International Journal of Mathematics And its Applications

# On Multiplication Groups of Middle Bol Loop Related to Left Bol Loop 

B. Osoba ${ }^{1, *}$ and T. Y. Oyebo<br>1 Department of Physical Science, College of Natural Sciences, Bells University of Technology, Ota, Nigeria.<br>2 Department of Mathematics, Lagos State University, Ojo, Lagos, Nigeria.


#### Abstract

In this paper, we show that an element of Bryant-Schneider group of middle Bol loop ( $Q$, o) is an automorphism and pseudo-automorphism. We proved that multiplication groups of middle autotopy nuclei of middle Bol loop ( $Q, \circ$ ) coincided with the corresponding left Bol loop $(Q, o)$ and their multiplication groups were show to be normal subgroups. It was found that the corresponding left $\operatorname{Bol}$ loop $(Q, \circ)$ is an indexed two.

MSC: 20N02, 20N05.


Keywords: Quasigroup, Loop, Bryant-Schneider group, middle Bol loop.

## 1. Introduction

A non-empty set $Q$ with binary operation ${ }^{\prime} A$ is called a groupoid $(Q, A)$. Let $(Q, A)$ be a groupoid and a be fixed element in $Q$ then the translation maps $L_{a}$ and $R_{a}$ are defined by $x L_{a}=a x$ and $x R_{a}=x a$ for all $x \in Q$. A groupoid $(Q, A)$ is called quasigroup $(Q, \cdot)$ if the maps $L(a): G \rightarrow G$ and $R(a): G \rightarrow G$ are bijections for all $a \in Q$ and if the equations $a x=b$ and $y a=b$ have respectively unique solutions $x=a \backslash b$ and $y=b / a$ for all $a, b \in Q$. A quasigroup ( $Q, \cdot)$ is called a loop if $a \cdot 1=a=1 \cdot a$, for all $a \in Q$. The group generated by these mappings are called multiplication group $\operatorname{Mlp}(Q, \cdot)$. We donate the groups generated by left (right and middle translations) of a quasigroup ( $Q, \cdot \cdot$ ) by $L M(Q, \cdot)$, $R M(Q, \cdot)$ and $P M(Q, \cdot)$ respectively [4]. A loop $(Q, \cdot)$ is called a middle Bol loop if every isotope of $(Q, \cdot)$ satisfies the identity $(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}$. (that is if the anti-automorphic inverse property is universal in $(Q, \cdot)$ [3]. A loop $(Q, \cdot)$ is called a middle Bol loop if is satisfies the identity $x(y z \backslash x)=(x / z)(y \backslash x)$. In [5] Gvaramiya proved that a loop $(Q, \circ)$ is middle Bol if there exist a right Bol loop $(Q, \cdot)$ such that $x \circ y=\left(y \cdot x y^{-1}\right) y$. This imply that if $(Q, \circ)$ is a middle Bol loop and $(Q, \cdot)$ is the corresponding right Bol loop then $x \circ y=x^{-1} \backslash y$ and $x \cdot y=y / / x^{-1}$, where '/' $(' / / ')$ is the right division in $(Q, \circ)$. If $(Q, \circ)$ is a middle Bol loop and $(Q, \cdot)$ is the corresponding left Bol loop then $x \circ y=x / y^{-1}$ and $x \cdot y=x / / y^{-1}$ where $\left({ }^{\prime} \backslash^{\prime}\right)$ '//' is the left right division in $(Q, \circ)$ (respectively, in $(Q, \circ)$ ). Let $(Q, \cdot)$ be a loop and the set of autotopisms are defined as follow:

- $(\alpha, i, \gamma)$ of $(Q, \cdot)$ is called left autotopy nucleus (left A-nucleus).
- $(i, \beta, \gamma)$ of $(Q, \cdot)$ is called right autotopy nucleus (right A-nucleus).

[^0]- $(\alpha, \beta, i)$ of $(Q, \cdot)$ is called middle autotopy nucleus (middle A-nucleus).

$$
\begin{aligned}
N_{\lambda} & =a \in Q \mid a x \cdot y=a \cdot x y \quad \forall x, y \in Q \\
N_{\mu} & =a \in Q \mid x a \cdot y=x \cdot a y \quad \forall x, y \in Q \\
N_{\rho} & =a \in Q \mid x y \cdot a=x \cdot y a \quad \forall x, y \in Q \\
Z & =N \cap C=a \cdot x=x \cdot a, \text { where } i \text { is an identity mapping. }
\end{aligned}
$$

Let $(Q, \cdot)$ be a loop, a bijection $\alpha \in Q$ is called pseudo-automorphism such that ( $\alpha, \alpha R_{g}, \alpha R_{g}$ ) is an autotopism where $g$ is a companion in $Q$. Let $(Q, \cdot)$ be a loop. We donate the following translations $R M(Q, \cdot)=x R_{a} \mid a \in Q=(x \cdot a \mid x \in Q)$.

