

International Journal of Mathematics And its Applications

On Multiplication Groups of Middle Bol Loop Related to Left Bol Loop

B. Osoba^{1,*} and T. Y. Oyebo

1 Department of Physical Science, College of Natural Sciences, Bells University of Technology, Ota, Nigeria.

2 Department of Mathematics, Lagos State University, Ojo, Lagos, Nigeria.

Abstract:In this paper, we show that an element of Bryant-Schneider group of middle Bol loop (Q, \circ) is an automorphism and
pseudo-automorphism. We proved that multiplication groups of middle autotopy nuclei of middle Bol loop (Q, \circ) coincided
with the corresponding left Bol loop (Q, \circ) and their multiplication groups were show to be normal subgroups. It was
found that the corresponding left Bol loop (Q, \circ) is an indexed two.**MSC:**20N02, 20N05.

Keywords: Quasigroup, Loop, Bryant-Schneider group, middle Bol loop. © JS Publication.

Accepted on: 04.12.2018

1. Introduction

A non-empty set Q with binary operation 'A is called a groupoid (Q, A). Let (Q, A) be a groupoid and a be fixed element in Q then the translation maps L_a and R_a are defined by $xL_a = ax$ and $xR_a = xa$ for all $x \in Q$. A groupoid (Q, A) is called quasigroup (Q, \cdot) if the maps $L(a) : G \to G$ and $R(a) : G \to G$ are bijections for all $a \in Q$ and if the equations ax = b and ya = b have respectively unique solutions $x = a \setminus b$ and y = b/a for all $a, b \in Q$. A quasigroup (Q, \cdot) is called a loop if $a \cdot 1 = a = 1 \cdot a$, for all $a \in Q$. The group generated by these mappings are called multiplication group $Mlp(Q, \cdot)$. We donate the groups generated by left (right and middle translations) of a quasigroup (Q, \cdot) by $LM(Q, \cdot)$, $RM(Q, \cdot)$ and $PM(Q, \cdot)$ respectively [4]. A loop (Q, \cdot) is called a middle Bol loop if every isotope of (Q, \cdot) satisfies the identity $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$.(that is if the anti-automorphic inverse property is universal in (Q, \cdot) [3]. A loop (Q, \cdot) is called a middle Bol loop if is satisfies the identity $x(yz \setminus x) = (x/z)(y \setminus x)$. In [5] Gvaramiya proved that a loop (Q, \circ) is middle Bol if there exist a right Bol loop (Q, \cdot) such that $x \circ y = (y \cdot xy^{-1})y$. This imply that if (Q, \circ) is a middle Bol loop and (Q, \cdot) is the corresponding right Bol loop then $x \circ y = x^{-1} \setminus y$ and $x \cdot y = y//x^{-1}$, where $\gamma'(\gamma'/\gamma')$ is the right division in (Q, \circ) . If (Q, \circ) is a middle Bol loop and (Q, \cdot) is the corresponding left Bol loop then $x \circ y = x/y^{-1}$ and $x \cdot y = x//y^{-1}$ where $(\gamma') \gamma'/\gamma'$ is the left right division in (Q, \circ) (respectively, in (Q, \circ)). Let (Q, \cdot) be a loop and the set of autotopisms are defined as follow:

- (α, i, γ) of (Q, \cdot) is called left autotopy nucleus (left A-nucleus).
- (i, β, γ) of (Q, \cdot) is called right autotopy nucleus (right A-nucleus).

E-mail: benardomth@gmail.com

• (α, β, i) of (Q, \cdot) is called middle autotopy nucleus (middle A-nucleus).

Let (Q, \cdot) be a loop, a bijection $\alpha \in Q$ is called pseudo-automorphism such that $(\alpha, \alpha R_g, \alpha R_g)$ is an autotopism where g is a companion in Q. Let (Q, \cdot) be a loop. We donate the following translations $RM(Q, \cdot) = xR_a \mid a \in Q = (x \cdot a \mid x \in Q)$.

$$LM(Q, \cdot) = xL_a \mid a \in Q = (a \cdot x \mid x \in Q).$$
$$PM(Q, \cdot) = xP_as \mid a \in Q = (x \cdot s = a \mid x, s \in Q),$$

where L_a, R_a and P_a are permutations of the set Q. Let (Q, \cdot) be a groupoid (quasigroup, loop) and α, β , and γ be three bijections that map Q onto Q. The triple $\Phi = (\alpha, \beta, \gamma)$ is called an autotopism of (Q, \cdot) if and only if $\alpha x \cdot \beta y = \gamma(x \cdot y)$ for all $x, y \in Q$. If $\alpha = \beta = \gamma$, then Φ is called the automorphism of (Q, \cdot) . Let (Q, \cdot) a loop and $BS(Q, \cdot)$ be the set of all bijections α of Q such that $\langle \alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha \rangle$ is an autotopism of Q for all $f, g \in Q$, then $BS(Q, \cdot)$ is called Bryant-Schneider group of the loop (Q, \cdot) .

