Hv by assumption. Thus,

NG◦H(x) ∩ S = NHv (x) ∩ Sv 6= NHv (y) ∩ Sv = NG◦H(y) ∩ S. Suppose that x = v and y ∈ V (Hv). If NG(v) ∩ S 6= ∅, say

w ∈ NG(v) ∩ S, then w ∈ [NG◦H(x) ∩ S]\[NG◦H(y) ∩ S]. Thus, NG◦H(x) ∩ S 6= NG◦H(y) ∩ S. If NG(v) ∩ S = ∅, then

Sv = V (Hv) ∩ S = Dv is a strictly locating set by assumption. Thus, NG◦H(x) ∩ S = Dv 6= NHv (y) ∩ Sv = NG◦H(y) ∩ S.

Suppose now that u 6= v. Consider the following cases:

Case 1. Suppose that u, v ∈ S.

Then x 6= u and y 6= v. Since u ∈ NG◦H(x) and v ∈ NG◦H(y), we have NG◦H(x) ∩ S 6= NG◦H(y) ∩ S.

Case 2. Supppose that u /∈ S or v /∈ S.

We may suppose that u /∈ S. Then Su = V (Hu) ∩ S is (equal to Eu or Du). If x = u, then there exists c ∈ Su such that

c ∈ NG◦H(x)\NG◦H(y). Suppose x 6= u. If v ∈ S, then v ∈ NG◦H(y)\NG◦H(x). Suppose v /∈ S. If NG◦H(x) ∩ S 6= ∅ and

NG◦H(y) ∩ S 6= ∅, then NG◦H(x) ∩ S 6= NG◦H(y) ∩ S. If one of NG◦H(x) ∩ S and NG◦H(y) ∩ S is empty, then the other is

non-empty by assumption. Therefore, in all cases S is a locating set in G ◦H.

Now, let t ∈ V (G ◦H)\S and let v ∈ V (G) such that t ∈ V (v + Hv). Suppose t = v. Then v /∈ S. Thus, Sv = V (Hv)∩ S is

a locating set in Hv where Sv is (Ev or Dv). Consider the following cases:

Case 1. Suppose Sv = Ev.
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Then G non-trivial implies that NG(v) ∩ A 6= ∅, say w ∈ NG(v) ∩ A = NG(t) ∩ A. Since H is non-trivial, it follows that

V (Hw) ∩ S = Ew 6= ∅. Let y ∈ Ew ⊆ S. Then y /∈ NG◦H(t) ∩ S. Hence, NG◦H(t) ∩ S 6= S.

Case 2. Suppose Sv = Dv.

Then NG(v) ∩ A = NG(t) ∩ A = ∅. Since G is non-trivial, ∃ w ∈ V (G) with w 6= t and wt ∈ E(G). Also, H non-trivial

implies that V (Hw) ∩ S = Dw 6= ∅. Let y ∈ Dw ⊆ S. Then y /∈ NG◦H(t) ∩ S. Therefore, NG◦H(t) ∩ S 6= S.

Suppose that t 6= v. Consider the following cases:

Case 1. Suppose v ∈ S.

Then t ∈ V (Hv)\Bv, where Bv = V (Hv) ∩ S. Since G is non-trivial, ∃ w ∈ V (G) with w 6= v and wv ∈ E(G). Since H

is non-trivial, it follows that Bw, Dw or Ew are non-empty. Hence, ∃ y ∈ Bw (Dw or Ew) such that y /∈ NG◦H(t) ∩ S.

Therefore, NG◦H(t) ∩ S 6= S.

Case 2. Suppose v /∈ S.

Then t ∈ V (Hv)\Sv, where Sv is either Dv or Ev. Suppose that Sv = Ev. Then NG(v) ∩ A 6= ∅. Let y ∈ NG(v) ∩ A.

Since H is non-trivial, By = V (Hv) ∩ S 6= ∅. Let u ∈ By. Then u /∈ NG◦H(t) ∩ S. Hence, NG◦H(t) ∩ S 6= S. Suppose

that Sv = Dv. Let w ∈ V (G) such that vw ∈ E(G). Then Dw or Ew is non-empty. Thus, ∃ r ∈ Dw or Ew such that

r /∈ VG◦H(t) ∩ S. Therefore, NG◦H(t) ∩ S 6= S.

Therefore, in all cases, S is a strictly locating set in G ◦H.

Corollary 2.15. Let G and H be non-trivial connected graphs. Then |V (G)| ln(G) ≤ sln(G ◦H) ≤ |V (G)| sln(G).

Proof. Let S be a minimum strictly locating set in G ◦H. Then S = A ∪ B ∪ C ∪D, where A,B,C and D are the sets

described in Theorem 2.14. By Theorem 2.2, sln(H) ≤ ln(H) + 1. Since ln(H) ≤ sln(H), it follows that

sln(G ◦H) = |S|

= |A|+ |B|+ |C|+ |D|

≥ |A|+ |A| ln(H) + (|V (G)| − |A|)ln(H)

= |A| (1 + ln(H)) + (|V (G)| − |A|)ln(H)

≥ |A| sln(H) + (|V (G)| − |A|)ln(H)

≥ |A| ln(H) + (|V (G)| − |A|)ln(H)

= |V (G)| ln(H).

Next, let T be a sln-set in H. For each v ∈ V (G), let Tv ⊆ V (Hv) with 〈Tv〉 ∼= 〈T 〉. Then S =
⋃

v∈V (G) Tv is a strictly

locating set in G ◦H by Theorem 2.14. Therefore, |V (G)| ln(H) ≤ sln(G ◦H) ≤ |S| = |V (G)| sln(H).

Corollary 2.16. Let G and H be non-trivial connected graphs with ln(H) = sln(H). Then sln(G ◦H) = |V (G)| sln(H).
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