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1. Introduction

Let G = (V,E) be a simple graph with n vertices and m edges. The symbols ∆(G), δ(G), α(G), κ(G), λ(G), β(G), and χ(G)

denote the maximum degree, the minimum degree, the vertex cover number, the connectivity, the edge-connectivity, the

independence number, and chromatic number of G, respectively. For graph theoretic terminology, we refer to [8].

In an analysis of the vulnerability of a communication network to disruption, two qualities that come to mind are the number

of elements that are not functioning and the size of the largest remaining subnetwork within which mutual communication

can still occur. In particular, in an adversarial relationship, it would be desirable for an opponent’s network to be such that

the two qualities can be made to be simultaneously small. The integrity of a graph G = (V,E), which was introduced in [3]

as a useful measure of the vulnerability of the graph, is defined as follows: I(G) = min{|S|+m(G− S) : S ⊆ V (G)}, where

m(G − S) denotes the order of the largest component. Barefoot, Entringer and Swart [4] defined the edge-integrity of a

graph G with edge set E(G) by I ′(G) = min{|S|+m(G−S)} , S ⊆ E(G). Unlike the connectivity measures, integrity shows

not only the difficulty to break down the network but also the damage that has been caused. In [3] Barefoot et al. Gave

some basic results on integrity. In [5] Moazzami et al. Compared the integrity, connectivity, binding number, toughness,

and tenacity for several classes of graphs. To know more about integrity and edge-integrity one can see [1, 2, 4, 6]. A set

S ⊆ V (G) is called a dominating set of G if each vertex of V − S is adjacent to at least one vertex of S. The domination

number of a graph G denoted as γ(G) is the minimum cardinality of a dominating set in G [9]. A dominating set D is a

connected dominating set of G if the subgraph < D > induced by D, is connected. The minimum cardinality of a connected

dominating set of G is called the connected domination number of G which we denote by γc(G).

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is a path where all intermediate vertices are

from H. (This includes the degenerate cases where the path consists of the single edge xy or a single vertex x if x = y, call
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such an H-path trivial). A set H ⊆ V (G) is a hub set of G if it has the property that, for any x, y ∈ V (G)−H, there is an

H-path in G between x and y. The minimum cardinality of a hub set in G is called a hub number of G, and is denoted by

h(G) [24]. For more details on the hub studies we refer to [10–12].

In 2015, Sultan et al. [14] have introduced the concept of hub-integrity of a graph as a new measure of vulnerability which

is defined as follows. The hub-integrity of a graph G denoted by HI(G) is defined by, HI(G) = {min|S|+m(G− S)}, S is

a hub set of G, where m(G− S) is the order of a maximum component of G− S. For more details on the hub-integrity see

[15–19]. In 2021, A. S. Sand and S. S. Mahde [20], have introduced the concept of hop hub set of a graph which is defined

as follows.

Definition 1.1. A hub set S is a hop hub set of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2. The

minimum cardinality of a hop hub set of G is called the hop hub number and is denoted by hh(G).

This motivated us to introduce a new measure of stability of a graph G and it is called hop hub-integrity. The following

results will be useful in the proof of our results

Theorem 1.2 ([24]). For any connected graph G, h(G) ≤ γc(G) ≤ h(G) + 1.

Theorem 1.3 ([24]). For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Theorem 1.4 ([20]). For n ≥ 2, hh(S′(Pn) =

 2, if n = 2, 3,

n− 2, if n ≥ 4.

Theorem 1.5 ([20]). For all n ≥ 2, hh(S′(K1,n−1)) = 2.

Theorem 1.6 ([20]). For all n ≥ 3, hh(S′(Cn) =

 3, if n = 3,

n− 2, if n ≥ 4.

Theorem 1.7 ([24]). Let T be a tree with n vertices and l levels, Then h(T ) = n− l .

Theorem 1.8 ([20]). For all n,m ≥ 2, hh(S′(Sn,m)) = 2.

Theorem 1.9 ([14]). For any graph G, γ(G) ≤ HI(G).

Theorem 1.10 ([13]). If T is a binary tree order n with l terminal vertices, then T has l − 1 internal vertices.

2. Main Results

Definition 2.1 ([20]). A hub set S is a hop hub set of G if for every v ∈ V − S, there exists u ∈ S such that d(u, v) = 2.

The minimum cardinality of a hop hub set of G is called a hop hub number and is denoted by hh(G).

Definition 2.2. The hop hub-integrity of a graph G is denoted as HhI(G) = min{|S| + m(G − S), S is a hop hub set},

where m(G− S) is the order of a maximum component of G− S.