2. Preliminaries

Lemma 2.1 ([2]). Let (Q, \cdot) left Bol loop and (Q, \circ) be the corresponding middle Bol loop. Then $(\alpha, \beta, \gamma) \in S_Q^3$ is an autotopism of (Q, \cdot) if and only if $(\gamma, I\beta I, \alpha)$ autotopism (Q, \circ) .

Lemma 2.2 ([6]). Let (Q, \cdot) be any loop. Then (Q, \cdot) is a middle Bol loop if and only if $(IP_x^{-1}, IP_x, IP_xL_x)$ is an autotopism of Q.

Lemma 2.3 ([6]). Let (Q,) be a middle Bol loop. Then $(A, B, C) \in Atp(Q,)$ if and only if $(ICI, IBI, IAI) \in Atp(Q, \cdot)$.

3. Main Results

Theorem 3.1. Let (Q, \cdot) be a symmetric entropy middle Bol loop with $\alpha \in BS(Q, \cdot)$ such that $A = \langle \alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha \rangle$ is an autotopism of Q for some $g \in Q$. Then α^{-1} is an automorphism of Q if Q is of exponent two and $g \in Z$ the center of Q.

Proof. In symmetric entropy of middle Bol loop, $(IP_x^{-1}, IP_x, IP_xL_x) = B = (IL_x, IR_x, IR_xL_x)$ is an autotopism of Q for all $x \in Q$. And $A = \langle \alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha \rangle$ is an autotopism of $BS(Q, \cdot)$ for some $g \in Q$. Consider $AB = \langle \alpha R_{g^{-1}}, \alpha L_{g^{-1}}, \alpha \rangle \langle (IL_x, IR_x, IR_xL_x) \rangle \rangle = \langle \alpha R_{g^{-1}}IL_x, \alpha L_{g^{-1}}IR_x, \alpha IR_xL_x \rangle$ is also an autotopism of Q. Here, $\alpha R_{g^{-1}}IL_x = \alpha^{-1}R_gL_x$. So, $AB = \langle \alpha^{-1}R_gL_x, \alpha^{-1}L_gR_x, \alpha^{-1}R_xL_x \rangle$ if we set g = x, we have $AB = \langle \alpha^{-1}R_x^2, \alpha^{-1}R_x^2, \alpha^{-1}R_x^2 \rangle \in Atp(Q, \cdot)$, since $x \in Z$ (center of Q) that is $L_x = R_x$. And $R_{x^2} = 1$ (that is of exponent 2) for all $x \in Q$, this imply that, $AB = \langle \alpha^{-1}, \alpha^{-1}, \alpha^{-1} \rangle \in Atp(Q, \cdot)$, now for all $x \in Q$ is of exponent 2, $R_{x^2} = L_{x^2} = I$ the identity mapping. Therefor, $AB = \langle \alpha^{-1}, \alpha^{-1}, \alpha^{-1} \rangle$ is also an autotopism of Q. This means that α^{-1} is an automorphism.

Theorem 3.2. Let (Q, \cdot) be a middle Bol loop and (Q, \circ) be the corresponding right Bol loop, if $\alpha \in BS(Q, \circ)$ and $B = \langle \alpha R_g, \alpha L_{g^{-1}}, \alpha \rangle \in Atp(Q, \circ)$ for some $g \in Q$. Then $IP_x^{-1}\alpha$ is a pseudo-automorphism with companion g.

Proof. Suppose that (Q, ·) is a middle Bol loop and $B = \langle \alpha R_g, \alpha L_{g^{-1}}, \alpha \rangle \in BS(Q, \circ)$ is an autotopism of $BS(Q, \circ)$. From the Lemma 2.2, $A = (IP_x^{-1}, IP_x, IP_xL_x)$ is an autotopism of (Q, \cdot) . And $B = \langle \alpha R_g, \alpha L_{g^{-1}}, \alpha \rangle$, from Proposition 1.2 imply that $B = \langle \alpha, I\alpha L_{-g}I, \alpha R_g \rangle$ is an autotopism of $BS(Q, \circ)$. Here, let's consider $AB = \langle IP_x^{-1}\alpha, IP_xI\alpha L_{g^{-1}}I, IP_xL_x\alpha R_g \rangle$ which is also an autotopism of Q. Using AB, we have $(a)IP_x^{-1}\alpha \cdot (b)IP_xI\alpha L_{g^{-1}}I = (ab)IP_xL_x\alpha R_g$ for all $a, b \in Q$, and for some $x \in Q$, this imply that $(a)IP_x^{-1}\alpha \cdot (b^{-1} \setminus x)I\alpha L_g^{-1}I = (ab)IP_xL_x\alpha R_g$. If b = e, we have $(a)IP_x^{-1}\alpha \cdot (x \cdot x^{-1})\alpha L_g = (a)IP_xL_x\alpha R_g$, this imply that $(a)IP_x^{-1}\alpha \cdot g = (a)IP_xL_x\alpha R_g$ this follow from last equality $(a)IP_x^{-1}\alpha R_g = (a)IP_xL_x\alpha R_g$, hence, $IP_x^{-1}\alpha R_g = IP_xL_x\alpha R_g$; $AC = \langle IP_x^{-1}\alpha, IP_x^{-1}\alpha R_g, IP_x^{-1}\alpha R_g \rangle$ is an autotopism of Q for all $x \in Q$. Therefor, $IP_x^{-1}\alpha$ is a right pseudo-automorphism with companion g. □

