

International Journal of Mathematics And its Applications

# Some New Results on Bipolar-Valued Fuzzy d-Algebras

### S. Praveena<sup>1,\*</sup> and M. Kamaraj<sup>1</sup>

1 Department of Mathematics, Government Arts and Science College, Sivakasi, Tamilnadu, India.

Abstract: In this paper we introduce definitions of generalized bipolar-valued fuzzy d-algebra and investigate some associate results.

 Keywords:
 Fuzzy d-algebra, bipolar-valued fuzzy d-algebra, bipolar-valued fuzzy d-subalgebra and upper bipolar-valued fuzzy sets, t-level-cut of bipolar-valued fuzzy sets and some results.

 (c)
 JS Publication.

 Accepted on: 28.08.2018

## 1. Introduction

In this paper we first introduced two classes of abstract algebras BCK-algebras and BCI-algebra [3]. It is known that the class of BCK-algebra is a proper subclass of the class of BCK-algebras. A wide class of abstract algebras BCH-algebras were introduced [5]. They showed that the class of BCI-algebra is a proper subclass of the class of BCH-algebras. J.Neggers and H.S.Kim [3] introduced a new notion called a *d*-algebra, which is another generalization of BCK-algebras and investigate relation between *d*-algebra and BCK-algebra. Then the author extended it to the notion of fuzzy *d*-algebras, fuzzy *d*-ideal [4] and investigate result among them. The bipolar-valued fuzzy *d*-algebra is considered and related results are investigate. The notion of equivalent relation on the family of all bipolar-valued fuzzy *d*-algebra of a d-algebra is introduced and then some properties are discussed.

# 2. Preliminaries

**Definition 2.1** ([3]). A d-algebra is a non-empty set X with binary operation \* satisfying the following axioms

- 1. x \* x = 0,
- 2. 0 \* x = 0,
- 3. x \* y = 0 and y \* x = 0 imply x = y for all  $x, y \in X$ .

A BCK-algebra is a d-algebra (X; \*0) satisfying the following additional axioms

- 4. ((x \* y) \* (x \* z)) \* (z \* y) = 0,
- 5.  $(x * (x * y)) * y = 0 \forall x, y \in X.$

<sup>\*</sup> E-mail: spreveena91@gmail.com (Research Scholar)

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 3 | 2 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 3 | 0 | 0 |

**Example 2.2** ([4]). Let  $X = \{0, 1, 2, 3\}$  be a set with the following table

- The diagonal elements are zero therefore  $x * x = 0 \ \forall x \in X$ .
- The row corresponding to 0 is 0. Therefore 0 \* x = 0.
- If  $x_i * y_i + y_i * x_i \neq 0 \implies x * y$  and  $y * x = 0 \implies x = y$ . There is no element x \* y = y \* x = 0 for  $x \neq y$ .
- If x = 0, y = 0, z = 0 and if we take same value for x, y, z than the conditions ((x \* y) \* (x \* z)) \* (z \* y) = 0 and (x \* (x \* y)) \* y = 0 is trivially true.

Now we can proceeded for different value for x, y, z we get

Case 1: x = 1, y = 1, z = 2

1. x \* y = 1 \* 1 = 0, x \* z = 1 \* 2 = 3, z \* y = 2 \* 1 = 3.

$$(x * y) * (x * z) = 0 * 3 = 0 \Longrightarrow ((x * y) * (x * z)) * (z * y) = 0 * 3 = 0$$

2. 
$$(x * (x * y)) * y = (1 * (1 * 1)) * 1 = (1 * 0) * 1 = 0 * 1 = 0.$$

Case 2: x = 1, y = 1, z = 3

1. x \* y = 1 \* 1 = 0, x \* z = 1 \* 3 = 2, z \* y = 3 \* 1 = 3.

((x \* y) \* (x \* z)) \* (z \* y) = (0 \* 2) \* 3 = 0 \* 3 = 0

2. (x \* (x \* y)) \* y = (1 \* (1 \* 1)) \* 1 = (1 \* 1) \* 1 = 0 \* 1 = 0.

*Case 3:* x = 1, y = 2, z = 1

1.  $(x * y) * (x * z) = 3 * 0 = 3 \implies ((x * y) * (x * z)) * (z * y) = 3 * 3 = 0.$ 

2. (x \* (x \* y)) \* y = (1 \* (1 \* 2)) \* 2 = (1 \* 3) \* 2 = 2 \* 2 = 0.