A HhI-set of G is any subset S of V (G) for which HhI(G) = min{|S| + m(G − S)}. For any disconnected graph G

having k components G1, G2, ..., Gk of orders p1, p2, ..., pk−1, pk, respectively such that p1 ≤ p2 ≤ ... ≤ pk−1 ≤ pk. We

have HhI(G) = p1 + p2 + ... + pk−1 + HhI(Gk). Also, by the definition of hop hub-integrity we obtain the obvious bound

HhI(G) ≥ HI(G) ≥ I(G).

Proposition 2.3. The hop hub-integrity of some specific classes of graphs are as below

(1). For any complete graph Kn, HhI(Kn) = n.
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(2). For any path Pn with n ≥ 4, HhI(Pn) = n− 1.

(3). For the wheel graph W1,n−1, HhI(W1,n−1) = d2
√
n− 1e.

(4). For the complete bipartite graph Kn,m, HhI(Kn,m) = 2 +min{n− 1,m− 1}.

(5). For the double star Sn,m, HhI(Sn,m) = 3.

(6). For any cycle Cn,

HhI(Cn) =

 n, if n = 3, 4.

n− 1, if n ≥ 5.

Remark 2.4. In general, the inequality HhI(G′) ≤ HhI(G) is not true for a subgraph G′ of G, for the graph G and a

subgraph G′ shown in Figure 1, we have HhI(G) = 4, while HhI(G′) = 5.

x x x x
x x

v1 v2 v3 v4 v1 v2 v3 v4

v5 v6 v5 v6

G G′

Figure 1

x x x x
x x

Proposition 2.5. For any counted graph G, 2 ≤ HhI(G) ≤ n.

The lower bound attains for K2 and the upper bound attains for a complete graph Kn, n ≥ 2.

Theorem 2.6. Let T be a tree with n vertices and l terminals vertices, such that internal vertices p ≥ 2. Then HhI(G) =

n− l + 1.

Proof. Let HhI(T ) = |S| + m(S − T ). The set n − l of all internals vertices in T forms a hop hub set, since the unique

path between any two terminals never passes through another terminal. Note that any proper subset of n − l cannot be a

hop hub set. So |S| = n− l, since every internal vertex is a cut-vertex. If we delete of all n− l vertices, we get one competent

or more than two competent of order 1. So, HhI(T ) = |S|+m(T − S) = n− l + 1.

Theorem 2.7. For any tree T , HhI(T ) ≥ α(T ) + 1.

Proof. Let S′ be a minimum covering set of T . Then

HhI(T ) = |S|+m(T − S)

≥ |S′|+m(T − S′)(Because S ≥ S′)

≥ |S′|+ 1

.
= α(T ) + 1.

Corollary 2.8. For any graph G, HhI(G) ≥ γ(G) + 1.

Proof. By using Theorem 1.9 and from HhI(G) ≥ HI(G) we get the result.

Corollary 2.9. For any graph G, HhI(G) ≥ hh(G), and if G is complete then is equality .
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Definition 2.10 ([13]). A tree is called a binary tree if it has one vertex of degree 2 and each of the remaining vertices of

degree 1 or 3. Clearly, P3 is the smallest binary tree .

Theorem 2.11. If a tree T is a binary tree of order n. Then HhI(G) = dn/2e.

Proof. Let HhI(T ) = |S| + m(T − S). Since the hop hub set in any binary tree is p internal vertices, by Theorem 1.10,

|S| = p = l − 1, where l is the set of its number of terminal vertices of T . If we remove l − 1 internal vertices from binary

tree T we get a totally disconnected graph. So, m(T − S) = 1. Therefore, HhI(T ) = l − 1 + 1 = l. Since the number of

terminal vertices in any binary tree equal dn/2e, it follows that l = dn/2e, Therefore HhI(T ) = l = dn/2e.

Theorem 2.12. Let G ∼= Kn − e, e ∈ E(G). Then HhI(G) = n.

Proof. If G ∼= Kn − e, then G ∼= K2 ∪ (n− 2)K1. By definition of hop hub-integrity of disconnected graph, we have

HhI(G) = n− 2 +HhI(K2)

= n− 2 + 2

= n.

Corollary 2.13. Let G ∼= Kn − e, e ∈ E(G). Then HhI(G) = HhI(G) + 1. Therefore, HhI(G)−HhI(G) = 1.

2.1. Some properties of hop hub-integrity of line graphs

Definition 2.14 ([8]). The line graph L(G) of G has the edges of G as its vertices which are adjacent in L(G) if and only

if the corresponding edges are adjacent in G.

Proposition 2.15.

� In the star K1,n−1, HhI(L(K1,n−1) = n− 1.