Lemma 3.3. Let (Q, o) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If (α, β, i) is an autotopism of the middle Bol loop (Q, o), then the following equalities hold

- (*i*). $P_z^{(\circ)} = \beta L_z^{(\cdot)} \alpha^{-1}$.
- (*ii*). $P_z^{(\circ)} = \beta R_{Iz}^{(\cdot)-1} I \alpha^{-1}$.
- (*iii*). $L_z^{(\cdot)} = R_{Iz}^{(\cdot)-1}I$.
- (iv). $PM(Q, \circ) \triangleright RM(Q, \cdot.$
- (v). $PM(Q, \circ) \triangleright LM(Q, \cdot)$.
- *Proof.* (i). Suppose $(\alpha, \beta, i) \in Atp(Q, \circ)$, then

$$\alpha x \circ \beta y = x \circ y = z \tag{1}$$

for any $x, y \in Q$ and a fixed element $z \in Q$. $x \circ y = z \Rightarrow x/Iy = z$ where / is a right division in the left Bol loop (Q, \cdot) this follow from last equality $x = z \cdot Iy \Rightarrow z \setminus x = Iy \Rightarrow$

$$L_z^{(\cdot)-1}x = Iy \tag{2}$$

From (1), $\alpha x \circ \beta y = z$ for any fixed element $z \in Q$, $\alpha x \setminus^{\circ} z = \beta y \Rightarrow P_z^{(\circ)} \alpha x = \beta y \Rightarrow$

$$y = \beta^{-1} P_z^{(\circ)} \alpha x \tag{3}$$

Using (2) and (3), we have $L_z^{(\cdot)-1} = I\beta^{-1}P_z^{(\circ)}\alpha \Rightarrow \beta^{-1}P_z^{(\circ)}\alpha = IL_z^{(\cdot)-1} = L_z^{(\cdot)} \Rightarrow P_z^{(\circ)} = \beta L_z^{(\cdot)}\alpha^{-1}$.

(ii). Also, recall the equality above $x=z\cdot Iy \Rightarrow Ix=y\cdot Iz \Rightarrow Ix/Iz=y \Rightarrow$

$$R_{Iz}^{(\cdot)-1}Ix = y \tag{4}$$

Using equality (3) and (4), we have $\beta^{-1}P_z^{(\circ)}\alpha = R_{Iz}^{(\cdot)-1}I \Rightarrow P_z^{(\circ)} = \beta R_{Iz}^{(\cdot)-1}I\alpha^{-1}, P_z^{(\circ)} = \beta R_{Iz}^{(\cdot)-1}I\alpha^{-1}.$

(iii). From (i) and (ii) we have $L_z^{(\cdot)} = R_z^{(\cdot)-1}I$.

(iv). Using (3) and (4), $P_z^{(\circ)}\alpha x = \beta R_{Iz}^{(\cdot)^{-1}}Ix$. Here, if we set Ix = x, we obtain $P_z^{(\circ)}\alpha = \beta R_{Iz}^{(\cdot)^{-1}} \Rightarrow \beta^{-1}P_z^{(\circ)}\alpha = R_{Iz}^{(\cdot)^{-1}} \Rightarrow \beta^{-1}P_z^{(\circ)}\alpha = R_{Iz}^{(\cdot)^{-1}}$

$$R_z^{(\cdot)} = \beta P_{Iz}^{(\circ)-1} \alpha^{-1} \tag{5}$$

151

Setting $\alpha = \beta$ in the last equality, we obtain

$$R_z^{(\cdot)} = \alpha P_{Iz}^{(\circ)-1} \alpha^{-1} \Rightarrow R_z^{(\cdot)-1} = \alpha^{-1} P_{Iz}^{(\circ)} \alpha \tag{6}$$

