# Computing Square Revan Index and its Polynomial of Certain Benzenoid Systems 

V. R. Kulli ${ }^{1, *}$<br>1 Department of Mathematics, Gulbarga University, Gulbarga, Karnataka, India.


#### Abstract

We propose the square Revan index and square Revan polynomial of a graph. In this paper, exact formulas for the square Revan index and square Revan polynomial of certain benzenoids of chemical importance like triangular benzenoids, bonzenoid rhombus, benzenoid hourglass and jagged rectanagle benzenoid systems.

\section*{MSC: $\quad 05 \mathrm{C} 07,05 \mathrm{C} 12,05 \mathrm{C} 35$}


Keywords: Square Revan index, square Revan polynomial, benzenoid.

## 1. Introduction

We are concerned with finite, connected, undirected graphs having no loops and multiple edges. Let $V(G)$ and $E(G)$ denote the vertex set and edge set of a graph $G$ respectively. Let $d_{G}(v)$ denote the degree of a vertex $v$ in $G$. Let $\Delta(G)(\delta(G))$ denote the maximum (minimum) degree among the vertices of $G$. The Revan vertex degree of v in G is defined as $r_{G}(v)=$ $\Delta(G)+\delta(G)-d_{G}(v)$. Any undefined term here may be found in [1]. A topological index of a graph is a graph invariant which is a numeric value and applicable in Chemistry, see [2, 3]. Kulli proposed the square ve-degree index, defined as [4]

$$
Q_{v e}(G)=\sum_{u v \in E(G)}\left[d_{v e}(u)-d_{v e}(v)\right]^{2} .
$$

In recent years, some novel variants of square indices were introduced and studied such as square reverse index [5], square KV index [6]. We now propose the square Revan index, defined as

$$
\begin{equation*}
Q R(G)=\sum_{u v \in E(G)}\left[r_{G}(u)-r_{G}(v)\right]^{2} . \tag{1}
\end{equation*}
$$

Very recently, some noval variants of Revan indices [7] were introduced and studied such as hyper Revan indices [8], sum connectivity Revan index [9], product connectivity index [10], multiplicative Revan indices [11], multiplicative connectivity Revan indices $[12,13]$. Considering the square Revan index, we introduce the square Revan polynomial of $G$, defined as

$$
\begin{equation*}
Q R(G, x)=\sum_{u v \in E(G)} x^{\left[r_{G}(u)-r_{G}(v)\right]^{2}} . \tag{2}
\end{equation*}
$$

Recently, some polynomials were studied in [14-20]. In this paper, the square Revan index and square Revan polynomial of certain benzenoid systems are determined. A study of benzenoids has received much attention in Mathematical and Chemical literature, see [20, 21].

[^0]
## 2. Triangular Benzenoids

The family of triangular benzenoids is denoted by $T_{p}$, where $p$ is the number of hexagons in the base graph. Then $\left|V\left(T_{p}\right)\right|=$ $p^{2}+4 p+1$ and $\left|E\left(T_{p}\right)\right|=\frac{3}{2} p(p+3)$. The graph $T_{p}$ is shown in Figure 1. From Figure 1, we see that $\Delta\left(T_{p}\right)=3$ and $\delta\left(T_{p}\right)=2$. Thus $r_{T_{p}}(u)=\Delta\left(T_{p}\right)+\delta\left(T_{p}\right)-d_{T_{p}}(u)=5-d_{T_{p}}(u)$.


Figure 1. Graph $T_{4}$

By calculation in $T_{p}$, there are three types of edges based on the degree of end vertices of each edge as given in Table 1.

| $d_{T_{p}}(u), d_{T_{p}}(v) \backslash u v \in E\left(T_{p}\right)$ | $(2,2)$ | $(2,3)$ | $(3,3)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 6 | $6 p-6$ | $\frac{3}{2} p(p-1)$ |

Table 1. Edge partition of $T_{p}$

Thus, in $T_{p}$, there are three types of Revan edges as given in Table 2.

| $d_{T_{p}}(u), d_{T_{p}}(v) \backslash u v \in E\left(T_{p}\right)$ | $(3,3)$ | $(3,2)$ | $(2,2)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 6 | $6 p-6$ | $\frac{3}{2} p(p-1)$ |

Table 2. Revan edge partition of $T_{p}$

In the following theorem, we determine the square Revan index of $T_{p}$.
Theorem 2.1. The square Revan index of a triangular benzenoid $T_{p}$ is $Q R\left(T_{p}\right)=6 p-6$.

