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Abstract: In we study the heat transfer of boundary layer flow of an incompressible viscous fluid over hyperbolic stretching cylinder.
The governing nonlinear partial differential equations are converted into ordinary differential equations by using suitable

transformations, which are then tackled using the homotopy method. The homotopy method gives us solutions in the

form of series. The influence of the Magnetic, Joule’s and Ohmic effect on velocity as well as temperature profiles are
investigated and results can be seen visually in graphs. The computational results without these effects agree excellently

with the previous results by [1].
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1. Introduction

The heat transfer of the boundary layer flow over stretching boundaries has attained exceptional recognition in modern

industrial and engineering fields. Here we study the boundary layer flow of an incompressible viscous fluid over hyperbolic

stretching cylinder stretching sheet when subjected to the Magnetic, Joule’s and Ohmic effect. Its significance to the real-

world, has drawn attention among scientists and engineers in order to understand this phenomenon. Magnetohydrodynamic

fluid flows have various applications in the area of polymer and metallurgical industry. The study of mutual interaction of

fluid flow and magnetic field related phenomena in MHD flows is used in the cooling of filaments or continuous strips for

metallurgical use. The characteristics of final products highly depend on the cooling rate. It also has wide applications

in nuclear reactor technology and also in aerodynamics, in the study of aircraft design in order to analyse the prospects

of enhancing speed and proficiency of the aircraft. Reddy in [6] have studied the effect of thermophoresis and Brownian

moment on hydro-magnetic motion of a nanofluid over a slendering stretching sheet by reaching a similarity solution. M.M.

Rashidia in a similar manner in [4] analyzes a magnetic field to which the convective flow of non-Newtonian fluid due to a

linearly stretching sheet, is subject to. This is achieved by transforming the governing equations to a system of ordinary

differential equations by a similarity method. The optimal homotopy analysis method is used to solve the resulting system

of ordinary differential equations. On parallel lines, C. Sulochana in [5] have studied the effects of thermal radiation and slip

effects on magneto hydrodynamic forced convective flow of a nano-fluid over a slendering stretching sheet in porous medium.

Self-similarity transformation reduce the governing partial differential equations are transformed into nonlinear ordinary
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differential equations which are solved numerically using Matlab. Swati Mukhopadhyay in [3] investigates an axi-symmetric

laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder embedded in

a porous medium by converting the partial differential equations corresponding to the momentum and heat equations into

highly nonlinear ordinary differential equations with the help of similarity transformations. Numerical solutions of these

equations are obtained by shooting method. Swati Mukhopadhyay in [2] also considers the boundary layer flow of a viscous

incompressible fluid along a porous nonlinearly stretching sheet by converting the partial differential equation corresponding

to the momentum equation into nonlinear ordinary differential equation by carrying out similarity transformations. A

Numerical solution of this is attained using the shooting method.

Nomenclature

u, v : velocity components in x, r directions

f : dimensionless velocity of the fluid

N : coefficient related to stretching sheet

n : velocity power index parameter

c : physical parameter related to stretching sheet

B(x) : magnetic field parameter

T : temperature of the fluid (K)

Tw : surface fluid temperature (K)

T∞ : free stream temperature

k : thermal conductivity (Wm−1K)

k0 : chemical reaction parameter

Cp : specific heat at constant pressure (JkgK−1)

B0 : magnetic field strength

a1, b1 : constants

Greek Symbols

φ : dimensionless concentration

η : similarity variable

σ : electrical conductivity of the fluid (mXm−1)

α : the thermal diffusivity

θ : dimensionless temperature

ρ : density of the fluid (kgm−3)

µ : dimensional variable viscosity parameter

ν : kinematic viscosity (m2s−1)

2. Problem Formulation

Consider the two-dimensional steady incompressible flow of a viscous fluid over a hyperbolic stretching circular cylinder of

a fixed radius R. The governing equations are,

∂u

∂x
+
∂v

∂r
= 0, (1)

u
∂u

∂x
+ v

∂v

∂r
= ν

∂

∂r

(
r
∂u

∂r

)
− µσB2

0u, (2)
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u
∂T

∂x
+ v

∂T

∂r
= α

∂

∂r

(
r
∂T

∂r

)
− σB2

0u
2

ρ0cp
, (3)