Also from equality (1), $x \circ y = z$ this imply that $x \setminus^{\circ} z = y$ that is

$$P_z^{(\circ)} x = y \tag{7}$$

Using also (3) and (7) gives $P_z^{(\circ)}\alpha x = \alpha P_z^{(\circ)}x \Rightarrow P_z^{(\circ)} = \alpha P_z^{(\circ)}\alpha^{-1}$,

$$P_z^{(\circ)} = \alpha P_z^{(\circ)} \alpha^{-1} \Rightarrow P_z^{(\circ)-1} = \alpha^{-1} P_z^{(\circ)-1} \alpha \tag{8}$$

Let $e \in Q$ be the unit element of the middle Bol loop (Q, \circ) and any fixed element $z \in Q$, then $z = z \circ e = \alpha(z) \circ \beta e \Rightarrow z = \alpha(z)/I\beta(e) \Rightarrow \alpha(z) = z \cdot I\beta(e) \Rightarrow \alpha(z)/I\beta(e) = z \Rightarrow R_{I\alpha(e)}^{(\cdot)-1}\alpha(z) = z$ thus

$$\alpha = R_{I\alpha(e)}^{(\cdot)} \tag{9}$$

Since we set $\alpha = \beta$. Here, equality (6) become $R_z^{(\cdot)} = R_{I\alpha(e)}^{(\cdot)} P_{Iz}^{(\circ)-1} R_{I\alpha(e)}^{(\cdot)-1}$. Now, for any fixed element $z \in Q$, using (6) and (8), we want to show that for every $R_z^{(\cdot)} \in RM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $R_z^{(\cdot)} P_z^{(\circ)} R_z^{(\cdot)-1} \in PM(Q, \circ)$:

$$R_{z}^{(\cdot)}P_{z}^{(\circ)}R_{z}^{(\cdot)-1} = \alpha P_{Iz}^{(\circ)-1}\alpha^{-1}P_{z}^{(\circ)}\alpha^{-1}P_{Iz}^{(\circ)}\alpha = R_{I\alpha(e)}^{(\cdot)}P_{Iz}^{(\circ)-1}R_{I\alpha(e)}^{(\circ)-1}P_{z}^{(\circ)}R_{I\alpha(e)}^{(\circ)-1}P_{Iz}^{(\circ)}R_{I\alpha(e)}^{(\circ)} = P_{Iz}^{(\circ)-1}P_{z}^{(\circ)}P_{Iz}^{(\circ)} \in PM(Q, \circ)$$

and using (6) and (8), we also show that for every $R_z^{(\cdot)} \in RM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$ we have $R_z^{(\cdot)-1}P_z^{(\circ)}R_z^{(\cdot)} \in PM(Q, \circ)$:

$$R_{z}^{(\cdot)-1}P_{z}^{(\circ)}R_{z}^{(\cdot)} = \alpha^{-1}P_{Iz}^{(\circ)}\alpha P_{z}^{(\circ)}\alpha P_{Iz}^{(\circ)-1}\alpha^{-1} = R_{I\alpha(e)}^{(\cdot)-1}P_{Iz}^{(\circ)}R_{I\alpha(e)}^{(\cdot)}P_{z}^{(\circ)}R_{I\alpha(e)}^{(\circ)}P_{Iz}^{(\circ)-1}R_{I\alpha(e)}^{(\circ)-1} = P_{Iz}^{(\circ)}P_{z}^{(\circ)}P_{Iz}^{(\circ)-1} \in PM(Q,\circ)$$

Also as

$$R_{z}^{(\cdot)}P_{z}^{(\circ)-1}R_{z}^{(\cdot)-1} = (R_{z}^{(\cdot)-1}P_{z}^{(\circ)}R_{z}^{(\cdot)})^{-1} = (P_{Iz}^{(\circ)}P_{z}^{(\circ)}P_{Iz}^{(\circ)-1})^{-1} \in PM(Q, \circ)$$

and

$$R_z^{(\cdot)-1}P_z^{(\circ)-1}R_z^{(\cdot)} = (R_z^{(\cdot)}P_z^{(\circ)}R_z^{(\cdot)-1})^{-1} = (P_{Iz}^{(\circ)-1}P_z^{(\circ)}P_{Iz}^{(\circ)})^{-1} \in PM(Q, \circ)$$

Here, we obtained that $\phi P_z^{(\circ)} \phi^{-1}, \phi^{-1} P_z^{(\circ)} \phi, \phi P_z^{(\circ)-1} \phi^{-1}, \phi^{-1} P_z^{(\circ)-1} \phi \in PM(Q, \circ)$ for each $\phi \in RM(Q, \circ)$ we have show that $RM(Q, \cdot) \triangleleft PM(Q, \circ)$.