Case 4: x = 2, y = 1, z = 3

1. 
$$(x * y) * (x * z) = 3 * 1 = 2 \implies ((x * y) * (x * z)) * (z * y) = 2 * 3 = 1 \neq 0.$$

2.  $(x * (x * y)) * y = (2 * (2 * 1)) * 3 = (2 * 3) * 3 = 2 \neq 0.$ 

**Definition 2.3** ([2]). Let X be a BCK-algebra and I be a subset of X, then I is called an ideal of X if

- 1.  $0 \in I$ ,
- 2. y and  $x * y \in I \Longrightarrow x \in I$  for all  $x, y \in X$ .

**Example 2.4** ([4]). Let  $X = \{0, 1, 2, 3\}$  be a BCK-algebra with the following Cayley table

| * | 0 | 1 | 2 | 3        |
|---|---|---|---|----------|
| 0 | 0 | 0 | 0 | 0        |
| 1 | 1 | 0 | 3 | <b>2</b> |
| 2 | 2 | 3 | 0 | 1        |
| 3 | 3 | 3 | 0 | 0        |

Let  $I = \{0, 1\}$  be a subset of X. Then  $0 \in I$  is obviously true.

1. y and  $x * y \in I \Longrightarrow x \in I \forall x, y \in X$ .

The row corresponding to 0 is 0 and I is a subset of X. Then the condition is holds.

**Definition 2.5** ([3]). A nonempty set X with a constant 0 and a binary operation \* is called a d-algebra if it satisfies the following axioms

- 1. x \* x = 0,
- 2. 0 \* x = 0,
- 3. x \* y = 0 and  $y * x = 0 \Longrightarrow x = y \ \forall \ x, y \in X$ .

Example 2.6 ([3]).

- a. Every BCK-algebra is a d-algebra
- b. Let  $X = \{0, 1, 2\}$  be a set with the following table

| * | 0 | 1 | 2 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 2 | 0 | 2 |
| 2 | 1 | 1 | 0 |

- The diagonal elements are zero. Therefore  $x * x = 0 \ \forall x \in X$ .
- The row corresponding to 0 is 0. Therefore 0 \* x = 0.
- If  $x_i * y_i + y_i * x_i \neq 0 \Longrightarrow x * y = 0, y * x = 0 \Longrightarrow x = y$ . There is no element x \* y = y \* x for x = y.

Then (X; \*, 0) is a d-algebra but not BCK-algebra since  $(2 * (2 * 2)) * 2 = (2 * 0) * 2 = 1 * 2 = 2 \neq 0$ .

**Definition 2.7** ([2, 4]). Let S be a nonempty subset of d-algebra X, then S is called subalgebra of X if  $x * y \in S$ , for all  $x, y \in S$ .

**Example 2.8** ([2]). Let  $X = \{0, a, b, c\}$  be a d-algebra with the following table

| * | 0 | a | b | с |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| a | а | 0 | 0 | b |
| b | b | a | 0 | 0 |
| с | с | с | с | 0 |

Let  $S = \{0, a, b\}$  be a nonempty subset of a d-algebra X.

- 1. In the case of same value for x, y. The diagonal elements are zero. Therefore  $x * y = 0 \in S$ .
- 2. The row corresponding to 0 is 0. When x = 0 is a fixed value then different value for  $y \Longrightarrow x * y = 0 \in S$ .

Case 1:  $x = a, y = b \Longrightarrow x * y = a * b = 0 \in S$ . Case 2:  $x = b, y = a \Longrightarrow x * y = b * a = a \in S$ .

**Definition 2.9** ([2, 4]). Let X be a d-algebra and I be a subset X, then I is called d-ideal of X if

- 1.  $0 \in I$ ,
- 2.  $x * y \in I$  and  $y \in I \Longrightarrow x \in I$ ,
- 3.  $x \in I$  and  $y \in X \Longrightarrow x * y \in I$  i.e.,  $I \times X \subseteq I$ .

**Example 2.10** ([2]). Let  $X = \{0, a, b, c, d\}$  be a d-algebra with the following cayley table Let  $I = \{0, a, c\}$  be a subset X.

| * | 0 | a | b | с | d |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| a | a | 0 | a | 0 | a |
| b | b | b | 0 | с | с |
| с | с | с | а | 0 | с |
| d | с | с | а | a | 0 |

Then we can easily prove that I is a d-ideal.

**Definition 2.11** ([4]). A mapping  $f: X \to Y$  of d-algebras is called a homomorphism if  $f(x * y) = f(x) * f(y), \forall x, y \in X$ .

*Note:* If  $f: X \to Y$  is homomorphism of *d*-algebras, then f(0) = 0.

**Definition 2.12** ([4]). Let  $\mu$  be the fuzzy set of a set X. For a fixed  $s \in [0, 1]$  the set  $\mu_s = \{x \in X : \mu(x) \ge s\}$  is called an upper level of  $\mu$ .