With boundary conditions,

u (r, x) = U (x) , v (r, x) = 0, T = Tw + T∞ +AU (x) at r = R,

u (r, x)→ 0, T = T∞ as r →∞,
(4)

where A is constant, u, v are velocity components along x and r directions, T represents temperature, α = k
ρcp

is the thermal

diffusivity of the fluid. We introduce the stream function u = 1
r
∂ψ
∂r

, v = − 1
r
∂ψ
∂x

by introducing similarity transformations

(5),

η =
r2 −R2

2R

(
U

νx

) 1
2

, ψ = (Uνx)
1
2 Rf (η) , θ (η) =

T − T∞
Tw − T∞

, (5)

that convert (1)-(4) to the system of ODE,

K6
d3f

dη3
+K5

d2f

dη2
+K4

df

dη
+

(
K∗3

d2f

dη2
+K3

df

dη

)(
f − η df

dη

)
= 0, (6)

K7
d2θ

dη2
+K8

dθ

dη
+K9

(
df

dη

)2

+K10η
dθ

dη
+K11

dθ

dη

[
f − η df

dη

]
= 0,

Here,

L2 = −σB
2
0

ρ0cp
, K3 (x) =

U

4

(
Uγ

x

) 1
2 R

r2
(2− r) , K∗3 (x) =

U2

2x
, K4 = −µσB3

0U,

K5 (x) = −3γU

R

(
U

γx

) 1
2

, K6 (x) =

(
U2

x

)
r2

R2
, K7 (r, x) =

α (Tw − T∞)

R2

(
U

γ

)(
r2

x

)
,

K8 (x) =
2α (Tw − T∞)

R

(
U

γ

) 1
2 1

x
1
2

, K9 = L2U
2, K10 (x) =

U

2x
(Tw − T∞) , K11 (x) = −Tw − T∞

2

U

x
,

(7)

with corresponding boundary conditions,

f (0) = 0,
df

dη
|η=0 = 1, θ (0) =

Tw −AU (x)

Tw − T∞
,
df

dη
is bounded as η →∞, θ (η) = 0 as η →∞. (8)

3. Solution Methodology

First we establish the following homotopy equations for (5), (6) with (7)

H(f, p) = (1− p)
(
d3f

dη3
+
K5

K6

d2f

dη2
+
K4

K6

df

dη

)
+ p

(
d3f

dη3
+
K5

K6

d2f

dη2
+
K4

K6

df

dη
+

(
K∗3
K6

d2f

dη2
+
K3

K6

df

dη

)(
f − η df

dη

))
= 0, (9)

H(θ, p) = (1− p)
(
d2θ

dη2
+
K8

K7

dθ

dη

)
+ p

(
d2θ

dη2
+
K8

K7

dθ

dη
+
K9

K7

(
df

dη

)2

+
K10

K7
η
dθ

dη
+
K11

K7

dθ

dη

[
f − η df

dη

])
= 0, (10)

According to the generalized homotopy method, assume the solution for (9) and (10) in the form

fp = p0f0 + f1p+ f2p
2 + f3p

3 + . . . , (11)

θp = p0θ0 + θ1p+ f2p
2 + θ3p

3 + . . . , (12)

Substituting (11), (12) into (9), (10) and rearranging the terms of order p, we have, concerning f,

K6
d3f0
dη3

+K5
d2f0
dη2

+K4
df0
dη

= 0, (13)
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K6
d3f1
dη3

+K5
d2f1
dη2

+K4
df1
dη

+

(
K∗3

d2f0
dη2

+K3
df0
dη

)(
f0 − η

df0
dη

)
= 0, (14)

K6
d3f2
dη3

+K5
d2f2
dη2

+K4
df2
dη

+

(
K∗3

d2f2
dη2

+K3
df2
dη

)(
f0 − η

df0
dη

)
+

(
K∗3

d2f1
dη2

+K3
df1
dη

)(
f1 − η

df1
dη

)
= 0. (15)