$$
\begin{aligned}
& L M(Q, \cdot)=x L_{a} \mid a \in Q=(a \cdot x \mid x \in Q) \\
& P M(Q, \cdot)=x P_{a} s \mid a \in Q=(x \cdot s=a \mid x, s \in Q)
\end{aligned}
$$

where $L_{a}, R_{a}$ and $P_{a}$ are permutations of the set $Q$. Let $(Q, \cdot)$ be a groupoid (quasigroup, loop) and $\alpha, \beta$, and $\gamma$ be three bijections that map Q onto Q . The triple $\Phi=(\alpha, \beta, \gamma)$ is called an autotopism of $(Q, \cdot)$ if and only if $\alpha x \cdot \beta y=\gamma(x \cdot y)$ for all $x, y \in Q$. If $\alpha=\beta=\gamma$, then $\Phi$ is called the automorpism of $(Q, \cdot)$. Let $(Q, \cdot)$ a loop and $B S(Q, \cdot)$ be the set of all bijections $\alpha$ of $Q$ such that $<\alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha>$ is an autotopism of $Q$ for all $f, g \in Q$, then $B S(Q, \cdot)$ is called Bryant-Schneider group of the loop $(Q, \cdot)$.

## 2. Preliminaries

Lemma $2.1([2])$. Let $(Q, \cdot)$ left Bol loop and $(Q, \circ)$ be the corresponding middle Bol loop. Then $(\alpha, \beta, \gamma) \in S_{Q}^{3}$ is an autotopism of $(Q, \cdot)$ if and only if $(\gamma, I \beta I, \alpha)$ autotopism $(Q, \circ)$.

Lemma $2.2([6])$. Let $(Q, \cdot)$ be any loop. Then $(Q, \cdot)$ is a middle Bol loop if and only if $\left(I P_{x}^{-1}, I P_{x}, I P_{x} L_{x}\right)$ is an autotopism of $Q$.

Lemma $2.3([6])$. Let $(Q$,$) be a middle Bol loop. Then (A, B, C) \in \operatorname{Atp}(Q$,$) if and only if (I C I, I B I, I A I) \in \operatorname{Atp}(Q, \cdot)$.

## 3. Main Results

Theorem 3.1. Let $(Q, \cdot)$ be a symmetric entropy middle Bol loop with $\alpha \in B S(Q, \cdot)$ such that $A=\left\langle\alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha\right\rangle$ is an autotopism of $Q$ for some $g \in Q$. Then $\alpha^{-1}$ is an automorphism of $Q$ if $Q$ is of exponent two and $g \in Z$ the center of $Q$.

Proof. In symmetric entropy of middle Bol loop, $\left(I P_{x}^{-1}, I P_{x}, I P_{x} L_{x}\right)=B=\left(I L_{x}, I R_{x}, I R_{x} L_{x}\right)$ is an autotopism of $Q$ for all $x \in Q$. And $A=\left\langle\alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha\right\rangle$ is an autotopism of $B S(Q, \cdot)$ for some $g \in Q$. Consider $A B=$ $\left.\left\langle\alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha\right\rangle\left\langle\left(I L_{x}, I R_{x}, I R_{x} L_{x}\right)\right)\right\rangle=\left\langle\alpha R_{g^{-1}} I L_{x}, \alpha L_{g^{-1}} I R_{x}, \alpha I R_{x} L_{x}\right\rangle$ is also an autotopism of $Q$. Here, $\alpha R_{g^{-1}} I L_{x}=$ $\alpha^{-1} R_{g} L_{x}$. So, $A B=\left\langle\alpha^{-1} R_{g} L_{x}, \alpha^{-1} L_{g} R_{x}, \alpha^{-1} R_{x} L_{x},\right\rangle$ if we set $g=x$, we have $A B=\left\langle\alpha^{-1} R_{x^{2}}, \alpha^{-1} R_{x^{2}}, \alpha^{-1} R_{x^{2}}\right\rangle \in$ $\operatorname{Atp}(Q, \cdot)$, since $x \in Z($ center of $Q)$ that is $L_{x}=R_{x}$. And $R_{x^{2}}=1$ (that is of exponent 2 ) for all $x \in Q$, this imply that, $A B=\left\langle\alpha^{-1}, \alpha^{-1}, \alpha^{-1}\right\rangle \in \operatorname{Atp}(Q, \cdot)$, now for all $x \in Q$ is of exponent $2, R_{x^{2}}=L_{x^{2}}=I$ the identity mapping. Therefor, $A B=\left\langle\alpha^{-1}, \alpha^{-1}, \alpha^{-1}\right\rangle$ is also an autotopism of $Q$. This means that $\alpha^{-1}$ is an automorphism.

Theorem 3.2. Let $(Q, \cdot)$ be a middle Bol loop and $(Q, \circ)$ be the corresponding right Bol loop, if $\alpha \in B S(Q, \circ)$ and $B=$ $\left\langle\alpha R_{g}, \alpha L_{g^{-1}}, \alpha\right\rangle \in \operatorname{Atp}(Q, \circ)$ for some $g \in Q$. Then $I P_{x}^{-1} \alpha$ is a pseudo-automorphism with companion $g$.