**Definition 2.13** ([4]). A fuzzy set  $\mu$  in d-algebra X is called fuzzy sub algebra of X if it satisfies  $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$ for all  $x, y \in X$ .

**Example 2.14** ([4]). Let  $X = \{0, 1, 2\}$  be a set given by the following table Then (X; \*, 0) is a d-algebra. We define a fuzzy

| * | 0 | 1 | <b>2</b> |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 1 | 2 | 0 | 2        |
| 2 | 1 | 1 | 0        |

set  $\mu: X \rightarrow [0, 1]$  by  $\mu(0) = 0.7$ ,  $\mu(x) = 0.02$ , where for all  $x \neq 0$ .

| Cases | x | y | $\mu(x * y)$ | $\mu(x)$ | $\mu(y)$ | $\min \left\{ \mu \left( x ight) ,\mu \left( y ight)  ight\}$ |
|-------|---|---|--------------|----------|----------|---------------------------------------------------------------|
| 1     | 0 | 0 | 0.7          | 0.7      | 0.7      | 0.7                                                           |
| 2     | 0 | 1 | 0.7          | 0.7      | 0.02     | 0.02                                                          |
| 3     | 0 | 2 | 0.7          | 0.7      | 0.02     | 0.02                                                          |
| 4     | 1 | 0 | 0.02         | 0.02     | 0.7      | 0.02                                                          |
| 5     | 1 | 1 | 0.7          | 0.02     | 0.02     | 0.02                                                          |
| 6     | 1 | 2 | 0.02         | 0.02     | 0.02     | 0.02                                                          |
| 7     | 2 | 0 | 0.02         | 0.02     | 0.7      | 0.02                                                          |
| 8     | 2 | 1 | 0.02         | 0.02     | 0.02     | 0.02                                                          |
| 9     | 2 | 2 | 0.7          | 0.02     | 0.02     | 0.02                                                          |

Then  $\mu$  is a fuzzy sub algebra of X.

**Definition 2.15** ([1]). A bipolar-valued fuzzy set D in X is an abject having the form  $D = \{(x, \mu_D^P(x), \mu_D^N(x)) | x \in X\}$ where  $\mu_D^P: X \longrightarrow [0,1]$  and  $\mu_D^N: X \to [-1,0]$  are mappings. The position of membership degree  $\mu_D^P(x)$  denoted the satisfaction degree of an element x to the property corresponding to a bipolar-valued fuzzy set  $D = \{(x, \mu_D^P(x), \mu_D^N(x)) | x \in X\}$ and the negative membership degree  $\mu_D^N(x)$  denote the satisfaction degree of x to some implicit counter-property of  $D = \{(x, \mu_D^P(x), \mu_D^N(x)) | x \in X\}.$ 

**Definition 2.16** ([7]). Let f be a mapping from a set X to a set Y. If  $B = \{(y, \mu_B^+(y), \mu_B^-(y)) | y \in Y\}$  is an bipolarvalued fuzzy set in Y, then the preimage of B under f denoted by  $f^-(B)$ , is the bipolar-valued fuzzy set in X defined by  $f^-(B) = \{(x, f^-(\mu_B^+)(x), f^-(\mu_B^-)(x)) | x \in X\}$ , and if  $D = \{(x, \mu_D^+(x), \mu_D^-(x)) | x \in X\}$  is an bipolar-valued fuzzy set in X, then the image of D under f, denoted by f(D), is the bipolar-valued fuzzy set by

$$f(D) = \left\{ \left( y, f_{\sup}\left(\mu_D^+\right)(y), f_{\inf}\left(\mu_D^-\right)(y) \right) / y \in Y \right\},\$$

where

$$\begin{split} f_{\sup}\left(\mu_{D}^{+}\right)\left(y\right) &= \begin{cases} \sup_{x \in f^{-}(y)} \mu_{D}^{+}(x) \,, & \text{if } f^{-}(y) \neq \emptyset, \\ 0, & \text{otherwise} \end{cases} \\ f_{\inf}\left(\mu_{D}^{-}\right)\left(y\right) &= \begin{cases} \inf_{x \in f^{-}(y)} \mu_{D}^{-}(x) \,, & \text{if } f^{-}(y) \neq \emptyset, \\ 0, & \text{otherwise} \end{cases} \end{split}$$

for each  $y \in Y$ .