Concerning θ,

K7
d2θ0
dη2

+K8
dθ0
dη

= 0, (16)

K7
d2θ1
dη2

+K8
dθ1
dη

+K9

(
df0
dη

)2

−K10η
dθ0
dη

+K11
dθ0
dη

[
f0 − η

df0
dη

]
= 0, (17)

K7
d2θ2
dη2

+K8
dθ2
dη

+ 2K9
df0
dη

df1
dη
−K10η

dθ1
dη

+K11
dθ1
dη

[
f0 − η

df0
dη

]
+K11

dθ0
dη

[
f1 − η

df1
dη

]
= 0 (18)

The boundary conditions (8) reducing to,

f0 (0) = 1, f1 (0) = f1 (0) = f2 (0) = f3 (0) = · · · = 0,

df0
dη
|η=0 = 1,

df1
dη
|η=0=

df2
dη
|η=0=

df3
dη
|η=0= · · · = 0,

θ0 (0) =
Tw −AU (x)

Tw − T∞
, θ1 (0) = θ2 (0) = θ3 (0) = · · · = 0,

df

dη
is bounded as η →∞, θ1 (∞) = θ2 (∞) = θ3 (∞) = · · · = 0.

(19)

The solutions to (13)-(18) with boundary conditions (19) are, denote

K12 =
−K5 +

√
K2

5 −K6K4

2K6
, K13 =

−K5 −
√
K2

5 −K6K4

2K6
.

Now M = K4
K6

giving Joule’s effect is positive, which means that K4 and K6 are of the same sign and
√
K2

5 −K6K4 < K5

gives K12 < 0, so that both K12 and K13 are negative.

f0 = c1 + c2 exp (K12η) + c3 exp (K13η) , (20)

f1 = c4 + (c6 + L12) exp (K13η) + L11 exp (K12η) + L13 exp (2K12η) + L14 exp (2K13η) + L15 exp ((K12 +K13)η)

+ L16η exp (2K12η) + L17η exp (2K13η) + L18η exp ((K12 +K13)η) + L19η exp (K12η) + L20η exp (K13η) , (21)

f2 = c7 + (c8 +R27) exp (K12η) + (c9 +R∗10) exp (K13η) +R∗11η exp (K13η) +R∗11η
2 exp (K13η)

+R∗12 exp (2K13η) +R∗13η exp (2K13η) +R∗14η
2 exp (2K13η) +R∗15 exp (3K13η) +R∗16η exp (3K13η)

+R∗16η
2 exp (3K13η) +R∗17 exp ((K12 +K13)η) +R∗18η exp ((K12 +K13)η) +R∗19 exp ((K12 + 2K13)η)

+R∗20η exp ((K12 + 2K13)η) +R21η
2 exp ((K12 + 2K13)η) +R22 exp (3K12η) +R23η exp (3K12η)

+R24 exp ((2K12 +K13)η) +R25η exp ((2K12 +K13)η) +R26η
2 exp ((2K12 +K13)η) +R27 exp (K12η)

+R28 exp (2K12η) +R29η exp (2K12η) +R30η exp (K12η) +R31η
2 exp (3K13η) +R32η

2 exp (3K12η) (22)

and

θ0 = d2 exp

(
−K8

K7
η

)
, (23)

θ1 = d4 exp

(
−K8

K7
η

)
+ L30 exp (2K13η) + L31η

2 exp

(
−K8

K7
η

)
+ L32η exp

(
−K8

K7
η

)
+ L33 exp

((
K13 −

K8

K7

)
η

)
+ L34η exp

((
K13 −

K8

K7

)
η

)
+ L35 exp (2K12η) + L36 exp ((K12 +K13)η) + L37η exp

((
K12 −

K8

K7

)
η

)
, (24)
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θ2 = d5 + (d6 + P31 + P30η + P35η
2 + P25η

4) exp

(
−K8

K7
η

)
+ (P20 + P29η)p(exp (2K13η)

+ (P21 + P28η)p(exp (3K13η) + P22 exp ((2K13 +K12) η) + (P23 + P32η + P33η
2 + P39η