Proof. Suppose that $(Q, \cdot)$ is a middle Bol loop and $B=\left\langle\alpha R_{g}, \alpha L_{g^{-1}}, \alpha\right\rangle \in B S(Q, \circ)$ is an autotopism of $B S(Q, \circ)$. From the Lemma 2.2, $A=\left(I P_{x}^{-1}, I P_{x}, I P_{x} L_{x}\right)$ is an autotopism of $(Q, \cdot)$. And $B=\left\langle\alpha R_{g}, \alpha L_{g^{-1}}, \alpha\right\rangle$, from Proposition 1.2 imply that $B=\left\langle\alpha, I \alpha L_{-g} I, \alpha R_{g}\right\rangle$ is an autotopism of $B S(Q, \circ)$. Here, let's consider $A B=\left\langle I P_{x}^{-1} \alpha, I P_{x} I \alpha L_{g^{-1}} I, I P_{x} L_{x} \alpha R_{g}\right\rangle$ which is also an autotopism of $Q$. Using $A B$, we have $(a) I P_{x}^{-1} \alpha \cdot(b) I P_{x} I \alpha L_{g^{-1}} I=(a b) I P_{x} L_{x} \alpha R_{g}$ for all $a, b \in Q$, and for some $x \in Q$, this imply that (a)IP $P_{x}^{-1} \alpha \cdot\left(b^{-1} \backslash x\right) I \alpha L_{g}^{-1} I=(a b) I P_{x} L_{x} \alpha R_{g}$. If $b=e$, we have $(a) I P_{x}^{-1} \alpha \cdot\left(x \cdot x^{-1}\right) \alpha L_{g}=$ (a) $I P_{x} L_{x} \alpha R_{g}$, this imply that (a)IP $P_{x}^{-1} \alpha \cdot g=(a) I P_{x} L_{x} \alpha R_{g}$ this follow from last equality (a)IP $P_{x}^{-1} \alpha R_{g}=(a) I P_{x} L_{x} \alpha R_{g}$, hence, $I P_{x}^{-1} \alpha R_{g}=I P_{x} L_{x} \alpha R_{g} ; A C=\left\langle I P_{x}^{-1} \alpha, I P_{x}^{-1} \alpha R_{g}, I P_{x}^{-1} \alpha R_{g}\right\rangle$ is an autotopism of $Q$ for all $x \in Q$. Therefor, $I P_{x}^{-1} \alpha$ is a right pseudo-automorphism with companion $g$.

Lemma 3.3. Let $(Q, o)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $(\alpha, \beta, i)$ is an autotopism of the middle Bol loop $(Q, \circ)$, then the following equalities hold
(i). $P_{z}^{(\circ)}=\beta L_{z}^{(\cdot)} \alpha^{-1}$.
(ii). $P_{z}^{(\circ)}=\beta R_{I z}^{(\cdot)-1} I \alpha^{-1}$.
(iii). $L_{z}^{(\cdot)}=R_{I z}^{(\cdot)-1} I$.
(iv). $P M(Q, \circ) \triangleright R M(Q, \cdot$.
(v). $P M(Q, \circ) \triangleright L M(Q, \cdot)$.

Proof. (i). Suppose $(\alpha, \beta, i) \in \operatorname{Atp}(Q, o)$, then

$$
\begin{equation*}
\alpha x \circ \beta y=x \circ y=z \tag{1}
\end{equation*}
$$

for any $x, y \in Q$ and a fixed element $z \in Q . x \circ y=z \Rightarrow x / I y=z$ where / is a right division in the left Bol loop ( $Q, \cdot$ ) this follow from last equality $x=z \cdot I y \Rightarrow z \backslash x=I y \Rightarrow$

$$
\begin{equation*}
L_{z}^{(\cdot)-1} x=I y \tag{2}
\end{equation*}
$$

From (1), $\alpha x \circ \beta y=z$ for any fixed element $z \in Q, \alpha x \backslash^{\circ} z=\beta y \Rightarrow P_{z}^{(\circ)} \alpha x=\beta y \Rightarrow$

$$
\begin{equation*}
y=\beta^{-1} P_{z}^{(\circ)} \alpha x \tag{3}
\end{equation*}
$$

Using (2) and (3), we have $L_{z}^{(\cdot)-1}=I \beta^{-1} P_{z}^{(\circ)} \alpha \Rightarrow \beta^{-1} P_{z}^{(\circ)} \alpha=I L_{z}^{(\cdot)-1}=L_{z}^{(\cdot)} \Rightarrow P_{z}^{(\circ)}=\beta L_{z}^{(\cdot)} \alpha^{-1}$.
(ii). Also, recall the equality above $x=z \cdot I y \Rightarrow I x=y \cdot I z \Rightarrow I x / I z=y \Rightarrow$