(v). Here, using equalities (2) and (3) with setting Iy = y we obtain $L_z^{(\cdot)-1} = \beta^{-1} P_z^{(\circ)} \alpha \Rightarrow L_z^{(\cdot)-1} = \beta^{-1} P_z^{(\circ)} \alpha$ since $\alpha = \beta$, gives

$$L_z^{(\cdot)} = \alpha P_z^{(\circ)-1} \alpha^{-1} \tag{10}$$

Let $e \in Q$ be the unit element of the middle Bol loop (Q, \circ) and any fixed element $z \in Q$, then $z = e \circ z = \alpha(e) \circ \beta z \Rightarrow z = \alpha(e)/I\beta(z) \Rightarrow \alpha(e) = z \cdot I\beta(z) \Rightarrow \alpha(e) \setminus z = I\beta(z) \Rightarrow L_{\alpha(e)}^{(\cdot)-1}z = I\beta(z)$ thus

$$\alpha = L_{\alpha(e)}^{(\cdot)} \tag{11}$$

Since we set $\alpha = \beta$. Here, equality (10) become $L_z^{(\cdot)} = L_{\alpha(e)}^{(\cdot)} P_z^{(\circ)-1} L_{\alpha(e)}^{(\cdot)-1}$. Now, for any fixed element $z \in Q$, using (8) and (10), we want to show that for every $L_z^{(\cdot)} \in LM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $L_z^{(\cdot)} P_z^{(\circ)} L_z^{(\cdot)-1} \in PM(Q, \circ)$:

$$L_{z}^{(\cdot)}P_{z}^{(\circ)}L_{z}^{(\cdot)-1} = \alpha P_{z}^{(\circ)-1}\alpha^{-1}P_{z}^{(\circ)}\alpha^{-1}P_{z}^{(\circ)}\alpha = L_{\alpha(e)}^{(\cdot)}P_{z}^{(\circ)-1}L_{\alpha(e)}^{(\cdot)-1}P_{z}^{(\circ)}L_{\alpha(e)}^{(\cdot)-1}P_{z}^{(\circ)}L_{\alpha(e)}^{(\cdot)} = P_{z}^{(\circ)-1}P_{z}^{(\circ)}P_{z}^{(\circ)} \in PM(Q, \circ).$$

Also, for any fixed element $z \in Q$, using (8) and (10), we want to show that for every $L_z^{(\cdot)} \in LM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $L_z^{(\cdot)-1}P_z^{(\circ)}L_z^{(\cdot)} \in PM(Q, \circ)$:

$$L_{z}^{(\cdot)-1}P_{z}^{(\circ)}L_{z}^{(\cdot)} = \alpha^{-1}P_{z}^{(\circ)}\alpha P_{z}^{(\circ)}\alpha P_{z}^{(\circ)-1}\alpha^{-1} = L_{\alpha(e)}^{(\cdot)-1}P_{z}^{(\circ)}L_{\alpha(e)}^{(\cdot)}P_{z}^{(\circ)}L_{\alpha(e)}^{(\cdot)}P_{z}^{(\circ)-1}L_{\alpha(e)}^{(\cdot)-1} = P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1} \in PM(Q, \circ).$$

Also as

$$L_{z}^{(\cdot)}P_{z}^{(\circ)-1}L_{z}^{(\cdot)-1} = (L_{z}^{(\cdot)-1}P_{z}^{(\circ)}L_{z}^{(\cdot)})^{-1} = (P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1})^{-1} \in PM(Q, \circ)$$

and

$$L_{z}^{(\cdot)-1}P_{z}^{(\circ)-1}L_{z}^{(\cdot)} = (L_{z}^{(\cdot)}P_{z}^{(\circ)}L_{z}^{(\cdot)-1})^{-1} = (P_{z}^{(\circ)-1}P_{z}^{(\circ)}P_{z}^{(\circ)})^{-1} \in PM(Q, \circ)$$

Here, we obtained that $\Phi P_z^{(\circ)} \Phi^{-1}, \Phi^{-1} P_z^{(\circ)} \Phi, \Phi P_z^{(\circ)-1} \Phi^{-1}, \Phi^{-1} P_z^{(\circ)-1} \Phi \in PM(Q, \circ)$ for each $\phi \in LM(Q, \circ)$ we have show that $LM(Q, \cdot) \triangleleft PM(Q, \circ)$.

Corollary 3.4. Let (Q, o) be a middle Bol loop and (Q, .) be the corresponding left Bol loop. If (α, β, i) is an autotopism of the middle Bol loop (Q, o), then PM(Q, o) = RM(Q, .).