3) exp

((
K13 −

K8

K7

)
η

)
+ P24η exp ((K12 + 2K13) η)P26 + P27 + (P36η

2 + P37 + P113η
3) exp

((
2K13 −

K8

K7

)
η

)
+ P61 exp (2K12η)

+ P62 exp((2K12 +K13)η) + P63 exp

((
2K12 −

K8

K7

)
η

)
+
(
P64 + P101η

2) exp

((
K13 −

2K8

K7

)
η

)
+
(
P65 + P100η

2) exp

((
K12 −

2K8

K7

)
η

)
+ (P68 + P93η + P102η

2) exp

((
3K13 −

K8

K7

)
η

)
+ (P69 + P103 + P92η) exp

((
3K12 −

K8

K7

)
η

)
+
(
P70 + P94η + P104η

2 + P116η
3) exp

((
K12 + 2K13 −

K8

K7

)
η

)
+ (P71 + P95η + P105η

2 + P115η
3) exp

((
2K12 +K13 −

K8

K7

)
η

)
+ (P72 + P97η) exp

((
3K12 − 2

K8

K7

)
η

)
+ (P73 + P96η + P106η

2) exp

((
3K13 − 2

K8

K7

)
η

)
+ (P66 + P74η + P75η

2 + P76η
3 + P77η

4 + P111η
3) exp

((
2K13 − 2

K8

K7

)
η

)
+ (P67 + P78η + P79η

2 + +P107η
2 + P80η

3 + P81η
4 + P112η

3) exp

((
2K12 − 2

K8

K7

)
η

)
+ (P82 + P83η) exp (3K12η)

+ P84 exp ((2K12 +K13) η) + (P85 + P98η
2 + P114η

3) exp

((
2K12 −

K8

K7

)
η

)
+ (P86 + P87η) exp ((K12 +K13) η)

+ (P88 + P89η + P108η
3) exp

((
K12 −

(
K8

K7

))
η

)
+ (P90η + P109η

3) exp

((
K12 − 2

K8

K7

)
η

)
+ (P91η + P110η

3) exp

((
K13 − 2

K8

K7

)
η

)
. (25)

Now the solutions to (6) with (7) satisfying boundary conditions (8) is given by

f = lim
p→1

fp = f0 + f1 + f2 + f3 + f4 + f5 + . . . , (26)

θ = lim
p→1

θp = θ0 + θ1 + θ2 + θ3 + θ4 + θ5 + . . . , (27)

So we can write the first and second approximations to f , θ respectively as,

f = f0 + f1 = c1 + c4 + (c6 + L12 + c3) exp (K13η) + (L11 + c2) exp (K12η) + L13 exp (2K12η)

+ L14 exp (2K13η) + L15 exp ((K12 +K13)η) + L16η exp (2K12η) + L17η exp (2K13η) + L18η exp ((K12 +K13)η)

+ L19η exp (K12η) + L20η exp (K13η) , (28)

f = f0 + f1 + f2 = c1 + c4 + c7 + (c8 +R27 + L11 + c2 + L19η) exp (K12η) + (c9 +R10 + c6 + L12 + c3) exp (K13η)

+R11η exp (K13η) +
(
R∗11η

2 + L20η
)

exp (K13η) + (R12 + L14) exp (2K13η) + (R13 + L17) η exp (2K13η)

+R14η
2 exp (2K13η) +R15 exp (3K13η) +R16η exp (3K13η) +R∗16η

2 exp (3K13η) + (R17 + L15) exp ((K12 +K13) η)

+ (R18η + L18η) exp ((K12 +K13) η) +R19 exp ((K12 + 2K13) η) +R20η exp ((K12 + 2K13) η)

+R21η
2 exp ((K12 + 2K13) η) +R22 exp (3K12η) +R23η exp (3K12η) +R24 exp ((2K12 +K13) η)

+R25η exp ((2K12 +K13) η) +R26η
2 exp ((2K12 +K13) η) +R27 exp (K12η) + (R28 + L13) exp (2K12η)

+ (R29η + L16η) exp (2K12η) +R30η exp (K12η) +R31η
2 exp (3K13η) +R32η

2 exp (3K12η) , (29)

