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1. Introduction

We are concerned with finite, connected, undirected graphs having no loops and multiple edges. Let V (G) and E(G) denote

the vertex set and edge set of a graph G respectively. Let dG(v) denote the degree of a vertex v in G. Let ∆(G)(δ(G))

denote the maximum (minimum) degree among the vertices of G. The Revan vertex degree of v in G is defined as rG(v) =

∆(G) + δ(G) − dG(v). Any undefined term here may be found in [1]. A topological index of a graph is a graph invariant

which is a numeric value and applicable in Chemistry, see [2, 3]. Kulli proposed the square ve-degree index, defined as [4]

Qve (G) =
∑

uv∈E(G)

[dve (u)− dve (v)]2 .

In recent years, some novel variants of square indices were introduced and studied such as square reverse index [5], square

KV index [6]. We now propose the square Revan index, defined as

QR (G) =
∑

uv∈E(G)

[rG (u)− rG (v)]2 . (1)

Very recently, some noval variants of Revan indices [7] were introduced and studied such as hyper Revan indices [8], sum

connectivity Revan index [9], product connectivity index [10], multiplicative Revan indices [11], multiplicative connectivity

Revan indices [12, 13]. Considering the square Revan index, we introduce the square Revan polynomial of G, defined as

QR (G, x) =
∑

uv∈E(G)

x[rG(u)−rG(v)]2 . (2)

Recently, some polynomials were studied in [14–20]. In this paper, the square Revan index and square Revan polynomial

of certain benzenoid systems are determined. A study of benzenoids has received much attention in Mathematical and

Chemical literature, see [20, 21].
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2. Triangular Benzenoids

The family of triangular benzenoids is denoted by Tp, where p is the number of hexagons in the base graph. Then |V (Tp)| =

p2 + 4p + 1 and |E (Tp)| = 3
2
p (p+ 3). The graph Tp is shown in Figure 1. From Figure 1, we see that ∆(Tp) = 3 and

δ(Tp) = 2. Thus rTp (u) = ∆ (Tp) + δ (Tp)− dTp (u) = 5− dTp (u).

Figure 1. Graph T4

By calculation in Tp, there are three types of edges based on the degree of end vertices of each edge as given in Table 1.

dTp (u) , dTp (v) \uv ∈ E (Tp) (2, 2) (2, 3) (3, 3)

Number of edges 6 6p− 6 3
2
p(p− 1)

Table 1. Edge partition of Tp

Thus, in Tp, there are three types of Revan edges as given in Table 2.

dTp (u) , dTp (v) \uv ∈ E (Tp) (3, 3) (3, 2) (2, 2)

Number of edges 6 6p− 6 3
2
p(p− 1)

Table 2. Revan edge partition of Tp

In the following theorem, we determine the square Revan index of Tp.

Theorem 2.1. The square Revan index of a triangular benzenoid Tp is QR(Tp) = 6p− 6.

Proof. By using equation (1) and Table 2, the square Revan index of Tp is

QR (Tp) =
∑

uv∈E(G)

[rG (u)− rG (v)]2

= (3− 3)2 6 + (3− 2)2 (6p− 6) + (2− 2)2
3

2
p (p− 1)

= 6p− 6.

In the following theorem, we compute the square Revan polynomial of Tp.

Theorem 2.2. The square Revan polynomial of triangular benzenoid Tp is QR (Tp, x) = (6p− 6)x1 + 3
2

(
p2 − p+ 4

)
x0.

Proof. By using equation (2) and Table 2, the square Revan polynomial of Tp is

QR (Tp, x) =
∑

uv∈E(G)

x[rG(u)−rG(v)]2

= 6x(3−3)2 + (6p− 6)x(3−2)2 +
3

2
p (p− 1)x(2−2)2

= (6p− 6)x1 +
3

2

(
p2 − p+ 4

)
x0.
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3. Benzenoid Rhombus

The family benzenoid rhombus is symbolized by RP and Rp is obtained from the copies of a triangular benzenoid Tp by

identifying hexagons in one of their base rows. Then |V (Rp)| = 2p2+4p and |E (Rp)| = 3p2+4p−1. The graph R4 is depicted

in Figure 2. From Figure 2, one can see that ∆(Tp) = 3 and δ(Tp) = 2. Thus rRp (u) = ∆ (Rp)+δ (Rp)−dRp (u) = 5−dRp (u).

Figure 2. Graph R4

By calculation in Rp, there are three types of edges based on the degree of and vertices of each edge as given in Table 3.

dRp (u) , dRp (v) \uv ∈ E (Rp) (2, 2) (2, 3) (3, 3)

Number of edges 6 8p− 8 3p2−4p+1

Table 3. Revan edge partition Rp

Therefore, in Rp, there are three types of Revan edges as given in Table 4.

rRp (u) , rRp (v) \uv ∈ E (Rp) (3, 3) (3, 2) (2, 2)

Number of edges 6 8p− 8 3p2−4p+1

Table 4. Revan edge partition Rp

In the following theorem, we compute the square Revan index of Rp.

Theorem 3.1. The square Revan index of a benzenoid rhombus Rp is QR(Rp) = 8p− 8.

Proof. From equation (1) and Table 4, the square Revan index of Rp is

QR (Rp) =
∑

uv∈E(G)

[rG (u)− rG (v)]2

= (3− 3)2 6 + (3− 2)2 (8p− 8) + (2− 2)2
(
3p2 − 4p+ 1

)
= 8p− 8

In the following theorem, we compute the square Revan polynomial of Rp.

