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Abstract: The focus of this paper is to find fuzzy optimal solution of fully fuzzy integer linear programming problems (FFILPP)

with pentagonal fuzzy numbers under robust ranking technique. A new approach for solving fully fuzzy integer linear

programming problems with pentagonal fuzzy number is proposed, based on ranking function. The proposed method is
very easy to understand. This is illustrated with relevant numerical examples.
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1. Introduction

The concept linear programming problem is to find out the best solution to the real-world problems where the available

informations are not exact or not precise. In that situation linear programming model helps lot. Firstly, the concept

Fuzzy linear programming was proposed by Tanaka [13]. It plays a vital role in Fuzzy modeling, which can formulate

the uncertainty. Nasseri [9] has proposed a new method for solving the Fuzzy linear programming problems in which he

has used the fuzzy ranking method for converting the fuzzy objective function into crisp objective function. Fuzzy linear

programming was studied by many researchers [2–4, 6–8, 14]. Sahaya Sudha [11] proposed solving fuzzy linear programming

problem using pentagonal fuzzy numbers with robust ranking method. Herrera and Verdegay [5] have proposed three

methods for solving three models of Fuzzy integer linear programming. Allahviranloo [1] discussed a model of Fuzzy integer

linear programming problem with fuzzy variable and proposed to solve a new method. Pandian and Jayalakshmi [10] have

proposed a decomposition method for solving Fuzzy integer linear programming problem with fuzzy variables by using

classical integer linear programming. In [12] Stephen Dinagar and Mohamed Jeyavuthin discussed the concept of solving

integer linear programming problems with pentagonal fuzzy numbers. In this paper, section 2 contains some basic definitions

needed for this work. In section 3, fully fuzzy integer linear programming with fuzzy variables are discussed. In section 4,

relevant numerical illustrations are given. Finally, conclusion is included in section 5.

2. Preliminaries

Definition 2.1 (Fuzzy set). A fuzzy set A in a universe of discourse X is defined as the following set of pairs

A = {(x, µA (x) ;x ∈ X)}
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Here µA : X → [0, 1] is mapping called the degree of membership function of the fuzzy set A and µA(x) is called the

membership value of x ∈ X in the fuzzy set A.

Definition 2.2 (Convex fuzzy set). A fuzzy set A = {(x, µA (x))} ⊆ X is called convex fuzzy set if all Aα are convex set

(i.e.) for every element x1 ∈ Aα and x2 ∈ Aa for every α ∈ [0, 1]. λx1 + (1 − λ)x2 ∈ Aa for all λ ∈ [0, 1]. Otherwise the

fuzzy set is called non-convex fuzzy set.

Definition 2.3 (Fuzzy number). A fuzzy set Ã, defined on the set of real number R is said to be fuzzy number if it has the

following characteristics

(1). Ã is normal

(2). Ã is convex set

(3). The support of Ã is closed and bounded.

Definition 2.4 (Pentagonal fuzzy number). A fuzzy number ÃP is pentagonal fuzzy number denoted by ÃP =

(a1, a2, a3, a4, a5), where a1, a2, a3, a4, a5 are real numbers and its membership function µÃP
(x) is given by

µÃP
(x) =


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Figure 1. Graph of a Pentagonal Fuzzy Number

Definition 2.5. A pentagonal fuzzy number can be defined as ÃP = (M1(u), J1(v), J2(v),M2(u)) for u ∈ [0, 0.5] and

v ∈ [0.5, 1] where,

(1). M1(u) is strictly increasing continuous function on [0,0.5].

(2). J1(v) is strictly increasing continuous function on [0.5,1].
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(3). J2(v) is strictly decreasing continuous function on [1,0.5].

(4). M2(u) is strictly decreasing continuous function on [0.5,0].

Remark 2.6. The pentagonal fuzzy number ÃP becomes triangular fuzzy number if a3 − a2 = a4 − a3.

Definition 2.7. A linear Programming problem is called fuzzy variable linear programming problem (FVLPP), if some of

the parameters are crisp, and variables and right-hand sides are fuzzy numbers. General form of FVLPP as follows:

Maximize (or Minimize) z̃ = c̃x̃

Subject to,

Ãx̃ {≤,=,≥} b̃, x̃ ≥ 0 and are integers,

Where c̃ ∈ Rn, Ã ∈ (R)m+n, Ri ∈ (F (R))m and x̃ ∈ (F (R))n.

