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Abstract: An investigation is made on the effect of Hall currents and uniform horizontal Magnetic field on the thermal stability of

dusty couple-stress fluid is considered. The analysis is carried out within the limitation of framework of linear stability

theory and normal mode technique. A dispersion relation governing the effect of dust particles, Hall currents, magnetic field
and couple stress are derived. For the case of stationary convection, dust particles and Hall currents are found destabilizing

effect whereas couple-stress has stabilizing effect on the system. Magnetic field has a stabilizing or destabilizing effect

on the thermal convection under the restrictions. It has been observed that oscillatory modes are introduced due to the
presence of magnetic field and Hall currents which were non-existent in their absence. Graphs have been plotted by giving

numerical values to the parameters to depict the stability characteristics.
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1. Introduction

An investigation is made on the effect of Hall currents and uniform horizontal Magnetic field on the thermal stability of

dusty couple-stress fluid is considered. The analysis is carried out within the limitation of framework of linear stability

theory and normal mode technique. A dispersion relation governing the effect of dust particles, Hall currents, magnetic field

and couple stress are derived. For the case of stationary convection, dust particles and Hall currents are found destabilizing

effect whereas couplestress has stabilizing effect on the system. Magnetic field has a stabilizing or destabilizing effect on the

thermal convection under the restrictions. It has been observed that oscillatory modes are introduced due to the presence

of magnetic field and Hall currents which were non-existent in their absence. Graphs have been plotted by giving numerical

values to the parameters to depict the stability characteristics.

Applications of couple-stress fluid occur in the attention of the study of the mechanism of lubrication of synovial joints, that

has become the object of scientific research. A human joint is a dynamically loaded bearing that has articular cartilage as

the bearing and synovial fluid as the lubricant. When a fluid film is generated, squeeze-film action is capable of providing

significant protection to the cartilage surface. The shoulder, hip, knee and ankle joints are the loaded-bearing synovial

joints of the human body and these joints have a low friction coefficient and negligible wear. Normal synovial fluid is a

viscous, non-Newtonian fluid and is generally clear or yellowish. The synovial fluid has been modeled as a couple-stress
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fluid in human joints by Walicki and Walicka [22]. Sharma [16] has studied thermal instability in a viscoelastic uid in the

hydromagnetics. Oldroyd [9] investigated non-Newtonian effects in study motion of some idealized elasticviscousliquids.

Kent [4] studied instability of laminar ow of a magnetouid. Veronis [20] analysed connective instability in a compressible

atmosphere. Sharma [17] investigated the thermal instability of compressible fluid in the presence of rotation and magnetic

field. Kumar [5] have studied the effect of magnetic field on thermal instability of a rotating Rivlin-Ericksen visco-elatic fluid.

Kumar [6] have studied the problem of thermalsolutal instability of couple-stress rotating fluid in the presence of magnetic

field and found that magnetic field has both stabilizing and destabilizing effects on the system under certain conditions

whereas rotation has a stabilizing effect on the system.

Raptis and Ram [13] have studied the effect of rotation and Hall currents on free convection and mass transfer flow. Sharma

and Rani [18] investigated the Hall effects on thermosolutal instability of plasma. Sunil [19] analyzed the effect of Hall

currents on thermosolutal instability of compressible Rivlin Ericksen fluid. Shivakumara [19] has investigated the effect

of various non-uniform basic temperature gradients on the onset of convection in a couple-stress fluid saturated porous

layer. Rani and Tomar [11, 12] investigated thermal and thermosolutal convection problem of micropolar fluid subjected to

Hall current. Kumar [7] examined the effect of Hall currents on thermal instability of compressible dusty viscoelastic fluid

saturated in a porous medium subjected to vertical magnetic field.

In this study, since there is growing importance of non-Newtonian uids, convection in uid layer heated from below under

magnetic eld, our objective is to investigate the effect of Hall current on thermal instability of a dusty couple-stress fluid in

the presence of horizontal magnetic field. Here well-know governing partial differential equations are reduced to the ordinary

differential equations. Numerical solution of the problem is obtained using Newton-Raphson method. These numerical

results for various physical parameters concerned within the problem are demonstrated graphically.