� In the cycle Cn, HhI(L(Cn)) = HhI(Cn).

� In the path Pn, n ≥ 4, HhI(L(Pn) = HhI(Pn−1).

� In the double star Sn,m, n,m ≥ 2, HhI(L(Sn,m) = 3.

Remark 2.16. The hop hub-integrity of a graph G and hop hub-integrity of line graph are not comparable. For this situation

consider the graphs in the following cases:

� In the star K1,n−1, HhI(L(K1,n−1)) > HhI(K1,n−1).

� In the cycle Cn, HhI(L(Cn)) = HhI(Cn).

� In the path Pn, n ≥ 4, HhI(L(Pn)) < HhI(Pn).

Proposition 2.17. For any path Pn, n ≥ 5, HhI(L(Pn)) +HhI(L(Pn)) = 2n− 4.

Theorem 2.18. Let G ∼= Kn − e, e ∈ E(G). Then HhI(L(G)) = 1.

Proof. Since G ∼= Kn − e, then G ∼= K2 ∪ (n− 2)K1, and L(G) ∼= K1. Thus HhI(L(G)) = 1.

Proposition 2.19. If G is regular graph of degree 2, then HhI(G) = HhI(L(G)).

Proof. G is regular of degree 2, hence G ∼= Cn, and HhI(Cn) = HhI(L(Cn)), so the result.
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Corollary 2.20. Let G be a connected graph and let α(G) = 1, Then HhI(L(G)) = n.

Proof. Suppose α(G) = 1, then G ∼= K1,n−1. Then L(G) = Kn, so proof follows from Proposition 2.3.

Proposition 2.21. If HhI(L(G)) = |E(G)|, then G ∼= K1,n−1 or G ∼= C3.

Theorem 2.22. For any subset D of vertices in a graph L(G), HhI(L(G)−D) ≥ HhI(L(G))− |D|.

Proof. Let S be a HhI- set of L(G), let D ≤ V (L(G)) and S∗ be a HhI-set of L(G)−D such that S∗∗ = S∗ ∪D. Then

|S∗∗| = |S∗|+ |D| and L(G)− S∗∗ = L(G)− (S∗ ∪D) = (L(G)−D)− S∗. Therefore

HhI(L(G)) = |S|+m(L(G)− S)

≤ |S∗∗|+m(L(G)− S∗∗)

= |S∗|+ |D|+m[(L(G)−D)− S∗]

= HI(L(G)−D) + |D|.

Corollary 2.23. HhI(L(K1,n−1)) +HhI(L(K1,n−1)) = 2n− 2.

Proof. Since L(K1,n−1) ∼= Kn−1, it follows from Proposition 2.3 that HhI(Kn−1) = n − 1, and L(K1,n−1) ∼= Kn−1, so

HhI(Kn−1) = n− 1, hence the result.

Remark 2.24. If G is a connected graph, and |E(L(G))| < |E(G)|, then HhI(L(G)) < HhI(G). We note that |E(L(G))| <

|E(G)| obtained only in a path graph, hence the result. But the converse is not true, for example, the graphs shown in Figure

2, and Figure 3. v v
vv

vv v v
�

�

v v v v v
v v

G L(G)

Figure 2 Figure 3

HhI(G) = 5 and HhI(L(G)) = 4, while |E(L(G))| > |E(G)|.

2.2. Hop hub-integrity of splitting graph

Vaidya and Kothari [22] have discussed domination integrity of a graph obtained by duplication of an edge by vertex and

duplication of vertex by an edge in path and cycle. Also Vaidya and Kothari [23] have discussed domination integrity of

splitting graph of path and cycle. Sultan and Veena [16] have discussed hub-integrity of splitting graph of some standard

graphs. In the present work, we investigate hop hub-integrity of splitting graphs in some standard graphs.

Definition 2.25 ([23]). For a graph G, the splitting graph S′(G) of graph G is obtained by adding a new vertex v′ cor-

responding to each vertex v of G such that N(v) = N(v′) where N(v) and N(v′) are the neighborhood sets of v and v′,

respectively.
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Theorem 2.26. For n ≥ 2, HhI(S′(Pn) =


3, if n = 2,

4, if n = 3,

n, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of path Pn and {v1, v2, ..., vn} be the new vertices corresponding to {u1, u2, ..., un}

which are added to obtain S′(Pn) as shown in Figure 4. We have the following cases:

Case 1: n = 2. From Theorem 1.4, we have hh(S′(P2)) = 2 and H = {u1, u2} is a hop hub set of S′(P2). Then

m(S′(P2)−H) = 1. This implies that HhI(S′(P2)) = hh(S′(P2)) +m(S′(P2)−H) = 2 + 1 = 3. Clearly there does not exist

any hop hub set S1 of S′(P2) such that |S1|+m(S′(P2)− S1) ≤ hh(S′(P2)) +m(S′(P2)−H). Hence, HhI(S′(P2)) = 3.