Proof. Suppose that $(\alpha, \beta, i) \in Aut(Q, \circ)$. recalling the equality (5) and (6) in Proposition 1, $R_z^{(\cdot)} = \alpha P_{Iz}^{(\circ)-1} \alpha^{-1} \in RM(Q, \cdot)$, this imply that $PM(Q, \circ) \subseteq RM(Q, \cdot)$. Also, using (5) and (6), we have $P_z^{(\circ)} = \alpha R_{Iz}^{(\cdot)^{-1}} \alpha^{-1} \in PM(Q, \circ)$ this imply that $RM(Q, \cdot) \subseteq PM(Q, \circ)$, so $PM(Q, \cdot) = PM(Q, \circ)$.

Corollary 3.5. Let (Q, o) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If (α, β, i) is an autotopism of the middle Bol loop (Q, o), then PM(Q, o) = LM(Q, .).

Proof. Suppose that $(\alpha, \beta, i) \in Aut(Q, \circ)$. Using this equality from Proposition 1, $P_z^{(\circ)} = \beta L_z^{(\cdot)} \alpha^{-1} \in PM(Q, \circ)$ and using (10) with Corollary 3.1, gives the desire result.

Corollary 3.6. Let (Q, o) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If (α, β, i) is an autotopism of the middle Bol loop (Q, \circ) , then (Q, \cdot) is an indexed two.

Proof. Using Lemma 3.1, $L_z^{(\cdot)} = R_{Iz}^{(\cdot)-1}I \Rightarrow L_z^{(\cdot)}a = R_{Iz}^{(\cdot)-1}Ia$ for any $a \in Q$ this follow the last equality $z \cdot a = Ia/Iz \Rightarrow Ia = (z \cdot a) \cdot Iz$ setting $a = y \cdot x$ gives $I(y \cdot x) = (z \cdot yx) \cdot Iz \Leftrightarrow I(y \cdot x) = (z \cdot (y \cdot x)) \cdot Iz$. setting z = 1 gives the desire result.

Proposition 3.7. Let (Q, \circ) be a middle Bol loop and (Q, .) be the corresponding left Bol loop. If Φ is an automorphism of the middle Bol loop (Q, \circ) , then, the following equalities hold:

- (i). $P_z^{(\circ)} = \Phi L_{\Phi^{-1}z}^{(\cdot)} \Phi^{-1}$.
- (*ii*). $P_z^{(\circ)} = \Phi R_{\Phi_z}^{(\cdot)-1} I \Phi^{-1}$.
- (*iii*). $L_z^{(\cdot)} = R_{\Phi_z}^{(\cdot)-1} I.$
- (iv). $PM(Q, \circ) \triangleright RM(Q, \cdot.$

(v). $PM(Q, \circ) \triangleright LM(Q, \cdot)$.

Proof. (i). Suppose Φ is an automorphism of the middle Bol loop, then $\Phi x \circ \Phi y = \Phi(x \circ y)$ for all $x, y \in Q$. Let $\Phi x \circ \Phi y = \Phi(x \circ y) = z$ for any fixed element $z \in Q$. This follow from last equality $\Phi x \circ \Phi y = z \Rightarrow \Phi x \setminus z = \Phi y$ this imply that

$$P_z^{(\circ)}\Phi x = \Phi y \tag{12}$$

. Consider the equality above $\Phi(x \circ y) = z$ for any fixed element $z \in Q$, we have $x \circ y = \Phi^{-1}z \Rightarrow x/Iy = \Phi^{-1}z \Rightarrow x = \Phi^{-1}z \cdot Iy$, where / is a right division in (Q, \cdot) , this follow $\Phi^{-1}z \setminus x = Iy \Rightarrow L_{\Phi^{-1}z}^{(\cdot)-1}x = Iy \Rightarrow y = L_{\Phi^{-1}z}^{(\cdot)}$ and using (12) we have $P_z^{(\circ)}\Phi x = \Phi L_{\Phi^{-1}z}^{(\cdot)}x \Leftrightarrow P_z^{(\circ)} = \Phi L_{\Phi^{-1}z}^{(\cdot)}\Phi^{-1}$.

- (ii). Consider the equality above $\Phi(x \circ y) = z$ for any fixed element $z \in Q$, we have $x \circ y = \Phi^{-1}z \Rightarrow x/Iy = \Phi^{-1}z \Rightarrow x = \Phi^{-1}z \cdot Iy \Leftrightarrow Ix = y \cdot \Phi z$, where / is a right division in (Q, \cdot) , this last equality imply $Ix/\Phi z = y \Rightarrow R_{\Phi z}^{(\cdot)-1}Ix = y$, using (12) with the last equality gives $\Phi R_{\Phi z}^{(\cdot)-1}Ix = P_z^{(\circ)}\Phi x$, hence $P_z^{(\circ)} = \Phi R_{\Phi z}^{(\cdot)-1}I\Phi^{-1}$.
- (iii). Using (i) and (ii) the proof is obvious.
- (iv). Consider the equality in (ii), $\Phi R_{\Phi z}^{(\cdot)-1}Ix = P_z^{(\circ)}\Phi x$, setting x = Ix will give us

$$\Phi R_{\Phi z}^{(\cdot)-1} = P_z^{(\circ)} \Phi \Leftrightarrow R_{\Phi z}^{(\cdot)-1} = \Phi^{-1} P_z^{(\circ)} \Phi \Leftrightarrow R_{\Phi z}^{(\cdot)} = \Phi P_z^{(\circ)-1} \Phi^{-1}$$
(13)