Definition 2.8. A ranking function is a map from F (R) into real line. Now, we define the orders F (R) as follows:

(1). ÃP ≥ B̃P if and only if R
(
ÃP
)
≥ R(B̃P ).

(2). ÃP ≤ B̃P if and only if R
(
ÃP
)
≤ R(B̃P ).

(3). ÃP = B̃P if and only if R
(
ÃP
)

= R(B̃P ).

Where ÃP , B̃P are elements of F (R).

3. Fully Fuzzy Integer Linear Programming(FFILPP)

Consider the following fully fuzzy integer linear programming problems:

Maximize (or Minimize) z̃ = c̃T x̃

Subject to,

Ãx̃ {≤,=,≥} b̃, x̃ ≥ 0 and are integers,

Where the cost vectors c̃T = (c̃j)1×n, Ã = (ãij)m×n
, x̃ = (x̃j)n×1

and b̃ = (b̃i)m×1
and ãij , x̃j , b̃i, c̃j ∈ F (R), for all

1 ≤ j ≤ n and 1 ≤ i ≤ m.

3.1. Ranking Functions

The Robust ranking functions [11] for pentagonal fuzzy number has been utilized to solve the fully fuzzy integer linear

programming problems as given below. Let ÃP = (a1, a2, a3, a4, a5) be a pentagonal fuzzy number then the ranking

functions are:

(1). R1

(
ÃP
)

=
1∫
0

{(a2 − a1)α+ a1, a5 − (a5 − a4)α} (0.5) dα

(2). R2

(
ÃP
)

=
1∫
0

 (a2 − a1)α+ a1 + (a3 − a2)α+ a2

a4 − (a4 − a3)α+ a5 + (a5 − a4)α

 (0.5)dα

(3). R3

(
ÃP
)

=
1∫
0

 (a4 − a1)α+ a1 + a2 + a3,

a3 + a4 + a5 + (a5 − a2)α

 (0.5)dα
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3.2. Algorithm

Step 1: Formulate the chosen problem into the following fuzzy linear programming problem as

Maximize z̃ =

n∑
j=i

c̃j x̃j

Subject to,
n∑
j=i

ãij x̃j ≤,=,≥ b̃i, i = 1, 2, 3, . . . ,m; x̃j ≥ 0, j = 1, 2, 3, . . . , n.

Step 2: Using the Ranking functions, the FFILPP transformed into FVILPP.

Step 3: Optimal solution.

4. Numerical Examples

Example 4.1. Consider the following fully fuzzy integer linear programing problem

Maximize Z̃ = (2, 4, 6, 8, 10)x̃1 + (6, 8, 10, 12, 14)x̃2

Subject to

(12, 14, 16, 18, 20)x̃1 + (16, 18, 20, 22, 24)x̃2 ≤ (26, 28, 30, 32, 34);

(18, 20, 22, 24, 26)x̃1 + (22, 24, 26, 28, 30)x̃2 ≤ (40, 42, 44, 46, 48);

x̃1, x̃2 ≥ 0 and integers.

Now we calculate R1 (2, 4, 6, 8, 10) by using Robust’s ranking method (i).

R1 (2, 4, 6, 8, 10) =

∫ 1

0

(2α+ 2, 10− 2α) (0.5) dα = 6

Similarly,

R1 (6, 8, 10, 12, 14) = 10, R1 (12, 14, 16, 18, 20) = 16, R1 (16, 18, 20, 22, 24) = 20,

R1 (26, 28, 30, 32, 34) = 30, R1 (18, 20, 22, 24, 26) = 22, R1 (22, 24, 26, 28, 30) = 26,

R1 (40, 42, 44, 46, 48) = 44,

Using the ranking functions (i) the problem becomes

(P1) Maximize Z̃ = 6x̃1 + 10x̃2

Subject to

16x̃1 + 20x̃2 ≤ 30;

22x̃1 + 26x̃2 ≤ 44;

x̃1, x̃2 ≥ 0 and are integers.
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Now we calculate R2 (2, 4, 6, 8, 10) by using Robust’s ranking method (ii).