$$
\begin{equation*}
R_{I z}^{(\cdot)-1} I x=y \tag{4}
\end{equation*}
$$

Using equality (3) and (4), we have $\beta^{-1} P_{z}^{(\circ)} \alpha=R_{I z}^{(\cdot)-1} I \Rightarrow P_{z}^{(\circ)}=\beta R_{I z}^{(\cdot)-1} I \alpha^{-1}, P_{z}^{(\circ)}=\beta R_{I z}^{(\cdot)-1} I \alpha^{-1}$.
(iii). From $(i) \operatorname{and}(i i)$ we have $L_{z}^{(\cdot)}=R_{z}^{(\cdot)-1} I$.
(iv). Using (3) and (4), $P_{z}^{(\circ)} \alpha x=\beta R_{I z}^{(.)}{ }^{-1} I x$. Here, if we set $I x=x$, we obtain $P_{z}^{(\circ)} \alpha=\beta R_{I z}^{(.)}{ }^{-1} \Rightarrow \beta^{-1} P_{z}^{(\circ)} \alpha=R_{I z}^{(\cdot)^{-1}} \Rightarrow$

$$
\begin{equation*}
R_{z}^{(\cdot)}=\beta P_{I z}^{(\circ)-1} \alpha^{-1} \tag{5}
\end{equation*}
$$

Setting $\alpha=\beta$ in the last equality, we obtain

$$
\begin{equation*}
R_{z}^{(\cdot)}=\alpha P_{I z}^{(\circ)-1} \alpha^{-1} \Rightarrow R_{z}^{(\cdot)-1}=\alpha^{-1} P_{I z}^{(\circ)} \alpha \tag{6}
\end{equation*}
$$

Also from equality (1), $x \circ y=z$ this imply that $x \backslash^{\circ} z=y$ that is

$$
\begin{equation*}
P_{z}^{(\circ)} x=y \tag{7}
\end{equation*}
$$

Using also (3) and (7) gives $P_{z}^{(\circ)} \alpha x=\alpha P_{z}^{(\circ)} x \Rightarrow P_{z}^{(\circ)}=\alpha P_{z}^{(\circ)} \alpha^{-1}$,

$$
\begin{equation*}
P_{z}^{(\circ)}=\alpha P_{z}^{(\circ)} \alpha^{-1} \Rightarrow P_{z}^{(\circ)-1}=\alpha^{-1} P_{z}^{(\circ)-1} \alpha \tag{8}
\end{equation*}
$$

Let $e \in Q$ be the unit element of the middle $\operatorname{Bol} \operatorname{loop}(Q, \circ)$ and any fixed element $z \in Q$, then $z=z \circ e=\alpha(z) \circ \beta e \Rightarrow$ $z=\alpha(z) / I \beta(e) \Rightarrow \alpha(z)=z \cdot I \beta(e) \Rightarrow \alpha(z) / I \beta(e)=z \Rightarrow R_{I \alpha(e)}^{(\cdot)-1} \alpha(z)=z$ thus

$$
\begin{equation*}
\alpha=R_{I \alpha(e)}^{(\cdot)} \tag{9}
\end{equation*}
$$

Since we set $\alpha=\beta$. Here, equality (6) become $R_{z}^{(\cdot)}=R_{I \alpha(e)}^{(\cdot)} P_{I z}^{(\circ)-1} R_{I \alpha(e)}^{(\cdot)-1}$. Now, for any fixed element $z \in Q$, using (6) and (8), we want to show that for every $R_{z}^{(\cdot)} \in R M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$, we have $R_{z}^{(\cdot)} P_{z}^{(\circ)} R_{z}^{(\cdot)-1} \in P M(Q, \circ)$ :
$R_{z}^{(\cdot)} P_{z}^{(\circ)} R_{z}^{(\cdot)-1}=\alpha P_{I z}^{(\circ)-1} \alpha^{-1} P_{z}^{(\circ)} \alpha^{-1} P_{I z}^{(\circ)} \alpha=R_{I \alpha(e)}^{(\cdot)} P_{I z}^{(\circ)-1} R_{I \alpha(e)}^{(\cdot)-1} P_{z}^{(\circ)} R_{I \alpha(e)}^{(\cdot)-1} P_{I z}^{(\circ)} R_{I \alpha(e)}^{(\cdot)}=P_{I z}^{(\circ)-1} P_{z}^{(\circ)} P_{I z}^{(\circ)} \in P M(Q, \circ)$
and using (6) and (8), we also show that for every $R_{z}^{(\cdot)} \in R M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$ we have $R_{z}^{(\cdot)-1} P_{z}^{(\circ)} R_{z}^{(\cdot)} \in$ $P M(Q, \circ):$
$R_{z}^{(\cdot)-1} P_{z}^{(\circ)} R_{z}^{(\cdot)}=\alpha^{-1} P_{I z}^{(\circ)} \alpha P_{z}^{(\circ)} \alpha P_{I z}^{(\circ)-1} \alpha^{-1}=R_{I \alpha(e)}^{(\cdot)-1} P_{I z}^{(\circ)} R_{I \alpha(e)}^{(\cdot)} P_{z}^{(\circ)} R_{I \alpha(e)}^{(\cdot)} P_{I z}^{(\circ)-1} R_{I \alpha(e)}^{(\cdot)-1}=P_{I z}^{(\circ)} P_{z}^{(\circ)} P_{I z}^{(\circ)-1} \in P M(Q, \circ)$