### 3. Bipolar-Valued Fuzzy *d*-Algebra

**Definition 3.1.** Let X be a d-algebra. An bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in X is called an bipolar-valued fuzzy d-algebra if it satisfies

$$\begin{aligned} \mu_{D}^{+}\left(x * y\right) &\geq \min\left\{\mu_{D}^{+}\left(x\right), \mu_{D}^{+}\left(y\right)\right\}, \\ \mu_{D}^{-}\left(x * y\right) &\leq \max\left\{\mu_{D}^{-}\left(x\right), \mu_{D}^{-}\left(y\right)\right\}, & \text{for all } x, y \in X. \end{aligned}$$

#### Example 3.2.

1. Consider a d-algebra  $X = \{0, a, b, c\}$  with the following table

| * | 0 | a | b | с |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| a | а | 0 | 0 | b |
| b | b | b | 0 | 0 |
| с | с | с | с | 0 |

Let  $D = (x, \mu_D^+(x), \mu_D^-(x))$  be an bipolar-valued fuzzy set in X defined by  $\mu_D^+(0) = 0.8 = \mu_D^+(a), \mu_D^+(b) = \mu_D^+(c) = 0.3$ and  $\mu_D^-(0) = \mu_D^-(a) = 0.03, \mu_D^-(b) = \mu_D^-(c) = 0.08$ . Then  $D = (x, \mu_D^+(x), \mu_D^-(x))$  is an bipolar-valued fuzzy d-algebra.

2. Consider a d-algebra  $X = \{0, a, b, c\}$ . Let  $D = (x, \mu_D^+, \mu_D^-)$  be an bipolar-valued fuzzy set in X defined by  $\mu_D^+(0) = \mu_D^+(a) = t_1, \mu_D^+(b) = \mu_D^+(c) = t_2$  and  $\mu_D^-(0) = \mu_D^-(a) = s_1 = \mu_D^-(c), \mu_D^-(b) = s_2$ , where  $t_1 > t_2$ ,  $s_1 < s_2$  and  $s_i + t_i \in [0, 1]$  for i = 1, 2. Then  $D = (x, \mu_D^+, \mu_D^-)$  is an bipolar-valued fuzzy d-algebra.

**Definition 3.3.** Let  $D = (x, \mu_D^+, \mu_D^-)$  be the bipolar-valued fuzzy d-algebra of a set X. For a fixed  $s \in [0, 1]$ , the set  $\mu_D^+ = \{x \in X; \mu_D^+(x) \ge s\}$  and  $\mu_D^- = \{x \in X; \mu_D^-(x) \le s\}$  is called an upper level of bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$ .

**Definition 3.4.** A bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in a d-algebra X is called a bipolar-valued sub algebra of X if it satisfies

$$\mu_{D}^{+}(x * y) \ge \min\left\{\mu_{D}^{+}(x), \mu_{D}^{+}(y)\right\}, \mu_{D}^{-}(x * y) \le \max\left\{\mu_{D}^{-}(x), \mu_{D}^{-}(y)\right\}.$$

**Example 3.5.** Let  $X = \{0, 1, 2\}$  be a set given by the following table

| * | 0 | 1 | 2        |
|---|---|---|----------|
| 0 | 0 | 0 | 0        |
| 1 | 2 | 0 | <b>2</b> |
| 2 | 1 | 1 | 0        |

Let  $D = (x, \mu_D^+, \mu_D^-)$  be an bipolar-valued fuzzy set in X defined by  $\mu_D^+(0) = 0.8$ ,  $\mu_D^+(x) = 0.4$  and  $\mu_D^-(0) = 0.05$ ,  $\mu_D^-(x) = 0.09$ . Then  $D = (x, \mu_D^+, \mu_D^-)$  is a bipolar-valued fuzzy sub algebra of X.

**Proposition 3.6.** If an bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in X is an bipolar-valued fuzzy d-algebra of X, then  $\mu_D^+(0) \ge \mu_D^+(x)$  and  $\mu_D^-(0) \le \mu_D^-(x) \quad \forall x \in X.$ 

Proof. Let  $x \in X$ , since x \* x = 0 by definition of *d*-algebra [4] we have  $\mu_D^+(0) = \mu_D^+(x * x) \ge \min \left\{ \mu_D^+(x), \mu_D^+(x) \right\} = \mu_D^+(x)$ . Therefore  $\mu_D^+(0) \ge \mu_D^+(x)$ . Similarly, we can prove that  $\mu_D^-(0) = \mu_D^-(x * x) \le \max \left\{ \mu_D^-(x), \mu_D^-(x) \right\} = \mu_D^-(x)$ . Therefore  $\mu_D^-(0) \le \mu_D^-(x)$   $\forall x \in X$ .