Proof. By using equation (1) and Table 2, the square Revan index of $T_{p}$ is

$$
\begin{aligned}
Q R\left(T_{p}\right) & =\sum_{u v \in E(G)}\left[r_{G}(u)-r_{G}(v)\right]^{2} \\
& =(3-3)^{2} 6+(3-2)^{2}(6 p-6)+(2-2)^{2} \frac{3}{2} p(p-1) \\
& =6 p-6 .
\end{aligned}
$$

In the following theorem, we compute the square Revan polynomial of $T_{p}$.
Theorem 2.2. The square Revan polynomial of triangular benzenoid $T_{p}$ is $Q R\left(T_{p}, x\right)=(6 p-6) x^{1}+\frac{3}{2}\left(p^{2}-p+4\right) x^{0}$.
Proof. By using equation (2) and Table 2, the square Revan polynomial of $T_{p}$ is

$$
\begin{aligned}
Q R\left(T_{p}, x\right) & =\sum_{u v \in E(G)} x^{\left[r_{G}(u)-r_{G}(v)\right]^{2}} \\
& =6 x^{(3-3)^{2}}+(6 p-6) x^{(3-2)^{2}}+\frac{3}{2} p(p-1) x^{(2-2)^{2}} \\
& =(6 p-6) x^{1}+\frac{3}{2}\left(p^{2}-p+4\right) x^{0} .
\end{aligned}
$$

## 3. Benzenoid Rhombus

The family benzenoid rhombus is symbolized by $R_{P}$ and $R_{p}$ is obtained from the copies of a triangular benzenoid $T_{p}$ by identifying hexagons in one of their base rows. Then $\left|V\left(R_{p}\right)\right|=2 p^{2}+4 p$ and $\left|E\left(R_{p}\right)\right|=3 p^{2}+4 p-1$. The graph $R_{4}$ is depicted in Figure 2. From Figure 2, one can see that $\Delta\left(T_{p}\right)=3$ and $\delta\left(T_{p}\right)=2$. Thus $r_{R_{p}}(u)=\Delta\left(R_{p}\right)+\delta\left(R_{p}\right)-d_{R_{p}}(u)=5-d_{R_{p}}(u)$.


## Figure 2. Graph $R_{4}$

By calculation in $R_{p}$, there are three types of edges based on the degree of and vertices of each edge as given in Table 3 .

| $d_{R_{p}}(u), d_{R_{p}}(v) \backslash u v \in E\left(R_{p}\right)$ | $(2,2)$ | $(2,3)$ | $(3,3)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 6 | $8 p-8$ | $3 p^{2}-4 p+1$ |

Table 3. Revan edge partition $R_{p}$

Therefore, in $R_{p}$, there are three types of Revan edges as given in Table 4.

| $r_{R_{p}}(u), r_{R_{p}}(v) \backslash u v \in E\left(R_{p}\right)$ | $(3,3)$ | $(3,2)$ | $(2,2)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 6 | $8 p-8$ | $3 p^{2}-4 p+1$ |

Table 4. Revan edge partition $R_{p}$

In the following theorem, we compute the square Revan index of $R_{p}$.

Theorem 3.1. The square Revan index of a benzenoid rhombus $R_{p}$ is $Q R\left(R_{p}\right)=8 p-8$.
Proof. From equation (1) and Table 4, the square Revan index of $R_{p}$ is

$$
\begin{aligned}
Q R\left(R_{p}\right) & =\sum_{u v \in E(G)}\left[r_{G}(u)-r_{G}(v)\right]^{2} \\
& =(3-3)^{2} 6+(3-2)^{2}(8 p-8)+(2-2)^{2}\left(3 p^{2}-4 p+1\right) \\
& =8 p-8
\end{aligned}
$$

In the following theorem, we compute the square Revan polynomial of $R_{p}$.
Theorem 3.2. The square Revan polynomial of a benzenoid rhombus $R_{p}$ is $Q R\left(R_{p}, x\right)=(8 p-8) x^{1}+\left(3 p^{2}-4 p+7\right) x^{0}$.
Proof. From equation (2) and Table 4, the square Revan polynomial of $R_{p}$ is

$$
Q R\left(R_{p}, x\right)=\sum_{u v \in E(G)} x^{\left[r_{G}(u)-r_{G}(v)\right]^{2}}
$$

$$
\begin{aligned}
& =6 x^{(3-3)^{2}}+(8 p-8) x^{(3-2)^{2}}+\left(3 p^{2}-4 p+1\right) x^{(2-2)^{2}} \\
& =(8 p-8) x^{1}+\left(3 p^{2}-4 p+7\right) x^{0} .
\end{aligned}
$$

## 4. Benzenoid Hourglass

We consider the graph of benzonoid hourglass. The family of benzenoid hourglass is denoted by $X_{p}$ and it is obtained from two copies of a triangular benzenoid $T_{p}$ by overlapping hexagons. Then $\left|V\left(X_{p}\right)\right|=2\left(p^{2}+4 p-2\right)$ and $\left|E\left(X_{p}\right)\right|=$ $3 p^{2}+9 p-4$. The graph $X_{p}$ is presented in Figure 3. From Figure 3, we see that $\Delta\left(X_{p}\right)=3$ and $\delta\left(X_{p}\right)=2$. Thus $r_{X_{p}}(u)=\Delta\left(X_{p}\right)+\delta\left(X_{p}\right)-d_{X_{p}}(u)=5-d_{X_{p}}(u)$.