Setting $z = \Phi^{-1}z$, (13) becomes $R_z^{(\cdot)} = \Phi P_{\Phi^{-1}z}^{(\circ)-1} \Phi^{-1}$. Also $\Phi(x \circ y) = z$ for any fixed $z \in Q$ this follow the last equality $x \circ y = \Phi^{-1}z \Leftrightarrow x \setminus \Phi^{-1}z = y$,

$$P_{\Phi^{-1}z}^{(\circ)} = y \tag{14}$$

Using (12) and (14), $P_z^{(\circ)}\Phi(x) = \Phi P_{\Phi^{-1}z}^{(\circ)}(x) \Leftrightarrow P_z^{(\circ)} = \Phi P_{\Phi^{-1}z}^{(\circ)}\Phi^{-1} \Leftrightarrow$

$$P_z^{(\circ)-1} = \Phi^{-1} P_{\Phi^{-1}z}^{(\circ)-1} \Phi \tag{15}$$

Now, for any fixed element $z \in Q$, using (13) and (15), we want to show that for every $R_z^{(\cdot)} \in RM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $R_z^{(\cdot)}P_z^{(\circ)}R_z^{(\cdot)-1} \in PM(Q, \circ)$:

$$R_{z}^{(\cdot)}P_{z}^{(\circ)}R_{z}^{(\cdot)-1} = \Phi P_{\Phi^{-1}(z)}^{(\circ)-1}\Phi^{-1}P_{z}^{(\circ)}\Phi^{-1}P_{\Phi^{-1}(z)}^{(\circ)}\Phi = P_{z}^{(\circ)-1}P_{z}^{(\circ)}P_{z}^{(\circ)} \in PM(Q,\circ)$$

and

$$R_{z}^{(\cdot)^{-1}}P_{z}^{(\circ)}R_{z}^{(\cdot)} = \Phi^{-1}P_{\Phi^{-1}(z)}^{(\circ)}\Phi P_{z}^{(\circ)}\Phi P_{\Phi^{-1}(z)}^{(\circ)-1}\Phi^{-1} = P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1} \in PM(Q, \circ)$$

So as

$$R_z^{(\cdot)} P_z^{(\circ)^{-1}} R_z^{(\cdot)^{-1}} = (R_{\Phi^{-1}z}^{(\cdot)} P_z^{(\circ)} R_{\Phi^{-1}z}^{(\cdot)-1})^{-1} = (P_z^{(\circ)^{-1}} P_z^{(\circ)} P_z^{(\circ)})^{-1} \in PM(Q, \circ)$$

and

$$R_{z}^{(\cdot)-1}P_{z}^{(\circ)^{-1}}R_{z}^{(\cdot)} = (R_{\Phi^{-1}z}^{(\cdot)-1}P_{z}^{(\circ)}R_{\Phi^{-1}z}^{(\cdot)})^{-1} = (P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1})^{-1} \in PM(Q, \circ)$$

Now, we have obtained $\phi P_z^{(\circ)} \phi^{-1}, \phi^{-1} P_z^{(\circ)} \phi, \Phi P_z^{(\circ)-1} \phi^{-1}, \phi^{-1} P_z^{(\circ)-1} \phi \in PM(Q, \circ)$ for each $\phi \in RM(Q, \cdot)$ we have show that $RM(Q, \cdot) \triangleleft PM(Q, \circ)$.

(v). Consider the equality above $L_{\Phi^{-1}z}^{(\cdot)-1}x = Iy$, setting Iy = y and using (12), gives

$$P_{z}^{(\circ)} = \Phi L_{\Phi^{-1}z}^{(\circ)-1} \Phi^{-1} \Leftrightarrow \Phi^{-1} P_{\Phi z}^{(\circ)-1} \Phi = L_{z}^{(\circ)} \Leftrightarrow L_{z}^{(\circ)-1} = \Phi^{-1} P_{\Phi z}^{(\circ)} \Phi$$
(16)