Case 2: n = 3. From Theorem 1.4, we have hh(S′(P3)) = 2 and H = {u1, u2} is a hop hub-set of S′(P3). Then

m(S′(P3)−H) = 2. This implies that HhI(S′(P3)) = hh(S′(P3)) +m(S′(P3)−H) = 2 + 2 = 4. Moreover, for any hop hub

set S of S′(P3) we have, |S|+m(S′(P3)− S) ≥ |H|+m(S′(P3)−H). Hence HhI(S′(P3)) = 4.

Case 3: n ≥ 4. From Theorem 1.4, we have hh(S′(Pn)) = n − 2. Let H = {u2, u3, ..., un−1} be a hop hub-set of graph

S′(Pn). Then m(S′(Pn)−H) = 2. Therefore,

HhI(S′(Pn)) ≤ hh(S′(Pn)) +m(S′(Pn)−H) = n− 2 + 2 = n. (1)

For showing that the number |H|+m(S′(Pn)−H) is minimum. The minimality of both |H| and m(S′(Pn)−H) is taken into

consideration. The minimality of |H| is guaranteed as H is hop hub-set. It remains to show that if S is any hop hub set other

then H, |S|+m(S′(Pn)− S) ≥ n. If m(S′(Pn)− S) = 1, then |S| ≥ n > n− 1, consequently |S|+m(S′(Pn)− S) ≥ n+ 1.

If m(S′(Pn)− S) ≥ 2, then trivially |S|+m(S′(Pn)− S) ≥ n. Hence for any hop hub set S,

|S|+m(S′(Pn)− S) ≥ n. (2)

From (1) and (2), HhI(S′(Pn)) = n.

x x x x x

x x x x x

Figure 4 :Splitting graph of Pn

u1 u2 u3 un−1 un

v1 v2 v3 vn−1 vn

........................

....................

Theorem 2.27. For all n ≥ 3, HhI(S′(Cn) =

 4, if n = 3,

n+ 1, if n ≥ 4.

Proof. Let {u1, u2, ..., un} be the vertices of cycle Cn and {v1, v2, ..., vn} be the new vertices corresponding to{u1, u2, ..., un}

which are added to obtain S′(Cn) as shown in Figure 5. We have the three following cases:

Case 1: For n = 3. From Theorem 1.6, we have hh(S′(C3)) = 3, and H = {u1, u2, u3} is a hop hub-set of S′(C3). Then

m(S′(C3)−H) = 1.

This implies that HhI(S′(C3)) = hh(S′(C3)) +m(S′(C3)−H) = 3 + 1 = 4. Clearly there does not exist any hop hub set S1

of S′(C3) such that |S1|+m(S′(C3)− S1) ≤ hh(S′(C3)) +m(S′(C3)−H). Hence, HhI(S′(C3)) = 4.
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Case 2: n ≥ 4. From Theorem 1.6, we have hh(S′(Cn)) = n − 2 and H = {u1, u2, ..., un−2} is a hop hub-set of S′(Cn).

Then m(S′(Cn)−H) = 6. Therefore

HhI(S′(Cn)) ≤ hh(S′(Cn)) +m(S′(Cn)−H) = n− 2 + 6 = n+ 4. (3)

If S1 is any hop hub set of S′(Cn) other than H with m(S′(Cn)−S1) = 4 or 5, then |S1| ≥ hh(S′(Cn)) = n−2. This implies

that

|S1|+m(S′(Cn)− S1) ≥ hh(S′(Cn)) + 4 = n− 2 + 4 = n+ 2. (4)

If S2 is any hop hub set of S′(Cn) other than H with m(S′(Cn)− S2) = 2 or 3, then |S2| ≥ n− 1. This implies that

|S2|+m(S′(Cn)− S2) ≥ n− 1 + 3 = n+ 2. (5)

Let S3 = {u1, u2, ..., un}, a hop hub set of S′(Cn), then m(S′(Cn)− S3) = 1. This implies that

|S3|+m(S′(Cn)− S3) = n+ 1. (6)

Hence from (3), (4), (5) and (6), HhI(S′(Cn)) = n+ 1.

x
x
x

xx
x

xrr
st

x x

x

x
xx

x

un−1
un

u1

u2

u3u4

u5

vn−1

vn

v1

v2

v3v4

v5

Figure 5 :S′(Cn)

Theorem 2.28. For all n ≥ 4, HhI(S′(K1,n−1)) = 4.