Figure 3. Graph $X_{p}$

Let $G=X_{p}$. In $G$, there are three types of edges as given in Table 5 .

| $d_{G}(u), d_{G}(v) \backslash u v \in E(G)$ | $(2,2)$ | $(2,3)$ | $(3,3)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 8 | $12 p-16$ | $3 p^{2}-3 p+4$ |

Table 5. Edge partition of $X_{p}$

Thus we obtain that $G$ has three types of Revan edges as given in Table 6 .

| $d_{G}(u), d_{G}(v) \backslash u v \in E(G)$ | $(3,3)$ | $(3,2)$ | $(3,3)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | 8 | $12 p-16$ | $3 p^{2}-3 p+4$ |

Table 6. Revan edge partition of $X_{p}$

In the following theorem, we compute the square Revan index of $X_{p}$.
Theorem 4.1. The square Revan index of a benzenoid hourglass $X_{p}$ is $Q R\left(X_{p}\right)=12 p-16$.

Proof. By using equation (1) and Table 6, the square Revan index of $X_{p}$ is

$$
\begin{aligned}
Q R\left(X_{p}\right) & =\sum_{u v \in E(G)}\left[r_{G}(u)-r_{G}(v)\right]^{2} \\
& =(3-3)^{2} 8+(3-2)^{2}(12 p-16)+(2-2)^{2}\left(3 p^{2}-3 p+4\right) \\
& =12 p-16 .
\end{aligned}
$$

In the following theorem, we compute the square Revan polynomial of $X_{p}$.

Theorem 4.2. The square Revan polynomial of a benzenoid hourglass $X_{p}$ is $Q R\left(X_{p}, x\right)=(12 p-16) x^{1}+\left(3 p^{2}-3 p+16\right) x^{0}$. Proof. From equation (2) and Table 6, the square Revan polynomial of $X_{p}$ is

$$
\begin{aligned}
Q R\left(X_{p}, x\right) & =\sum_{u v \in E(G)} x^{\left[r_{G}(u)-r_{G}(v)\right]^{2}} \\
& =8 x^{(3-3)^{2}}+(12 p-16) x^{(3-2)^{2}}+\left(3 p^{2}-3 p+4\right) x^{(2-2)^{2}} \\
& =(12 p-16) x^{1}+\left(3 p^{2}-3 p+12\right) x^{0} .
\end{aligned}
$$

## 5. Jagged Rectangle Benzenoid Systems

We consider the family of a jagged rectangle benzenoid system, and it is denoted by $B_{m, n}, m, n \geq N$. Three graphs of $B_{m, n}$ are depicted in Figure 4. The by calculation, we obtain that $\left|V\left(B_{m, n}\right)\right|=4 m n+4 m+2 n-2$ and $\left|E\left(B_{m, n}\right)\right|=6 m n+5 m+n-4$.


Figure 4. Graphs of $B_{m, n}$

Let $G=B_{m, n}$. From Figure 4, we see that $\Delta(G)=3$ and $\delta(G)=2$. Then $r_{G}(u)=\Delta(G)+\delta(G)-d_{G}(u)=5-d_{G}(u)$. A graph $G$ has three types of edges as given in Table 7.

| $d_{G}(u), d_{G}(v) \backslash u v \in E(G)$ | $(2,2)$ | $(2,3)$ | $(3,3)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | $2 n+4$ | $4 m+4 n-4$ | $6 m n+m-5 n-4$ |

Table 7. Edge partition of $B_{m, n}$

Therefore, we obtain that $G$ has 3 types of Revan edges as given in Table 8.

| $d_{G}(u), d_{G}(v) \backslash u v \in E(G)$ | $(3,3)$ | $(3,2)$ | $(2,2)$ |
| :---: | :---: | :---: | :---: |
| Number of edges | $2 n+4$ | $4 m+4 n-4$ | $6 m n+m-5 n-4$ |

Table 8. Revan edge partition of $B_{m, n}$

In the following theorem, we determine the square Revan index of $B_{m, n}$.

Theorem 5.1. The square Revan index of a jagged rectangle benzenoid system $B_{m, n}$ is $Q R\left(B_{m, n}\right)=4 m+4 n-4$.