Theorem 3.2. The square Revan polynomial of a benzenoid rhombus Rp is QR (Rp, x) = (8p− 8)x1 +
(
3p2 − 4p+ 7

)
x0.

Proof. From equation (2) and Table 4, the square Revan polynomial of Rp is

QR (Rp, x) =
∑

uv∈E(G)

x[rG(u)−rG(v)]2
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= 6x(3−3)2 + (8p− 8)x(3−2)2 +
(
3p2 − 4p+ 1

)
x(2−2)2

= (8p− 8)x1 +
(
3p2 − 4p+ 7

)
x0.

4. Benzenoid Hourglass

We consider the graph of benzonoid hourglass. The family of benzenoid hourglass is denoted by Xp and it is obtained

from two copies of a triangular benzenoid Tp by overlapping hexagons. Then |V (Xp)| = 2
(
p2 + 4p− 2

)
and |E (Xp)| =

3p2 + 9p − 4. The graph Xp is presented in Figure 3. From Figure 3, we see that ∆(Xp) = 3 and δ(Xp) = 2. Thus

rXp (u) = ∆ (Xp) + δ (Xp)− dXp (u) = 5− dXp (u).

Figure 3. Graph Xp

Let G = Xp. In G, there are three types of edges as given in Table 5.

dG (u) , dG (v) \uv ∈ E (G) (2, 2) (2, 3) (3, 3)

Number of edges 8 12p− 16 3p2−3p+4

Table 5. Edge partition of Xp

Thus we obtain that G has three types of Revan edges as given in Table 6.

dG (u) , dG (v) \uv ∈ E (G) (3, 3) (3, 2) (3, 3)

Number of edges 8 12p− 16 3p2−3p+4

Table 6. Revan edge partition of Xp

In the following theorem, we compute the square Revan index of Xp.

Theorem 4.1. The square Revan index of a benzenoid hourglass Xp is QR(Xp) = 12p− 16.

Proof. By using equation (1) and Table 6, the square Revan index of Xp is

QR (Xp) =
∑

uv∈E(G)

[rG (u)− rG (v)]2

= (3− 3)2 8 + (3− 2)2 (12p− 16) + (2− 2)2
(
3p2 − 3p+ 4

)
= 12p− 16.

In the following theorem, we compute the square Revan polynomial of Xp.

216



V. R. Kulli

Theorem 4.2. The square Revan polynomial of a benzenoid hourglass Xp is QR (Xp, x) = (12p− 16)x1+
(
3p2 − 3p+ 16

)
x0.

Proof. From equation (2) and Table 6, the square Revan polynomial of Xp is

QR (Xp, x) =
∑

uv∈E(G)

x[rG(u)−rG(v)]2

= 8x(3−3)2 + (12p− 16)x(3−2)2 +
(
3p2 − 3p+ 4

)
x(2−2)2

= (12p− 16)x1 +
(
3p2 − 3p+ 12

)
x0.

5. Jagged Rectangle Benzenoid Systems

We consider the family of a jagged rectangle benzenoid system, and it is denoted by Bm,n, m,n ≥ N . Three graphs of Bm,n

are depicted in Figure 4. The by calculation, we obtain that |V (Bm,n)| = 4mn+4m+2n−2 and |E(Bm,n)| = 6mn+5m+n−4.

Figure 4. Graphs of Bm,n

Let G = Bm,n. From Figure 4, we see that ∆(G) = 3 and δ(G) = 2. Then rG (u) = ∆ (G) + δ (G)− dG (u) = 5− dG (u). A

graph G has three types of edges as given in Table 7.

dG (u) , dG (v) \uv ∈ E (G) (2, 2) (2, 3) (3, 3)

Number of edges 2n+ 4 4m+ 4n− 4 6mn+m− 5n− 4

Table 7. Edge partition of Bm,n

Therefore, we obtain that G has 3 types of Revan edges as given in Table 8.

dG (u) , dG (v) \uv ∈ E (G) (3, 3) (3, 2) (2, 2)

Number of edges 2n+ 4 4m+ 4n− 4 6mn+m− 5n− 4

Table 8. Revan edge partition of Bm,n

In the following theorem, we determine the square Revan index of Bm,n.

Theorem 5.1. The square Revan index of a jagged rectangle benzenoid system Bm,n is QR(Bm,n) = 4m+ 4n− 4.

Proof. From equation (1) and Table 4, the square Revan index of Bm,n is

QR (Bm,n) =
∑

uv∈E(G)

[rG (u)− rG (v)]2

= (3− 3)2 (2n+ 4) + (3− 2)2 (4m+ 4n− 4) + (2− 2)2 (6mn+m− 5n− 4)

= 4m+ 4n− 4.
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In the following theorem, we determine the square Revan polynomial of Bm,n.

Theorem 5.2. The square Revan polynomial of a jagged rectangle benzenoid system Bm,n is QR (Bm,n, x) =

(4m+ 4n− 4)x1 + (6mn+m− 3n)x0.

Proof. By using equation (2) and Table 4, the square Revan polynomial of Bm,n is

QR (Bm,n, x) =
∑

uv∈E(G)

x[rG(u)−rG(v)]2

= (2n+ 4)x(3−3)2 + (4m+ 4n− 4)x(3−2)2 + (6mn+m− 5n− 4)x(2−2)2

= (4m+ 4n− 4)x1 + (6mn+m− 3n)x0

=

(
1 +

2
√

2

3
+

6
√

6

5
+

12
√

3

7

)
2n+2 +

(
1− 12

√
6

5
− 24

√
3

7

)
.
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