Also as

$$
R_{z}^{(\cdot)} P_{z}^{(\circ)-1} R_{z}^{(\cdot)-1}=\left(R_{z}^{(\cdot)-1} P_{z}^{(\circ)} R_{z}^{(\cdot)}\right)^{-1}=\left(P_{I z}^{(\circ)} P_{z}^{(\circ)} P_{I z}^{(\circ)-1}\right)^{-1} \in P M(Q, \circ)
$$

and

$$
R_{z}^{(\cdot)-1} P_{z}^{(\circ)-1} R_{z}^{(\cdot)}=\left(R_{z}^{(\cdot)} P_{z}^{(\circ)} R_{z}^{(\cdot)-1}\right)^{-1}=\left(P_{I z}^{(\circ)-1} P_{z}^{(\circ)} P_{I z}^{(\circ)}\right)^{-1} \in P M(Q, \circ)
$$

Here, we obtained that $\phi P_{z}^{(\circ)} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)} \phi, \phi P_{z}^{(\circ)-1} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)-1} \phi \in P M(Q, \circ)$ for each $\phi \in R M(Q$, o) we have show that $R M(Q, \cdot) \triangleleft P M(Q, \circ)$.
(v). Here, using equalities (2) and (3) with setting $I y=y$ we obtain $L_{z}^{(\cdot)-1}=\beta^{-1} P_{z}^{(\circ)} \alpha \Rightarrow L_{z}^{(\cdot)-1}=\beta^{-1} P_{z}^{(\circ)} \alpha$ since $\alpha=\beta$, gives

$$
\begin{equation*}
L_{z}^{(\cdot)}=\alpha P_{z}^{(\circ)-1} \alpha^{-1} \tag{10}
\end{equation*}
$$

Let $e \in Q$ be the unit element of the middle $\operatorname{Bol} \operatorname{loop}(Q, \circ)$ and any fixed element $z \in Q$, then $z=e \circ z=\alpha(e) \circ \beta z \Rightarrow$ $z=\alpha(e) / I \beta(z) \Rightarrow \alpha(e)=z \cdot I \beta(z) \Rightarrow \alpha(e) \backslash z=I \beta(z) \Rightarrow L_{\alpha(e)}^{(\cdot)-1} z=I \beta(z)$ thus

$$
\begin{equation*}
\alpha=L_{\alpha(e)}^{(\cdot)} \tag{11}
\end{equation*}
$$

Since we set $\alpha=\beta$. Here, equality (10) become $L_{z}^{(\cdot)}=L_{\alpha(e)}^{(\cdot)} P_{z}^{(\circ)-1} L_{\alpha(e)}^{(\cdot)-1}$. Now, for any fixed element $z \in Q$, using (8) and (10), we want to show that for every $L_{z}^{(\cdot)} \in L M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$, we have $L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1} \in P M(Q, \circ)$ :

$$
L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1}=\alpha P_{z}^{(\circ)-1} \alpha^{-1} P_{z}^{(\circ)} \alpha^{-1} P_{z}^{(\circ)} \alpha=L_{\alpha(e)}^{(\cdot)} P_{z}^{(\circ)-1} L_{\alpha(e)}^{(\cdot)-1} P_{z}^{(\circ)} L_{\alpha(e)}^{(\cdot)-1} P_{z}^{(\circ)} L_{\alpha(e)}^{(\cdot)}=P_{z}^{(\circ)-1} P_{z}^{(\circ)} P_{z}^{(\circ)} \in P M(Q, \circ) .
$$

Also, for any fixed element $z \in Q$, using (8) and (10), we want to show that for every $L_{z}^{(\cdot)} \in L M(Q, \cdot)$ and $P_{z}^{(\circ)} \in$ $P M(Q, \circ)$, we have $L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)} \in P M(Q, \circ)$ :

$$
L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)}=\alpha^{-1} P_{z}^{(\circ)} \alpha P_{z}^{(\circ)} \alpha P_{z}^{(\circ)-1} \alpha^{-1}=L_{\alpha(e)}^{(\cdot)-1} P_{z}^{(\circ)} L_{\alpha(e)}^{(\cdot)} P_{z}^{(\circ)} L_{\alpha(e)}^{(\cdot)} P_{z}^{(\circ)-1} L_{\alpha(e)}^{(\cdot)-1}=P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1} \in P M(Q, \circ) .
$$

Also as

$$
L_{z}^{(\cdot)} P_{z}^{(\circ)-1} L_{z}^{(\cdot)-1}=\left(L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)}\right)^{-1}=\left(P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1}\right)^{-1} \in P M(Q, \circ)
$$

and

$$
L_{z}^{(\cdot)-1} P_{z}^{(\circ)-1} L_{z}^{(\cdot)}=\left(L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1}\right)^{-1}=\left(P_{z}^{(\circ)-1} P_{z}^{(\circ)} P_{z}^{(\circ)}\right)^{-1} \in P M(Q, \circ) .
$$

Here, we obtained that $\Phi P_{z}^{(\circ)} \Phi^{-1}, \Phi^{-1} P_{z}^{(\circ)} \Phi, \Phi P_{z}^{(\circ)-1} \Phi^{-1}, \Phi^{-1} P_{z}^{(\circ)-1} \Phi \in P M(Q, \circ)$ for each $\phi \in L M(Q, \circ)$ we have show that $L M(Q, \cdot) \triangleleft P M(Q, \circ)$.