**Theorem 3.7.** If  $\{D_i/i \in \Lambda\}$  is an arbitrary family of bipolar-valued fuzzy d-algebra of X, then  $\bigcap D_i$  is an bipolar-valued fuzzy d-algebra of X, where  $\bigcap D_i = \{x, \bigwedge \mu_{D_i}^+(x), \bigvee \mu_{D_i}^-(x)\}.$ 

*Proof.* Let  $x, y \in X$ . Then

$$\bigwedge \mu_{D_{i}}^{+}\left(x \ast y\right) \geq \bigwedge \left(\min\left\{\mu_{D_{i}}^{+}\left(x\right), \mu_{D_{i}}^{+}\left(y\right)\right\}\right)$$

$$=\min\left\{ \bigwedge\mu_{D_{i}}^{+}\left(x\right),\bigwedge\mu_{D_{i}}^{+}\left(y\right)\right\}$$

And

$$\begin{split} \bigvee \mu_{D_{i}}^{-}\left(x \ast y\right) &\leq \bigvee \left(\max\left\{\mu_{D_{i}}^{-}\left(x\right), \mu_{D_{i}}^{-}\left(y\right)\right\}\right) \\ &= \max\left\{\bigvee \mu_{D_{i}}^{-}\left(x\right), \bigvee \mu_{D_{i}}^{-}\left(y\right)\right\} \end{split}$$

Hence  $\bigcap D_i = \left\{ x, \bigwedge \mu_{D_i}^+(x), \bigvee \mu_{D_i}^-(x) \right\}$  is an bipolar-valued fuzzy *d*-algebra of *X*.

**Theorem 3.8.** If an bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in X is an bipolar-valued fuzzy d-algebra of X, then the sets  $X_{\mu^+} = \{x \in X/\mu_D^+(x) = \mu_D^+(0)\}$  and  $X_{\mu^-} = \{x \in X/\mu_D^-(x) = \mu_D^-(0)\}$  are d-sub algebras of X.

*Proof.* Let  $x, y \in U(\mu_D^+, t)$ . Then  $\mu_D^+(x) \ge t$  and  $\mu_D^+(y) \ge t$ . It follows that  $\mu_D^+(x * y) \ge \min\{\mu_D^+(x), \mu_D^+(y)\} \ge t$  so that  $x * y \in U(\mu_D^+, t)$  is a *d*-sub algebra of *X*. Now let  $x, y \in L(\mu_D^-, t)$ , then  $\mu_D^-(x), \mu_D^-(y) \le t$ . It follows that  $\mu_D^-(x * y) \le \max\{\mu_D^-(x), \mu_D^-(y)\} \le t$  and so  $x * y \in L(\mu_D^-, t)$ . Therefore  $L(\mu_D^-, t)$  is a *d*-sub algebra.

**Theorem 3.9.** Let  $D = (x, \mu_D^+, \mu_D^-)$  be an bipolar-valued fuzzy set in X such that the set  $U(\mu_D^+, t)$  and  $L(\mu_D^-, t)$  are d-sub algebras of X. Then  $D = (x, \mu_D^+, \mu_D^-)$  is an bipolar-valued fuzzy d-algebra of X.

*Proof.* Assume that there exist  $x_0, y_0 \in X$  such that  $\mu_D^+(x_0 * y_0) < \min \{\mu_D^+(x_0), \mu_D^+(y_0)\}$ . Let  $t_0 = \frac{1}{2} (\mu_D^+(x_0 * y_0) + \min \{\mu_D^+(x_0), \mu_D^+(y_0)\})$ .

Then  $\mu_D^+(x_0 * y_0) < t_0 < \min\left\{\mu_D^+(x_0), \mu_D^+(y_0)\right\}$  and so  $x_0 * y_0 \notin U\left(\mu_D^+, t_0\right)$ , but  $x_0, y_0 \in U\left(\mu_D^+, t_0\right)$ . This is a contradiction and therefore  $\mu_D^+(x * y) \ge \min\left\{\mu_D^+(x), \mu_D^+(y)\right\}$  for all  $x, y \in X$ . Now suppose that  $\mu_D^-(x_0 * y_0) > \max\left\{\mu_D^-(x_0), \mu_D^-(y_0)\right\}$  for some  $x_0, y_0 \in X$ . Taking  $s_0 = \frac{1}{2}\left(\mu_D^-(x_0 * y_0) + \max\left\{\mu_D^-(x_0), \mu_D^-(y_0)\right\}\right)$ , then  $\max\left\{\mu_D^-(x_0), \mu_D^-(y_0)\right\} < s_0 < \mu_D^-(x_0 * y_0)$ . It follows that  $x_0, y_0 \in L\left(\mu_D^-, s_0\right)$  and  $x_0 * y_0 \notin L\left(\mu_D^-, s_0\right)$ , a contradiction. Hence  $\mu_D^-(x * y) \le \max\left\{\mu_D^-(x), \mu_D^-(y)\right\}$  for all  $x, y \in X$ . This completes the proof.