θ = θ0 + θ1 = (d4 + d2) exp

(
−K8

K7
η

)
+ L30 exp (2K13η) + L31η

2 exp

(
−K8

K7
η

)
+ L32η exp

(
−K8

K7
η

)
+ L33 exp

((
K13 −

K8

K7

)
η

)
+ L34η exp

((
K13 −

K8

K7

)
η

)
+ L35 exp (2K12η)

+ L36 exp ((K12 +K13)η) + L37η exp

((
K12 −

K8

K7

)
η

)
, (30)
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θ = θ0 + θ1 + θ2 = d5 + (d4 + d2 + d6 + P31 + P30η + L32η + P35η
2 + L31η

2 + P25η
4) exp

(
−K8

K7
η

)
+ (P20 + L30 + P29η)p(exp (2K13η) + (P21 + P28η)p(exp (3K13η) + P22 exp ((2K13 +K12) η)

+ (P23 + L33 + (P32 + L34)η + P33η
2 + P39η

3) exp

((
K13 −

K8

K7

)
η

)
+ P24η exp ((K12 + 2K13) η)

+ P26 + P27 + (P36η
2 + P37 + P113η

3) exp

((
2K13 −

K8

K7

)
η

)
+ (P61 + L35) exp (2K12η) + P62 exp((2K12 +K13)η)

+ P63 exp

((
2K12 −

K8

K7

)
η

)
+
(
P64 + P101η

2) exp

((
K13 −

2K8

K7

)
η

)
+
(
P65 + P100η

2) exp

((
K12 −

2K8

K7

)
η

)
+ (P68 + P93η + P102η

2) exp

((
3K13 −

K8

K7

)
η

)
+ (P69 + P103 + P92η) exp

((
3K12 −

K8

K7

)
η

)
+
(
P70 + P94η + P104η

2 + P116η
3) exp

((
K12 + 2K13 −

K8

K7

)
η

)
+ (P71 + P95η + P105η

2 + P115η
3)

exp

((
2K12 +K13 −

K8

K7

)
η

)
+ (P72 + P97η) exp

((
3K12 − 2

K8

K7

)
η

)
+ (P73 + P96η + P106η

2) exp

((
3K13 − 2

K8

K7

)
η

)
+ (P66 + P74η + P75η

2 + P76η
3 + P77η

4 + P111η
3) exp

((
2K13 − 2

K8

K7

)
η

)
+ (P67 + P78η + P79η

2 + P107η
2 + P80η

3 + P81η
4 + P112η

3) exp

((
2K12 − 2

K8

K7

)
η

)
+ (P82 + P83η) exp (3K12η) + P84 exp ((2K12 +K13) η) + (P85 + P98η

2 + P114η
3) exp

((
2K12 −

K8

K7

)
η

)
+ (P86 + P87η + L36) exp ((K12 +K13) η) + (P88 + (P89 + L37)η + P108η

3) exp

((
K12 −

(
K8

K7

))
η

)
+ (P90η + P109η

3) exp

((
K12 − 2

K8

K7

)
η

)
+ (P91η + P110η

3) exp

((
K13 − 2

K8

K7

)
η

)
, (31)

where the evaluated constants Pi, Ri, di, Li as they occupy immense space are not mentioned in this paper. As the series

is convergent, we ignore terms f3, θ3, Φ3 onwards as their effects are negligible.

4. Results and Discussion

The system of partial differential equations with the boundary conditions, are converted to the system of ordinary differential

equations (6) using similarity transformations. These ODE are solved using the homotopy technique. First we calculate fp,

θp and then taking p→ 1 we get the solution to f , θ. The 1st approximations to f and θ are (27), (29) respectively and the

2nd approximations to f and θ are (28), (30) respectively. We analyse the profiles of velocity, temperature through graphs,

for impacts of the Joule’s effect and the effect of the magnetic field on them. We use Pr = 0.71, Sc = 0.01, Ec = 0.01,