Corollary 3.4. Let $(Q, o)$ be a middle Bol loop and $(Q,$.$) be the corresponding left Bol loop. If (\alpha, \beta, i)$ is an autotopism of the middle Bol loop $(Q, o)$, then $P M(Q, \circ)=R M(Q,$.$) .$

Proof. Suppose that $(\alpha, \beta, i) \in \operatorname{Aut}(Q, \circ)$. recalling the equality (5) and (6) in Proposition $1, R_{z}^{(\cdot)}=\alpha P_{I z}^{(\circ)-1} \alpha^{-1} \in$ $R M(Q, \cdot)$, this imply that $P M(Q, \circ) \subseteq R M(Q, \cdot)$. Also, using (5) and (6), we have $P_{z}^{(\circ)}=\alpha R_{I z}^{(.)^{-1}} \alpha^{-1} \in P M(Q, \circ)$ this imply that $R M(Q, \cdot) \subseteq P M(Q, \circ)$, so $P M(Q, \cdot)=P M(Q, \circ)$.

Corollary 3.5. Let $(Q, o)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $(\alpha, \beta, i)$ is an autotopism of the middle Bol loop $(Q, o)$, then $P M(Q, \circ)=L M(Q,$.$) .$

Proof. Suppose that $(\alpha, \beta, i) \in \operatorname{Aut}(Q, \circ)$. Using this equality from Proposition $1, P_{z}^{(\circ)}=\beta L_{z}^{(\cdot)} \alpha^{-1} \in P M(Q, \circ)$ and using (10) with Corollary 3.1, gives the desire result.

Corollary 3.6. Let $(Q, o)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $(\alpha, \beta, i)$ is an autotopism of the middle Bol loop $(Q, \circ)$, then $(Q, \cdot)$ is an indexed two.

Proof. Using Lemma 3.1, $L_{z}^{(\cdot)}=R_{I z}^{(\cdot)-1} I \Rightarrow L_{z}^{(\cdot)} a=R_{I z}^{(\cdot)-1} I a$ for any $a \in Q$ this follow the last equality $z \cdot a=I a / I z \Rightarrow$ $I a=(z \cdot a) \cdot I z$ setting $a=y \cdot x$ gives $I(y \cdot x)=(z \cdot y x) \cdot I z \Leftrightarrow I(y \cdot x)=(z \cdot(y \cdot x)) \cdot I z$. setting $z=1$ gives the desire result.

Proposition 3.7. Let $(Q, \circ)$ be a middle Bol loop and $(Q,$.$) be the corresponding left Bol loop. If \Phi$ is an automorphism of the middle Bol loop $(Q, \circ)$, then, the following equalities hold:
(i). $P_{z}^{(\circ)}=\Phi L_{\Phi^{-1}}^{(\cdot)} \Phi^{-1}$.
(ii). $P_{z}^{(\circ)}=\Phi R_{\Phi z}^{(\cdot)-1} I \Phi^{-1}$.
(iii). $L_{z}^{(\cdot)}=R_{\Phi z}^{(\cdot)-1} I$.
(iv). $P M(Q, \circ) \triangleright R M(Q, \cdot$.
(v). $P M(Q, \circ) \triangleright L M(Q, \cdot)$.

Proof. (i). Suppose $\Phi$ is an automorphism of the middle Bol loop, then $\Phi x \circ \Phi y=\Phi(x \circ y)$ for all $x, y \in Q$. Let $\Phi x \circ \Phi y=\Phi(x \circ y)=z$ for any fixed element $z \in Q$. This follow from last equality $\Phi x \circ \Phi y=z \Rightarrow \Phi x \backslash z=\Phi y$ this imply that