2. Formulation of the Problem

Let p, ρ, T , α, v, µ1, kr and −→q (u, v, w) denote respectively pressure, density, temperature, thermal coefficient of expansion,

kinematic viscosity, couple-stress viscosity, thermal diffusivity and velocity of the fluid. −→qd(x, t) and N(x, t) denote the

velocity and number density of particles, respectively. K = 6πµη, where η is radius of the particle, is a constant and

x = (x, y, z). Then equation of motion, continuity and heat conduction of couple-stress (Stokes, 1966 and Joseph, 1976) in

hydromagnetics are

∂−→q
∂t

= − 1

ρ0
∇p+−→g αθ +

(
v − µ1

ρ0
∇2

)
−→q +

KN0

ρ0
(−→qd −−→q ) +

µe
4πρ0

[(∇×
−→
h )×

−→
H ] (1)

∇ · −→q = 0 (2)

∂
−→
h

∂t
= ∇× (−→q ×

−→
H ) + η∇2−→H − c

4πNe
∇× [(∇×

−→
h )×

−→
H ] (3)

and

∇ ·
−→
h = 0 (4)

The equation of state for the fluid is

ρ = ρ0[1− α(T − To)] (5)

Where α is coefficient of thermal expansion and the suffix zero refers to value at the reference level z = 0. Assume uniform

particle size, spherical shape and small relative velocities between the fluid and particles. The presence of particles add an
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extra force term, proportional to the velocity difference between particles and fluid, appears in equation of motion (1). Since

the force exerted by the fluid on the particles is equal and opposite to the exerted by the particles on the fluid, there must

be an extra force term, equal in magnitude but opposite in sign, in the equation of motion for the particles. The distance

between particles are assumed to be quite large compared with their diameter that inter-particle reactions are not considered

for. The effect of pressure, gravity and magnetic field on suspended particles, assuming large distances apart, are negligibly

small and therefore ignored. The equations of motion continuity for the particle, under the above approximation, are

mN0
∂−→qd
∂t

= KN0(−→q −−→qd) (6)

and

∂N

∂t
+∇ · (N · −→qd) = 0 (7)

Here mN is represent the mass of the particles per unit volume. Let cv, cpt denote the heat capacity of the fluid at constant

volume and the heat capacity of the particles. Assuming that the particles and fluids are in thermal equilibrium, then the

equation of heat conduction given by

∂T

∂t
+
mNCpt
ρ0Cv

(
∂

∂t
+−→qd · ∇

)
T = KT∇2T (8)

where v is kinematic viscosity, µ′ is couple-stress viscosity, kT is thermal diffusivity and α is coefficient of thermal expansion

which are assumed to be constants.

3. Basic State of the Problem

The basic motionless solution state is described by −→q = (0, 0, 0), −→qd = (0, 0, 0),
−→
H = (0, 0, H), T = T0 − βz, N = N0 =

constant, where β may be either positive or negative and

ρ = ρ(z), p = p(z), T = T (z) and ρ = ρ0[1 + αβz] (9)

4. Perturbation Equations and Normal Mode Analysis

Let −→q (u, v, w), −→qd(l, r, s),
−→
h (hx, hy, hz), θ, δρ, δp denote respectively the perturbations in fluid velocity q = (0, 0, 0), dust

particles velocity −→qd = (0, 0, 0), magnetic field
−→
H (0, 0, H), temperature T, density ρ and pressure p. After linearizing the

perturbation and analyzing the perturbation into normal modes, we assume that the perturbation quantities are of the form

[w, θ, hz, ζ, ξ] = [W (z), θ(z),K(z), Z(z), X(z)]. exp{ikxx+ ikyy + nt}. (10)

Where kx and ky are the wave number in x and y directions respectively and k =
√
K2
x +K2

y is the resultant wave number

of propagation and n is the growth rate which is, in general, a complex constant and, ζ = ∂v
∂x
− ∂u

∂t
and ξ = ∂hy

∂x
− δhx

δx
are

the z-components of the vorticity and current density respectively. The linearized hydromagnetics perturbation equations

for couple-stress fluid become

∂−→q
∂t

= − 1

ρ0
∇δp+−→g αθ +

(
v − µ1

ρ0
∇2

)
−→q +

KN0

ρ0
(−→qd −−→q ) +

µe
4πρ0

[(∇×
−→
h )×

−→
H ] (11)

∇ · −→q = 0 (12)
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mN0
∂−→qd
∂t

= KN0(−→q −−→qd) (13)

(1 + h1)
∂θ

∂t
= β(ω + h1s) +KT∇2θ (14)

∂
−→
h

∂t
= ∇× (−→q ×

−→
H ) + η∇2−→H − c

4πNe
∇× [(∇×

−→
h )×

−→
H ] (15)

∇ ·
−→
h = 0 (16)

The change in density δρ caused by the perturbation θ in temperature is given by

δρ = −ρ0αθ (17)