**Theorem 3.10.** Any d-sub algebra of X can be realized as both a  $\mu^+$  level d-sub algebra and a  $\mu^-$  level d-sub algebra of some bipolar-valued fuzzy d-algebra of X.

*Proof.* Let S be a d-sub algebra of X and let  $\mu_D^+$  and  $\mu_D^-$  be fuzzy sets in X defined by

$$\mu_D^+ = \begin{cases} t, & \text{if } x \in S \\ 0, & \text{otherwise} \end{cases}$$
$$\mu_D^- = \begin{cases} s, & \text{if } x \in S \\ 1, & \text{otherwise} \end{cases}$$

For all  $x \in X$  where t and s are fixed numbers in (0, 1) such that t + s < 1. Let  $x, y \in X$ . If  $x, y \in S$ , then  $x * y \in S$ . Hence  $\mu_D^+(x * y) = \min \{\mu_D^+(x), \mu_D^-(y)\}$  and  $\mu_D^-(x * y) = \max \{\mu_D^-(x), \mu_D^-(y)\}$ . If at least one of x and y dose not belongs to S, then at least one of  $\mu_D^+(x)$  and  $\mu_D^+(y)$  is equal to 0 and at least one of  $\mu_D^-(x)$  and  $\mu_D^-(y)$  is equal to 1. It follows that  $\mu_D^+(x * y) \ge 0 = \min \{\mu_D^+(x), \mu_D^+(y)\}, \mu_D^-(x * y) \le 1 = \max \{\mu_D^-(x), \mu_D^-(y)\}$ . Hence  $D = (x, \mu_D^+, \mu_D^-)$  is an bipolar-valued fuzzy d-algebra of X. Obviously  $U(\mu_D^+, t) = S = L(\mu_D^-, t)$ . This completes the proof.

**Definition 3.11.** Let  $D = (x, \mu_D^+, \mu_D^-)$  be an bipolar-valued fuzzy set in X and let  $t \in [0, 1]$ . Then the set  $U(\mu_D^+, t) = \{x \in X/\mu_D^-(x) \ge t\}$  and  $L(\mu_D^-, t) = \{x \in X/\mu_D^-(x) \le t\}$  is called a  $\mu^+$  level t-cut and  $\mu^-$  level t-cut of D.

**Theorem 3.12.** If an bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in X is an bipolar-valued fuzzy d-algebra of X, then the  $\mu^+$  level t-cut and  $\mu^-$  level t-cut of D are d-sub algebras of X for every  $t \in [0,1]$  such that  $t \in Im(\mu_D^+) \cap Im(\mu_D^-)$ , which are called a  $\mu^+$  level d-sub algebra and a  $\mu^-$  level d-sub algebra respectively.

*Proof.* Let  $x, y \in U(\mu_D^+, t)$ . Then  $\mu_D^+(x) \ge t, \mu_D^-(y) \ge t$ , it follows that  $\mu_D^+(x * y) \ge \min\{\mu_D^+(x), \mu_D^+(y)\} \ge t$  so that  $x * y \in U(\mu_D^+, t)$ . Hence  $U(\mu_D^+, t)$  is a *d*-sub algebra of *X*. Now let  $x, y \in L(\mu_D^-, t)$ . Then  $\mu_D^-(x) \le t, \mu_D^-(y) \le t$ . It follows that  $\mu_D^-(x * y) \le \max\{\mu_D^-(x), \mu_D^-(y)\} \le t$  and so  $x * y \in L(\mu_D^-, t)$ . Therefore  $L(\mu_D^-, t)$  is a *d*-sub algebra.

**Theorem 3.13.** Let  $\alpha$  be a d-homomorphism of a d-algebra X into a d-algebra Y and D an bipolar-valued fuzzy d-algebra of Y. Then  $\alpha^{-1}(D)$  is an bipolar-valued fuzzy d-algebra of X.