$$
\begin{equation*}
P_{z}^{(\circ)} \Phi x=\Phi y \tag{12}
\end{equation*}
$$

. Consider the equality above $\Phi(x \circ y)=z$ for any fixed element $z \in Q$, we have $x \circ y=\Phi^{-1} z \Rightarrow x / I y=\Phi^{-1} z \Rightarrow x=$ $\Phi^{-1} z \cdot I y$, where / is a right division in $(Q, \cdot)$, this follow $\Phi^{-1} z \backslash x=I y \Rightarrow L_{\Phi-1 z}^{(\cdot)-1} x=I y \Rightarrow y=L_{\Phi}^{(\cdot)}$, and using (12) we have $P_{z}^{(\circ)} \Phi x=\Phi L_{\Phi^{-1} z}^{(\cdot)} x \Leftrightarrow P_{z}^{(\circ)}=\Phi L_{\Phi^{-1} z}^{(\cdot)} \Phi^{-1}$.
(ii). Consider the equality above $\Phi(x \circ y)=z$ for any fixed element $z \in Q$, we have $x \circ y=\Phi^{-1} z \Rightarrow x / I y=\Phi^{-1} z \Rightarrow x=$ $\Phi^{-1} z \cdot I y \Leftrightarrow I x=y \cdot \Phi z$, where $/$ is a right division in $(Q, \cdot)$, this last equality imply $I x / \Phi z=y \Rightarrow R_{\Phi z}^{(\cdot)-1} I x=y$, using (12) with the last equality gives $\Phi R_{\Phi z}^{(\cdot)-1} I x=P_{z}^{(\circ)} \Phi x$, hence $P_{z}^{(\circ)}=\Phi R_{\Phi z}^{(\cdot)-1} I \Phi^{-1}$.
(iii). Using (i) and (ii) the proof is obvious.
(iv). Consider the equality in (ii), $\Phi R_{\Phi z}^{(\cdot)-1} I x=P_{z}^{(\circ)} \Phi x$, setting $x=I x$ will give us

$$
\begin{equation*}
\Phi R_{\Phi z}^{(\cdot)-1}=P_{z}^{(\circ)} \Phi \Leftrightarrow R_{\Phi z}^{(\cdot)-1}=\Phi^{-1} P_{z}^{(\circ)} \Phi \Leftrightarrow R_{\Phi z}^{(\cdot)}=\Phi P_{z}^{(\circ)-1} \Phi^{-1} \tag{13}
\end{equation*}
$$

Setting $z=\Phi^{-1} z$, (13) becomes $R_{z}^{(\cdot)}=\Phi P_{\Phi^{-1} z}^{(\circ-1} \Phi^{-1}$. Also $\Phi(x \circ y)=z$ for any fixed $z \in Q$ this follow the last equality $x \circ y=\Phi^{-1} z \Leftrightarrow x \backslash \Phi^{-1} z=y$,

$$
\begin{equation*}
P_{\Phi^{-1} z}^{(\circ)}=y \tag{14}
\end{equation*}
$$

Using (12) and (14), $P_{z}^{(\circ)} \Phi(x)=\Phi P_{\Phi-1 z}^{(\circ)}(x) \Leftrightarrow P_{z}^{(\circ)}=\Phi P_{\Phi^{-1} z_{z}}^{(\circ)} \Phi^{-1} \Leftrightarrow$

$$
\begin{equation*}
P_{z}^{(\circ)-1}=\Phi^{-1} P_{\Phi-1 z}^{(\circ)-1} \Phi \tag{15}
\end{equation*}
$$

Now, for any fixed element $z \in Q$, using (13) and (15), we want to show that for every $R_{z}^{(\cdot)} \in R M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$, we have $R_{z}^{(\cdot)} P_{z}^{(\circ)} R_{z}^{(\cdot)-1} \in P M(Q, \circ):$

$$
R_{z}^{(\cdot)} P_{z}^{(\circ)} R_{z}^{(\cdot)-1}=\Phi P_{\Phi^{-1}(z)}^{(\circ)^{-1}} \Phi^{-1} P_{z}^{(\circ)} \Phi^{-1} P_{\Phi^{-1}(z)}^{(\circ)} \Phi=P_{z}^{(\circ)-1} P_{z}^{(\circ)} P_{z}^{(\circ)} \in P M(Q, \circ)
$$

and

$$
R_{z}^{(\cdot)^{-1}} P_{z}^{(\circ)} R_{z}^{(\cdot)}=\Phi^{-1} P_{\Phi^{-1}(z)}^{(\circ)} \Phi P_{z}^{(\circ)} \Phi P_{\Phi^{-1}(z)}^{(\circ-1} \Phi^{-1}=P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1} \in P M(Q, \circ)
$$

So as

$$
R_{z}^{(\cdot)} P_{z}^{(\circ)^{-1}} R_{z}^{(\cdot))^{-1}}=\left(R_{\Phi^{-1} z}^{(\cdot)} P_{z}^{(\circ)} R_{\Phi^{-1} z}^{(\cdot)-1}\right)^{-1}=\left(P_{z}^{(\circ)^{-1}} P_{z}^{(\circ)} P_{z}^{(\circ)}\right)^{-1} \in P M(Q, \circ)
$$

and

$$
R_{z}^{(\cdot)-1} P_{z}^{(\circ)^{-1}} R_{z}^{(\cdot)}=\left(R_{\Phi-1 z}^{(\cdot)-1} P_{z}^{(\circ)} R_{\Phi^{-1} z}^{(\cdot)}\right)^{-1}=\left(P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1}\right)^{-1} \in P M(Q, \circ)
$$

Now, we have obtained $\phi P_{z}^{(\circ)} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)} \phi, \Phi P_{z}^{(\circ)-1} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)-1} \phi \in P M(Q, \circ)$ for each $\phi \in R M(Q, \cdot)$ we have show that $R M(Q, \cdot) \triangleleft P M(Q, \circ)$.
(v). Consider the equality above $L_{\Phi^{-1} z_{z}}^{(\cdot)} x=I y$, setting $I y=y$ and using (12), gives

$$
\begin{equation*}
P_{z}^{(\circ)}=\Phi L_{\Phi}^{(\cdot)-1} \Phi_{z}^{-1} \Leftrightarrow \Phi^{-1} P_{\Phi z}^{(\circ)-1} \Phi=L_{z}^{(\cdot)} \Leftrightarrow L_{z}^{(\cdot)-1}=\Phi^{-1} P_{\Phi z}^{(\circ)} \Phi \tag{16}
\end{equation*}
$$