For the considered form of the perturbations in equation (10), equations (11) to (17), after eliminating the physical quantities

using the non-demensional parameters a = kd, σ = nd2

v
, p1 = v

kT
, p2 = v

η
, D = D∗

d
, D∗ = dDF = µ′

vρ0d2
, σ′ = n′d2

v
,

H1 = 1 + h1 and n′ = n

(
1 +

mN0K
ρ0

mn+K

)
dropping (*) for convenience, give

[σ′ + F (D2 − a2)− 1](D2 − a2)W = −ga
2d2α

v
Θ +

µeHd

4πρ0v
(D2 − a2)DK (18)

[σ′ − d2[1− F (D2 − a2)]]Z =
µeHd

4πρ0v

DX

(19)

(D2 − a2 −Bσp1)Θ =
βd2

kT
(B +

τ1v

KT
σ) (20)

(D2 − a2 − σp2)K = −Hd
η
DW +

cHd

4πN ′eη
DX (21)

(D2 − a2 − σp2)X = −Hd
η
DZ +

cH

4πN ′eηd
(D2 − a2)DK (22)

where F = µ′

ρ0d2
is the couple stress parameter. After eliminating various physical parameters like Θ, Z, X, K from equations

(18) to (22), we obtain the final stability governing equation as{
[σ′ − d2[1− F (D2 − a2)](D2 − a2)]W +

Ra2

(D2 − a2 −H1σp1)

(
B +

τ1v

KT

)
W

+Q

[
(D2 − a2 − σp2)[σ′ − d2[1− F (D2 − a2)]] +QD2

(D2 − a2 − σp2)2[σ′ − d2[1− F (D2 − a2)]] +Q(D2 − a2 − σp2)D2

−M [σ′ − d2[1− F (D2 − a2)]]
}

(D2 − a2)D2
]
DW = 0

(23)

Where R = gαβd4

VKT
is the Rayleigh number, Q = µ0H

2d2

4πρvη
is the Chandrasekhar number and M = ( cH

4πNeη
)2 is the non-

dimensional number accounting for Hall currents. We now consider the case where both the boundaries are free as well as

perfect conductors of heat. The appropriate boundary conditions for the equation (23) are

W = 0, Z = 0 and D2W = 0, D4W = 0 at z = 0 and z = 1 (24)

From equation (24), it is clear that all the even order derivatives of W must vanish for z = 0 and 1. Therefore, the proper

solution of equation (23) characterizing the lowest mode is

W = W0sinπz (25)

Where W0 is a constant. Substituting the proper solution. We obtain

R1 =

[
(1 + x+ iBP1σ1)

x(B + τ1v
KT

σ)

]
Q1

[
(1 + x+ iP2σ1){iσ′ + [F1(1 + x)]}+Q1

(1 + x+ iP2σ)2{iσ′ + [1 + F1(1 + x)]}+Q1(1 + x+ iP2σ1)

− M{iσ′ + [1 + F1(1 + x)]}(1 + x)− {iσ′ + [1 + F1(1 + x)]}(1 + x)
] (26)
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Where kx = k cos θ [Chandrasekhar (1981)], R1 = R
π4 , iσ1 = σ

π2 , x = a2

π2 , F1 = π2F and Q1 = Q
π2 . Equation (26) is

the required dispersion relation including the parameters characterizing the Hall currents, magnetic field dust particles and

couple-stress.

5. Analytical Discussion

5.1. Stationary Convection

At stationary convection, when the instability sets, the marginal state will be characterized by σ = 0. Thus the instability

sets in as stationary convection putting σ = 0 in the equation (26), reduces to

R1 =
(1 + x)Q1

xB

[
(1 + x)[1 + F1(1 + x)] +Q1

(1 + x)[1 + F1(1 + x)] +Q1 −M [1 + F1(1 + x)]

]
+

(1 + x)2[1 + F1(1 + x)]

xB
(27)

The above expression is the modified Rayleigh number R1 as a function of the parameters H1, M , Q1, F1 and dimensionless

wave number x . To study the effect of Hall currents, magnetic field and couple-stress, we examine the nature of dR1
dB

, dR1
dM

,

dR1
dQ1

, dR1
dF1

analytically. From equation (27), we have

dR1

dB
= − Q1

xB2

[
(1 + x) [1 + F1 (1 + x)] +Q1

(1 + x) [1 + F1 (1 + x)] +Q1 −M [1 + F1 (1 + x)]

]
− (1 + x)2 [1 + F1 (1 + x)]

xB2
(28)

Which clearly confirms that dust particles have destabilizing effect on a couple-stress fluid on the thermal convection. From

equation (27), we have

dR1

dM
= −Q1

xB

[
(1 + x) [1 + F1 (1 + x)] +Q1

[(1 + x) [1 + F1 (1 + x)] +Q1 −M [1 + F1 (1 + x)]]2

]
(29)