Kr = 1, A = 1, a1 = 0.5, n = 1, β1 = 0.5, β2 = 0.5. We analyse the profile showing change in velocity with η, with M

taking values ranging 5 to 6 and for the effect of J between values 1 to 8. When the effect of magnetic field is least, as seen

in figures 1 and 4; velocity of the fluid is 0 at η = 0 and it initially increases steeply for a short span of η and then begins

to reduce steeply until some particular point where it again begins to increase steeply and this phenomenon continues. As

we increase the effect of magnetic field, as we can see in figures 2, 3, 5 and 6; there is no change in this phenomenon and

velocity continues to follow this consistent pattern. Whereas for temperature, at the minimum effect of magnetic field and

when the joule’s effects are absent, seen in figure 7 and 10, the temperature tends to reduce steeply as η increases until it

reaches a particular stage for some value of η after which it slowly increases until some point and then finally begins to

reduce to 0, as the value of η increases further. At increasing values of the effect of magnetic field and Joule’s effect, seen

in figures 8, 9, 11 and 12; the temperature initially increases steeply as η increases until some point after which it reduces

as η increases. Then it slowly tends to remain constant with temperature 0 after some particular value of η. As the values

of the effect of magnetic field increase further to 7 and 8, these fluctuations in temperature continue but tend to be more

steep. Eventually after some particular η the temperature reduces till it reaches 0 and continues to remain constant at 0, as
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the value of η increases further. Here M = K4
K6

gives the Joule’s effect and J = K8
K6

gives the effect of the magnetic field.

Iterations for f:

1st Iteration: M, take values ranging 5-6

Figure 1: J takes values ranging 1 - 2 Figure 2: J takes values ranging 5 - 6

Figure 3: J takes values ranging 7 - 8

2nd iteration for f: M, take values ranging 5 - 6

Figure 4: J takes values ranging 1 - 2 Figure 5: J takes values ranging 5 - 6
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Figure 6: J takes values ranging 7 - 8

Iterations for θ:

1st iteration for θ:

Figure 7: M take values ranging 0 - 0.5; J takes values

ranging 1 - 2

Figure 8: M take values ranging 1 - 2; J takes values ranging

5 - 6

Figure 9: M take values ranging 5 - 6; J takes values ranging

7 - 8
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2nd iteration for θ:

Figure 10: M take values ranging 0 - 1; J takes values

ranging 1 - 2

Figure 11: M take values ranging 1 - 2; J takes values

ranging 5 - 6

Figure 12: M take values ranging 5 - 6; J takes values

ranging 7 - 8

Swati Mukhopadhyay in [2] studied the velocity of a steady axially-symmetric flow of an incompressible viscous fluid along

a stretching cylinder in presence of uniform magnetic field and in the absence of Joule’s effect and obtained the following

Table 1 using D denoting the magnetic parameter. Whereas our Table 2 describing the Joule’s effect and the effects of

magnetic field on the velocity of a steady incompressible flow of a viscous fluid over a hyperbolic stretching circular cylinder

helps validate our analytical result.

D Analytical solution Numerical solution

0 -1.0000000 -0.99005806

0.5 -1.1180340 -1.1056039

1 -1.4142135 -1.3943545

1.5 -1.802775638 -1.7705669

Table 1: Attained by [2] values of f
′′

(0) obtained from analytical and numerical solutions

115



The Magnetic, Joule’s and Ohmic Effect on Incompressible Viscous Flow Over a Hyperbolic Stretching Circular Cylinder

M - Joule’s effect J – Magnetic field Solution

0 1 -0.010974

1 5 0.015217

5 5 0.94973

5 7 0.83461

Table 2: f
′′

(0) obtained by us using the generalized homotopy method

5. Conclusion

This paper presents the boundary layer flow and heat transfer of an incompressible viscous fluid over a hyperbolic stretching

cylinder in the presence of the effects of magnetic field and Joule’s effect. The velocity fluctuations are consistent with

increasing effects of magnetic field whereas temperature fluctuations are faster than velocity with increasing effects of

magnetic field and Joule’s effects. The major discoveries are:

(1). U(x), Tw, T∞, a have no effect on temperature.

(2). The behaviour of temperature when Joule’s effect is absent is opposite to that when these effects are prominent
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