*Proof.* For any  $x, y \in X$ , we have

$$\begin{aligned} \mu_{\alpha^{-1}}^{+}\left(D\right)\left(x*y\right) &= \mu_{D}^{+}\left(\alpha\left(x*y\right)\right) \\ &= \mu_{D}^{+}\left(\alpha\left(x\right)*\alpha\left(y\right)\right) \\ &\geq \min\left\{\mu_{D}^{+}\left(\alpha\left(x\right)\right), \mu_{D}^{+}\left(\alpha\left(y\right)\right)\right\} \\ &= \min\left\{\mu_{\alpha^{-1}(D)}^{+}\left(x\right), \mu_{\alpha^{-1}(D)}^{+}\left(y\right)\right\} \\ \\ \mu_{\alpha^{-1}(D)}^{-}\left(x*y\right) &= \mu_{D}^{-}\left(\alpha\left(x*y\right)\right) \\ &= \mu_{D}^{-}\left(\alpha\left(x\right)*\alpha\left(y\right)\right) \\ &\leq \max\left\{\mu_{D}^{-}\left(\alpha\left(x\right)\right), \mu_{D}^{-}\left(\alpha\left(y\right)\right)\right\} \\ &= \max\left\{\mu_{\alpha^{-1}(D)}^{-}\left(x\right), \mu_{\alpha^{-1}(D)}^{-}\left(y\right)\right\} \end{aligned}$$

Hence  $\alpha^{-1}(D)$  is an bipolar-valued fuzzy *d*-algebra in *X*.

**Theorem 3.14.** If an bipolar-valued fuzzy set  $D = (x, \mu_D^+, \mu_D^-)$  in X is an bipolar-valued fuzzy d-algebra of X, then so is  $D^c$ , where  $D^c = \{(x, 1 - \mu_D^+(x), -1 - \mu_D^-(x)) | x \in X\}.$ 

*Proof.* Let  $x, y \in X$ . Then

$$\begin{split} \overline{\mu}_{D}^{+}\left(x*y\right) &= 1 - \mu_{D}^{+}(x*y) \\ &\geq 1 - \min\left\{\mu_{D}^{+}\left(x\right), \mu_{D}^{+}\left(y\right)\right\} \\ &= \min\left\{1 - \mu_{D}^{+}\left(x\right), 1 - \mu_{D}^{+}\left(y\right)\right\} \\ &\geq \min\left\{\overline{\mu}_{D}^{+}\left(x\right), \overline{\mu}_{D}^{+}\left(y\right)\right\} \\ \overline{\mu}_{D}^{-}\left(x*y\right) &= -1 - \mu_{D}^{-}\left(x*y\right) \leq -1 - \max\left\{\mu_{D}^{-}\left(x\right), \mu_{D}^{-}\left(y\right)\right\} \\ &= \max\left\{-1 - \mu_{D}^{-}\left(x\right), -1 - \mu_{D}^{-}\left(y\right)\right\} \\ &\leq \max\left\{\overline{\mu}_{D}^{-}\left(x\right), \overline{\mu}_{D}^{-}\left(y\right)\right\}. \end{split}$$

Hence  $D^c$  is an bipolar-valued fuzzy *d*-algebra of X.

**Theorem 3.15.** Let  $\alpha$  be a d-homomorphism of a d-algebra X onto a d-algebra Y. If  $D = (x, \mu_D^+, \mu_D^-)$  is an bipolar-valued fuzzy d-algebra of X, then  $\alpha(D) = (y, \alpha_{\sup}(\mu_D^+), \alpha_{\inf}(\mu_D^-))$  is an bipolar-valued fuzzy d-algebra of Y.

*Proof.* Let  $D = (x, \mu_D^+, \mu_D^-)$  be a bipolar-valued fuzzy topological *d*-algebra in X and let  $y_1, y_2 \in Y$ . Noticing that,  $\{x_1 * x_2/x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2)\} \subseteq \{x \in X/x \in \alpha^{-1}(y_1 * y_2)\}$ , we have

$$\begin{aligned} \alpha_{\sup} \left( \mu_D^+ \right) (y_1 * y_2) &= \sup \left\{ \mu_D^+ (x) / x \in \alpha^{-1} (y_1 * y_2) \right\} \\ &\geq \sup \left\{ \mu_D^+ (x_1 * x_2) / x_1 \in \alpha^{-1} (y_1) , \ x_2 \in \alpha^{-1} (y_2) \right\} \\ &\geq \sup \left\{ \min \left\{ \mu_D^+ (x_1) , \mu_D^+ (x_2) \right\} / x_1 \in \alpha^{-1} (y_1) , x_2 \in \alpha^{-1} (y_2) \right\} \\ &= \min \left\{ \sup \left\{ \mu_D^+ (x_1) / x_1 \in \alpha^{-1} (y_1) \right\} , \sup \left\{ \mu_D^+ (x_2) / x_2 \in \alpha^{-1} (y_2) \right\} \right\} \\ &= \min \left\{ \alpha_{\sup} \left( \mu_D^+ \right) (y_1) , \alpha_{\sup} \left( \mu_D^+ \right) (y_2) \right\} . \end{aligned}$$