Which confirms that Hall currents have a destabilizing effect on a couple-stress fluid on the thermal convection. This result

is same as observed by Singh and Dixit.

dR1

dQ1
=

1

xB

[
(1 + x) [1 + F1 (1 + x)] +Q1

(1 + x) [1 + F1 (1 + x)] +Q1 −M [1 + F1 (1 + x)]

]
− 1

xB

[
[1 + F1 (1 + x)]Q1M

[(1 + x) [1 + F1 (1 + x)] +Q1 −M [1 + F1 (1 + x)]]2

] (30)

Which shows that magnetic field has a stabilizing/destabilizing effect on a couple-stress dusty fluid on thermal convection

the condition

(1 + x) [1 + F1 (1 + x)] +Q1 < or > M [1 + F1 (1 + x)] .

But, for the permissible values of various parameters, the above effect is stabilizing only if

(1 + x) [1 + F1 (1 + x)] +Q1 > M [1 + F1 (1 + x)]

From equation (27), we have

dR1

dF1
=

(1 + x)Q1

xB

{
(1 + x)[(1 + x)[1 + F1(1 + x)]−Q1 −M [1 + F1(1 + x)]]

− [(1 + x) [1 + F1 (1 + x)] +Q1] [1 + x−M ]

[(1 + x)[1 + F1(1 + x)]−Q1 −M [1 + F1(1 + x)]2]
+ 1

} (31)

Which clears that couple-stress has a stabilizing effect on a couple-stress dusty fluid on thermal convection system.
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5.2. Stability of the system and Oscillatory Modes

Multiply (18) with W ∗ (complex conjugate of W) and integrate over the range of z using equations (19) to (20) with the

boundary condition (24), we get the conditions for the principle of exchange of stabilities (PES) is satisfied (i.e σ is real and

the marginal states are charterized by σ = 0) and oscillations enter into play and it is given by

(1− σ′)I1 − FI2 +
g0αKT a

2

V β

(
B +

τ1v

KT
σ∗
)−1

(I3 +BP1σ
∗I4)

− µeη

4πρ0v
[I5 + σ∗p2I6] +

µeηd
2

4πρ0v
[I7 + σ∗p2I8] + d2[(σ′ − 1)I9 − FI10] = 0

(32)

Where

I1 =

∫
(|DW |2 + a2|W |2)dz, I2 =

∫
(|D2W |2 + 2a2|DW |2 + a4|W |2)dz,

I3 =

∫
(|Dθ|2 + a2|θ|2)dz, I4 =

∫
(|θ|2)dz

I5 =

∫
(|D2K|2 + 2a2|DK|2 + a4|K|2)dz, I6 =

∫
(|DK|2 + a2|K|2)dz

I7 =

∫
(|DX|2 + a2|X|2)dz, I8 =

∫
(|X|2)dz

I9 =

∫
(|Z|2)dz, I10 =

∫
(|DZ|2 + a2|Z|2)dz

Where σ∗ is the complex conjugate of σ. All the integrals I1 to I10 are positive definite, putting σ = iσ, in equation (32)

and equating the imaginary parts, we obtain

σi

[
I1 +

g0αk
2
T a

2

βτ1v2
I3 +

g0αkT a
2

βv
P1I4 −

µeη

4πρ0v
p2I6 +

µeηd
2

4πρ0v
p2I8 − d2I9

]
= 0 (33)

From (33), it is clear that σi (growth rate parameter) may be zero or nonzero, which gives the modes may be nonoscillatory

or oscillatory. In the absence of stable magnetic field (hence Hall currents) and dust particles, equation (33) becomes

σi

[
I1 +

g0αk
2
T a

2

βτ1v2
I3 +

g0αkT a
2

βv
P1I4 +

µeηd
2

4πρ0v
P2I8

]
= 0 (34)

It may be inferred from equation (33) that σi may be positive or negative which means that the system may be stable or

unstable while equation (34) predicts that σi = 0 necessarily because all the terms in the bracket are positive definite. which

implies that oscillatory modes are not allowed in the system and Principle of Exchange of Stabilities (PES) is satisfied in

the absence of magnetic field (hence Hall currents) and dust particles.

6. Numerical Computations

Now, the critical thermal Rayleigh number for the onset of instability is determined for critical wave number obtained by

using Newton-Raphson method, by means of the condition dR1
dx

= 0. The numerical values of critical thermal Rayleigh

number R1 and critical wave number x determined for various values of dust particles B, Hall Currents M, magnetic field

Q1 and couple-stress F1. Graphs have been potted between critical Rayleigh number R1 and Parameters B, M , Q1, and

F1, and by substituting some numerical values to them.