Now, for any fixed element $z \in Q$, using (15) and (16), we want to show that for every $L_z^{(\cdot)} \in LM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $L_z^{(\cdot)}P_z^{(\circ)}L_z^{(\cdot)-1} \in PM(Q, \circ)$:

$$L_{z}^{(\cdot)}P_{z}^{(\circ)}L_{z}^{(\cdot)-1} = \Phi^{-1}P_{\Phi_{z}}^{(\circ)-1}\Phi P_{z}^{(\circ)}\Phi^{-1}P_{\Phi_{z}}^{(\circ)}\Phi = P_{z}^{(\circ)-1}P_{z}^{(\circ)}P_{z}^{(\circ)} \in PM(Q, \circ)$$

and for every $L_z^{(\cdot)} \in LM(Q, \cdot)$ and $P_z^{(\circ)} \in PM(Q, \circ)$, we have $L_z^{(\cdot)-1}P_z^{(\circ)}L_z^{(\cdot)} \in PM(Q, \circ)$:

$$L_{z}^{(\circ)-1}P_{z}^{(\circ)}L_{z}^{(\circ)} = \Phi^{-1}P_{\Phi z}^{(\circ)}\Phi P_{z}^{(\circ)}\Phi^{-1}P_{\Phi z}^{(\circ)-1}\Phi = P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1} \in PM(Q,\circ).$$

So as

$$L_{z}^{(\cdot)-1}P_{z}^{(\circ)-1}L_{z}^{(\cdot)} = (L_{z}^{(\cdot)}P_{z}^{(\circ)}L_{z}^{(\cdot)-1})^{-1} = (P_{z}^{(\circ)-1}P_{z}^{(\circ)}P_{z}^{(\circ)})^{-1} \in PM(Q, \circ)$$

and

$$L_{z}^{(\cdot)}P_{z}^{(\circ)-1}L_{z}^{(\cdot)-1} = (L_{z}^{(\cdot)-1}P_{z}^{(\circ)}L_{z}^{(\cdot)})^{-1} = (P_{z}^{(\circ)}P_{z}^{(\circ)}P_{z}^{(\circ)-1})^{-1} \in PM(Q, \circ)$$

Here, we have obtained $\phi P_z^{(\circ)} \phi^{-1}, \phi^{-1} P_z^{(\circ)} \phi, \Phi P_z^{(\circ)-1} \phi^{-1}, \phi^{-1} P_z^{(\circ)-1} \phi \in PM(Q, \circ)$ for each $\phi \in LM(Q, \cdot)$, we have show that $LM(Q, \cdot) \triangleleft PM(Q, \circ)$.

Corollary 3.8. Let (Q, \circ) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If Φ is an automorphism of the middle Bol loop (Q, \circ) , then, $PM(Q, \circ) = RM(Q, \cdot)$.

Proof. Using equality in Proposition 3.7, $P_z^{(\circ)} = \Phi R_{\Phi z}^{(\cdot)-1} I \Phi^{-1} \subseteq PM(Q, \circ)$ and using the equality (13), $R_z^{(\cdot)} = \Phi P_{\Phi^{-1}z}^{(\circ)-1} \Phi^{-1} \subseteq RM(Q, \cdot)$. The two equalities imply that $PM(Q, \circ) = RM(Q, \cdot)$.

Corollary 3.9. Let (Q, \circ) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If Φ is an automorphism of the middle Bol loop (Q, \circ) , then, $PM(Q, \circ) = LM(Q, \cdot)$.

Proof. Using equality (16) in Proposition 3.7, the result is obvious.

Corollary 3.10. Let (Q, \circ) be a middle Bol loop and (Q, \cdot) be the corresponding left Bol loop. If Φ is an automorphism of the middle Bol loop (Q, \circ) , then (Q, \cdot) is an indexed two.

Proof. Using Proposition 3.7, with this equality $L_z^{(\cdot)} = R_{\Phi_z}^{(\cdot)-1}I$, the proof is simple.

References

- H. O. Pflugfelder, Quasigroups and loops: Introduction, Sigma Series in Pure Mathematics, Heldermann Verlag, Berlin, (1990).
- [2] P. Syrbu and I. Grecu, On some groups related to middle Bol loops, Revist? a Stiintica a Universitatii de Stat din Moldova, 7(67)(2013), 10-18.
- [3] B. Bejioycob, Ocnobi meopuu keaeuspynn, Jtyn. Mock Ba: Hayka, (1967).
- [4] V. A. Shcherbacov, A-nuclei and A-centers of quasigroup, Institute of mathematics and computer Science Academiy of Science of Moldova Academiei str. 5, Chisinau, Moldova, (2011).
- [5] A. Gvaramiya, On a class of loops (Russian), Uch. Zapiski MAPL., 375(1971), 25-34.
- [6] B. Oosba, Y. T. Oyebo and M. O. Ajetunmobi, Relationship of Loops Induced by Some Groups of Bijections, 37th Annual Conference of the Nigerian Math. Soc., (2018).