Proof. Let {u, u1, ..., un−1} be the vertices of star K1,n−1 and {v, v1, ..., vn−1} be the new vertices corresponding to

{u, u1, ..., un−1} which are added to obtain S′(K1,n−1) as shown in Figure 7. From Theorem 1.5, we have hh(S′(K1,n−1)) = 2

and m(S′(K1,n−1)−H) = n, then

HhI(S′(K1,n−1)) ≤ hh(S′K1,n−1) +m(S′(K1,n−1)−H) = n+ 2. (7)

If H = {u, v, u1} is a hop hub-set of S′(K1,n−1). Then m(S′(K1,n−1)−H) = 1. Therefore,

HhI(S′(K1,n−1)) = |H|+m(S′(K1,n−1)−H) = 3 + 1 = 4. (8)

To show that the number |H|+m(S′(K1,n−1)−H) is minimum, it is assumed that S is any hop hub set other than H and

m(S′(K1,n−1)− S) > 1, and |S| ≥ 3, then |S|+m(S′(K1,n−1)− S) > 1 + 3 = 4. Hence for any hop hub set S,

|S|+m(S′(K1,n−1)− S) > hh(S′(K1,n−1)) + 1. (9)
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From (8) and (9), we have HhI(S′(K1,n−1)) = 4.

x

xxx
xx sr xx

xx
rs x

xx
x

x
ss x

u

u1

u2u3

un−1

un

u

u1

u2

un−1

un

v1

v2

vn−1

vn

v

Figure 7 :S′(K1,n−1)Figure 6 :K1,n−1

Theorem 2.29. For all n,m ≥ 2, HhI(S′(Sn,m)) = 5.

Proof. Let {u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} be the vertex set of double star Sn,m and

{u′, u′1, u′2, ..., u′n−1, v
′, v′1, v

′
2, ..., v

′
m−1} be the new vertices corresponding to {u, u1, u2, ..., un−1, v, v1, v2, ..., vm−1} which are

added to obtain S′(Sn,m) as shown in Figure 9. Consider S = {u, v}, a hop hub set of S′(Sn,m).

Case 1: n = m = 2. From Theorem 1.8, we have hh(S′(S2,2)) = 2 and S = {u, v} is a hop hub-set of S′(S2,2). Then

m(S′(S2,2)− S) = 3. Therefore

HhI(S′(S2,2)) ≤ hh(S′(S2,2)) +m(S′(S2,2)− S) = 5. (10)

Consider S1 is any hop hub set of S′(S2,2) other than S with m(S′(S2,2)− S1) = 2, then |S1| ≥ 4. This implies that

|S1|+m(S′(S2,2)− S1) ≥ 2 + 4 = 6. (11)

Let S2 = {u, v, u′, v′} be a hop hub set of S′(S2,2), then m(S′(S2,2)− S2) = 1. This implies that

|S2|+m(S′(S2,2)− S2) = 4 + 1 = 5. (12)

Hence from (10), (11) and (12), HhI(S′(S2,2)) = 5.

Case 2: n ≥ 2,m > 2 or n > 2,m ≥ 2.

From Theorem 1.8, hh(S′(Sn,m)) = 2, and S = {u, v} is a hop-set of S′(Sn,m). Then m(S′(Sn,m)−S) = max{n+ 1,m+ 1}.

Therefore

HhI(S′(Sn,m)) ≤ hh(S′(Sn,m)) +m(S′(Sn,m)− S) = 2 +max{n+ 1, r + 1}. (13)

Consider S1 = {u, v, u′, v′} a hop hub set of S′(Sn,m), then m(S′(Sn,m)− S1) = 1. This implies that

|S1|+m(S′(Sn,m)− S1) = 4 + 1 = 5. (14)

We claim that S1 is a minimum hop hub set. Since u is adjacent to {v, v′, u1, ..., un, u
′
1, ..., u

′
n}, and removal of u from S1

leads to nonexistence of S1-path between ui and u′i, it follows that S1 is a minimum hop hub set. Hence from (13) and

(14), HhI(S′(Sn,m)) = 5.
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Figure 8 :Sn,m

Figure 9 :S′(Sn,m)

Theorem 2.30. For any wheel W1,n−1, HhI(S′(W1,n−1)) = n+ 1.

Proof. Since S′(W1,n−1) contains a wheel graph W1,n−1 as its subgraph. If we choose the set S as all vertices of W1,n−1

of S′(W1,n−1), then there exist n components each contains only one vertex. So HhI(S′(W1,n−1)) = n+ 1.
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