Now, for any fixed element $z \in Q$, using (15) and (16), we want to show that for every $L_{z}^{(\cdot)} \in L M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$, we have $L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1} \in P M(Q, \circ)$ :

$$
L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1}=\Phi^{-1} P_{\Phi z}^{(\circ)-1} \Phi P_{z}^{(\circ)} \Phi^{-1} P_{\Phi z}^{(\circ)} \Phi=P_{z}^{(\circ)-1} P_{z}^{(\circ)} P_{z}^{(\circ)} \in P M(Q, \circ)
$$

and for every $L_{z}^{(\cdot)} \in L M(Q, \cdot)$ and $P_{z}^{(\circ)} \in P M(Q, \circ)$, we have $L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)} \in P M(Q, \circ)$ :

$$
L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)}=\Phi^{-1} P_{\Phi z}^{(\circ)} \Phi P_{z}^{(\circ)} \Phi^{-1} P_{\Phi z}^{(\circ)-1} \Phi=P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1} \in P M(Q, \circ) .
$$

So as

$$
L_{z}^{(\cdot)-1} P_{z}^{(\circ)-1} L_{z}^{(\cdot)}=\left(L_{z}^{(\cdot)} P_{z}^{(\circ)} L_{z}^{(\cdot)-1}\right)^{-1}=\left(P_{z}^{(\circ)-1} P_{z}^{(\circ)} P_{z}^{(\circ)}\right)^{-1} \in P M(Q, \circ)
$$

and

$$
L_{z}^{(\cdot)} P_{z}^{(\circ)-1} L_{z}^{(\cdot)-1}=\left(L_{z}^{(\cdot)-1} P_{z}^{(\circ)} L_{z}^{(\cdot)}\right)^{-1}=\left(P_{z}^{(\circ)} P_{z}^{(\circ)} P_{z}^{(\circ)-1}\right)^{-1} \in P M(Q, \circ)
$$

Here, we have obtained $\phi P_{z}^{(\circ)} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)} \phi, \Phi P_{z}^{(\circ)-1} \phi^{-1}, \phi^{-1} P_{z}^{(\circ)-1} \phi \in P M(Q, \circ)$ for each $\phi \in L M(Q, \cdot)$, we have show that $L M(Q, \cdot) \triangleleft P M(Q, \circ)$.

Corollary 3.8. Let $(Q, \circ)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $\Phi$ is an automorphism of the middle Bol loop $(Q, \circ)$, then, $P M(Q, \circ)=R M(Q, \cdot)$.

Proof. Using equality in Proposition 3.7, $P_{z}^{(\circ)}=\Phi R_{\Phi z}^{(\cdot)-1} I \Phi^{-1} \subseteq P M(Q, \circ)$ and using the equality (13), $R_{z}^{(\cdot)}=$ $\Phi P_{\Phi^{-1 z}}^{(\circ)-1} \Phi^{-1} \subseteq R M(Q, \cdot)$. The two equalities imply that $P M(Q, \circ)=R M(Q, \cdot)$.

Corollary 3.9. Let $(Q, \circ)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $\Phi$ is an automorphism of the middle Bol loop $(Q, \circ)$, then, $P M(Q, \circ)=L M(Q, \cdot)$.

Proof. Using equality (16) in Proposition 3.7, the result is obvious.
Corollary 3.10. Let $(Q, \circ)$ be a middle Bol loop and $(Q, \cdot)$ be the corresponding left Bol loop. If $\Phi$ is an automorphism of the middle Bol loop $(Q, \circ)$, then $(Q, \cdot)$ is an indexed two.

Proof. Using Proposition 3.7, with this equality $L_{z}^{(\cdot)}=R_{\Phi z}^{(\cdot)-1} I$, the proof is simple.

## References

[1] H. O. Pflugfelder, Quasigroups and loops: Introduction, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, (1990).
[2] P. Syrbu and I. Grecu, On some groups related to middle Bol loops, Revist? a Stiintica a Universitatii de Stat din Moldova, 7(67)(2013), 10-18.
[3] B. Bejioycob, Ocnobi meopuu keaeuspynn, Jtyn. Mock Ba: Hayka, (1967).
[4] V. A. Shcherbacov, A-nuclei and $A$-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, Moldova, (2011).
[5] A. Gvaramiya, On a class of loops (Russian), Uch. Zapiski MAPL., 375(1971), 25-34.
[6] B. Oosba, Y. T. Oyebo and M. O. Ajetunmobi, Relationship of Loops Induced by Some Groups of Bijections, 37th Annual Conference of the Nigerian Math. Soc., (2018).


[^0]:    * E-mail: benardomth@gmail.com