In Figure 1, the critical Rayleigh number R1 decreases with increase in dust particles parameter B which shows that have

dust particles have destabilizing effect on the system that indicates when the critical Rayleigh number R1 is plotted against
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dust particles B for fixed value of Q1 = 1, F1 = 1 and M = 10. In Figure 2, the critical Rayleigh number R1 decreases with

increase in Hall currents parameter M which indicates that Hall currents have a destabilizing effect on the system when

critical Rayleigh number R1 is plotted against Hall currents parameter M for fixed value of Q1 = 3000, B = 1, F1 = 1.

In Figure 3, the critical Rayleigh number R1 decreases to certain values of Q1 and gradually which shows that magnetic

field has both stabilizing and destabilizing effect on the system whenever Critical Rayleigh number R1 is plotted against

magnetic field parameter Q1 for fixed value of H1 = 0.1, M = 6 and F1 = 0.1. In Figure 4, the critical Rayleigh number R1

increases with increase in couple-stress parameter F1 which shows that couple-stress has a stabilizing effect on the system

when critical Rayleigh number R1 is plotted against couple-stress parameter F1 for fixed value of B = 1, M = 1 and Q1 = 5.

7. Conclusion

In the present paper, the combine effect of Hall currents on an electrically conducting couple-stress fluid layer heated from

below in the presence of horizontal magnetic field is considered. Dispersion relation governing the effects of dust particles,

Hall currents, magnetic field and couple-stresses has been investigated analytically as well as graphically. The main results

from the analysis are summarized as follows:

(1). For the case of stationary convection, dust particles have a destabilizing effect on the system as can be seen from

equation (28), and graphically from Figure 1.

Figure 1. Variation of critical Rayleigh number R1 with dust particles B for fixed value of Q1 = 1, F1 = 1, M = 10 and x = 2, 4, 6.

(2). Hall currents have a destabilizing effect on the system which can be seen from equation (29) and graphically from Figure

2.

Figure 2. Variation of critical Rayleigh number R1 with dust particles B for fixed value of Q1 = 3000, B = 1, F1 = 1 and x = 1, 2, 3.

(3). Magnetic field has a stabilizing or destabilizing effect on the thermal convection as can be seen from equation (30) and

graphically from Figure 3.
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Figure 3. Variation of critical Rayleigh number R1 with dust particles Q1 for fixed value of H1 = 0.1, M = 6, F1 = 0.1 and x = 1, 2, 3.

(4). Couple-stress has stabilizing effect on the system for the permissible values of various parameters which can be expressed

from equation (31).

Figure 4. Variation of critical Rayleigh number R1 with dust particles F1 for fixed value of B = 1, M = 1, Q1 = 5 and x = 1, 4, 6.

(5). The principle of exchange of stabilities is satisfied in the absence of magnetic field (hence Hall currents) and dust

particles.
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Nomenclature

c : Speed of light

d : Depth of layer

e : Charge of an electron

F : Couple stress parameter
(

µ1

ρ0d2

)
g(0, 0,−g) : Acceleration due to gravity field

−→
H (H, 0, 0) : Uniform magnetic field

−→
h (hx, hy, hz) : Perturbations in magnetic field

kx : Wave number in x-direction

ky : Wave number in y-direction

k : Resultant wave number k =
√
K2
x +K2

y

kT : Thermal diffusivity

M : Hall current parameter =
(

cH
4πNeη

)2
N : Electron number density

n : Growth rate
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p : Fluid pressure

P1 : Prandtl number =
(
V
KT

)
P2 : Magnetic Prandtl number =

(
V
η

)
−→q (u, v, w) : Component of velocity after perturbation

−→qd(l, r, s) : Component of particles velocity after perturbation

Q : Chandrasekhar number =
(
µeH

2d2

4πρnvη

)
R : Rayleigh number =

(
gαβd4

VKT

)
R1 : Critical Rayleigh number

t : Time coordinate

T : Temperature

x : Dimensionless wave number

−→x (x, y, z) : Space coordinates

Greek Symbols

α : Coefficient of thermal expansion

β : Uniform temperature gradient

η : Electrical resistivity

η′ : Suspended particle radius

θ : Perturbation in temperature

δp : Perturbation in pressure p

ρ : Fluid density

δρ : Perturbation in density ρ

v : Kinematic viscosity

v′ : Couple stress viscoelasticity

µ′ : Couple stress viscosity

µe : Magnetic permeability

∇, ∂,D : Del operator, curly operator and Derivative with respect to z(= d/dz)
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