Proof. From equation (1) and Table 4, the square Revan index of $B_{m, n}$ is

$$
\begin{aligned}
Q R\left(B_{m, n}\right) & =\sum_{u v \in E(G)}\left[r_{G}(u)-r_{G}(v)\right]^{2} \\
& =(3-3)^{2}(2 n+4)+(3-2)^{2}(4 m+4 n-4)+(2-2)^{2}(6 m n+m-5 n-4) \\
& =4 m+4 n-4
\end{aligned}
$$

In the following theorem, we determine the square Revan polynomial of $B_{m, n}$.

Theorem 5.2. The square Revan polynomial of a jagged rectangle benzenoid system $B_{m, n}$ is $Q R\left(B_{m, n}, x\right)=$ $(4 m+4 n-4) x^{1}+(6 m n+m-3 n) x^{0}$.

Proof. By using equation (2) and Table 4, the square Revan polynomial of $B_{m, n}$ is

$$
\begin{aligned}
Q R\left(B_{m, n}, x\right) & =\sum_{u v \in E(G)} x^{\left[r_{G}(u)-r_{G}(v)\right]^{2}} \\
& =(2 n+4) x^{(3-3)^{2}}+(4 m+4 n-4) x^{(3-2)^{2}}+(6 m n+m-5 n-4) x^{(2-2)^{2}} \\
& =(4 m+4 n-4) x^{1}+(6 m n+m-3 n) x^{0} \\
& =\left(1+\frac{2 \sqrt{2}}{3}+\frac{6 \sqrt{6}}{5}+\frac{12 \sqrt{3}}{7}\right) 2^{n+2}+\left(1-\frac{12 \sqrt{6}}{5}-\frac{24 \sqrt{3}}{7}\right)
\end{aligned}
$$

## References

[1] V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India, (2012).
[2] V. R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LAMBERT Academic Publishing, (2018).
[3] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009).
[4] V. R. Kulli, On the square ve-degree index and its polynomials of certain oxide networks, Journal of Global Research in Mathematical Archives, 5(10)(2018), 1-4.
[5] V. R. Kulli, Square reverse index and its polynomial of certain networks, International Journal of Mathematical Archive, $9(10)(2018), 27-33$.
[6] V. R. Kulli, On hyper $K V$ and square $K V$ indices and their polynomials of certain families dendrimers, Journal of Computer and Mathematical Sciences, 9(12)(2018).
[7] V. R. Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, $5(4-\mathrm{E})(2017), 663-667$.
[8] V. R. Kulli, Hyper-Revan indices and their polynomials of silicate networks, International Journal of Current Research in Science and Technology, $4(3)(2018), 17-21$.
[9] V. R. Kulli, The sum connectivity Revan index of silicate and hexagonal networks, Annals of Pure and Applied Mathematics, $14(3)(2017), 401-406$.
[10] V. R. Kulli, On the product connectivity Revan index of certain nanotubes, Journal of Computer and Mathematical Sciences, 8(10)(2017), 562-567.
[11] V. R. Kulli, Multiplicative Banhatti and multiplicative hyper-Banhatti indices of certain networks, Journal of Computer and Mathematical Sciences, 8(12)(2017), 750-757.
[12] V. R. Kulli, Multiplicative connectivity Revan indices of polycyclic aromatic hydrocarbons and benzenoid systems, Annals of Pure and Applied Mathematics, 16(2)(2018), 337-343.
[13] V. R. Kulli, Multiplicative connectivity Revan indices of certain families of benzenoid systems, International Journal of Mathematical Archive, 9(3)(2018), 235-241.
[14] V. R. Kulli, General fifth M-Zagreb indices and fifth M-Zagreb polynomials of PAMAM dendrimers, International Journal of Fuzzy Mathematical Archive, 13(1)(2017), 99-103.
[15] V. R. Kulli, General Zagreb polynomials and F-polynomial of certain nanostructures, International Journal of Mathematical Archive, 8(10)(2017), 103-109.
[16] V. R. Kulli, Certain topological indices and their polynomials of dendrimer nanostars, Annals of Pure and Applied Mathematics, $14(2)(2017), 263-268$.
[17] V. R. Kulli, Reduced second hyper-Zagreb index and its polynomial of certain silicate networks, Journal of Mathematics and Informatics, $14(2018), 11-16$.
[18] V. R. Kulli, On augmented reverse index and its polynomial of certain nanostar dendrimers, International Journal of Engineering Sciences and Research Technology, 7(8)(2018), 237-243.
[19] V. R. Kulli, On KV indices and their polynomials of two families of dendrimers, International Journal of Current Research in Life Sciences, 7(9)(2018), 2739-2744.
[20] V. R. Kulli, On augmented Revan index and its polynomial of certain families of benzenoid systems, International Journal of Mathematics and its Applications, 6(4)(2018), 43-50.
[21] A. Longman and M. Saheli, Computing two types of geometric-arithmetic indices of some benzenoid graphs, Journal of Mathematical Nanoscience, 5(1)(2015), 45-51.


[^0]:    * E-mail: vrkulli@gmail.com