And

α

$$\begin{aligned} \inf \left(\mu_{D}^{-}\right)(y_{1} * y_{2}) &= \inf \left\{\mu_{D}^{-}(x)/x \in \alpha^{-1}(y_{1} * y_{2})\right\} \\ &\leq \inf \left\{\mu_{D}^{-}(x_{1} * x_{2})/x_{1} \in \alpha^{-1}(y_{1}), x_{2} \in \alpha^{-1}(y_{2})\right\} \\ &\leq \inf \left\{\max \left\{\mu_{D}^{-}(x_{1}), \mu_{D}^{-}(x_{2})\right\}/x_{1} \in \alpha^{-1}(y_{1}), x_{2} \in \alpha^{-1}(y_{2})\right\} \\ &= \max \left\{\inf \left\{\mu_{D}^{-}(x_{1})/x_{1} \in \alpha^{-1}(y_{1})\right\}, \inf \left\{\mu_{D}^{-}(x_{2})/x_{2} \in \alpha^{-1}(y_{2})\right\}\right\} \\ &= \max \left\{\alpha_{\inf}\left(\mu_{D}^{-}\right)(y_{1}), \alpha_{\inf}\left(\mu_{D}^{-}\right)(y_{2})\right\}.\end{aligned}$$

Hence  $\alpha(D) = (y, \alpha_{\sup}(\mu_D^+), \alpha_{\inf}(\mu_D^-))$  is an bipolar-valued fuzzy *d*-algebra in *Y*.

Let  $\Omega(X)$  denote the family of all bipolar-valued fuzzy *d*-algebra of *X* and let  $t \in [0,1]$ , then  $A \sim_{\mu^+} B \iff U(\mu_A^+, t) = U(\mu_B^+, t)$  and  $A \sim_{\mu^-} B \iff L(\mu_A^-, t) = L(\mu_B^-, t)$ , respectively for  $A = (x, \mu_A^+, \mu_B^-)$  and  $B = (x, \mu_B^+, \mu_B^-)$  in  $\Omega(X)$ . Then clearly  $\sim_{\mu^+}$  and  $\sim_{\mu^-}$  are equivalent relations on  $\Omega(X)$ . For any  $A = (x, \mu_A^+, \mu_A^-) \in \Omega(X)$ , let  $[A]_{\mu^+}$  denote the equivalence class of  $A = (x, \mu_A^+, \mu_A^-)$  modulo  $\sim_{\mu^+}$  and denote by  $\Omega(X) / \sim_{\mu^+}$  the collection of all equivalence classes of *A* modulo  $\sim_{\mu^+}$ .  $\Omega(X) / \sim_{\mu^+} = \left\{ [A]_{\mu^+} / A = (x, \mu_A^+, \mu_A^-) \in \Omega(X) \right\}$  and  $\Omega(X) / \sim_{\mu^-} = \left\{ [A]_{\mu^-} / A = (x, \mu_A^+, \mu_A^-) \in \Omega(X) \right\}$ . Now let S(X) denote the family of all *d*-sub algebras of *X* and let  $t \in [0, 1]$ . Define maps  $\alpha_t$  and  $\beta_t$  from  $\Omega(X)$  to  $S(X) \bigcup \{\phi\}$  by  $\alpha_t(A) = U(\mu_A^+, t)$  and  $\beta_t(A) = L(\mu_A^-, t)$  respectively for all  $A = (x, \mu_A^+, \mu_A^-) \in \Omega(X)$ . Then  $\alpha_t$  and  $\beta_t$  are clearly well-defined.

### References

- Arsham Borumand Sacid, Bipolar-valued Fuzzy BCK/BCI-algebras, World Applied Sciences Journal, 7(11)(2009), 1404-1411.
- [2] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideal in d-algebras, Math. Slovaca, 49(1999), 243-251.
- [3] Joseph Neggers and Hee Sik Kim, On d-algebras, Mathematic Slovaca, 49(1)(1999), 19-26.
- [4] M. Akram and K. M. Dar, On fuzzy d-algebras, Punjab University Journal of Mathematic, 37(2005), 61-76.
- [5] Muhammad Anwar Chaudhry and Hafiz Fakhar-ud-Din, On some classes of BCH-algebras, IJMMS, 25(3)(2001), 205-211.
- [6] P. J. Allen, J. Neggers and Hee Sik Kim, B-algebras and groups, Sci. Math. Japonocae Online, 9(2003), 159-165.
- [7] Young Bal Jun, Hee Sik Kim and Ball Sun Yoo, Intutionistic fuzzy d-algebra, Sci. Math. Japonica Online, (2006), 1289-1287.