R2 (2, 4, 6, 8, 10) =

∫ 1

0

(2α+ 2 + 2α+ 4, 8− 2α+ 10− 2α) (0.5) dα = 12

Similarly,

R2 (6, 8, 10, 12, 14) = 20, R2 (12, 14, 16, 18, 20) = 32, R2 (16, 18, 20, 22, 24) = 40,

R2 (26, 28, 30, 32, 34) = 60, R2 (18, 20, 22, 24, 26) = 44, R2 (22, 24, 26, 28, 30) = 52,

R2 (40, 42, 44, 46, 48) = 88,

Using the ranking functions (ii) the problem becomes

(P2) Maximize Z̃ = 12x̃1 + 20x̃2

Subject to

32x̃1 + 40x̃2 ≤ 60;

44x̃1 + 52x̃2 ≤ 88;

x̃1, x̃2 ≥ 0 and are integers.

Now we calculate R3 (2, 4, 6, 8, 10) by using Robust’s ranking method (iii).

R3 (2, 4, 6, 8, 10) =

∫ 1

0

(6α+ 2 + 4 + 6, 6 + 8 + 10− 6α) (0.5) dα = 18

Similarly,

R3 (6, 8, 10, 12, 14) = 30, R3 (12, 14, 16, 18, 20) = 48, R3 (16, 18, 20, 22, 24) = 60,

R3 (26, 28, 30, 32, 34) = 90, R3 (18, 20, 22, 24, 26) = 66, R3 (22, 24, 26, 28, 30) = 78,

R3 (40, 42, 44, 46, 48) = 132,

Using the ranking functions (iii) the problem becomes

(P3) Maximize Z̃ = 18x̃1 + 30x̃2

Subject to

48x̃1 + 60x̃2 ≤ 90;

66x̃1 + 78x̃2 ≤ 132;

x̃1, x̃2 ≥ 0 and are integers.

Using an algorithm for integer linear programming problem,

The solution of the problem (P1) is x̃1 = 0, x̃2 = 1 and Z̃ = 10,

The solution of the problem (P2) is x̃1 = 0, x̃2 = 1 and Z̃ = 20,

The solution of the problem (P3) is x̃1 = 0, x̃2 = 1 and Z̃ = 30.
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Ranking Method x̃1 x̃2 Z̃

Ranking function (i) 0 1 10

Ranking function (ii) 0 1 20

Ranking function (iii) 0 1 30

Table 1. Comparison Table

Example 4.2. Consider the following fully fuzzy integer linear programing problem

Maximize Z̃ = (2, 6, 8, 12, 14)x̃1 + (4, 6, 10, 12, 14)x̃2

Subject to

(6, 10, 12, 14, 16)x̃1 + (6, 8, 10, 12, 16)x̃2 ≤ (12, 14, 16, 18, 20);

(4, 8, 10, 12, 14)x̃1 + (6, 10, 12, 14, 16)x̃2 ≤ (14, 16, 18, 22, 24);

x̃1, x̃2 ≥ 0 and are integers.

Using the ranking functions (i), (ii) and (iii) the corresponding problems are (P1), (P2) and (P3) respectively,

(P1) Maximize Z̃ = 4.5x̃1 + 9x̃2

Subject to

11.5x̃1 + 11.5x̃2 ≤ 16;

9.5x̃1 + 11.5x̃2 ≤ 19;

x̃1, x̃2 ≥ 0 and are integers.

(P2) Maximize Z̃ = 17x̃1 + 19.5x̃2

Subject to

23.5x̃1 + 20.5x̃2 ≤ 32;

19.5x̃1 + 23.5x̃2 ≤ 37.5;

x̃1, x̃2 ≥ 0 and are integers.

(P3) MaximizeZ̃ = 25.5x̃1 + 28x̃2

Subject to

35.5x̃1 + 30.5x̃2 ≤ 48;

29.5x̃1 + 28.5x̃2 ≤ 56;

x̃1, x̃2 ≥ and are integers.

Using algorithm for integer linear programming problem,

The solution of the problem (P1) is x̃1 = 0, x̃2 = 1 and Z̃ = 9,

The solution of the problem (P2) is x̃1 = 0, x̃2 = 1 and Z̃ = 19.5,

The solution of the problem (P3) is x̃1 = 0, x̃2 = 1 and Z̃ = 28.
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Ranking Method x̃1 x̃2 Z̃

Ranking function (i) 0 1 9

Ranking function (ii) 0 1 19.5

Ranking function (iii) 0 1 28

Table 2. Comparison Table

5. Conclusion

The proposed method provides a solution for fully fuzzy integer linear programming problems with pentagonal fuzzy number.

The problem is converted into fuzzy variable integer linear programming problem using new ranking techniques. It is

important to note that among three ranking functions, the ranking function (iii) gives the maximum value. This notion can

be extended to some other optimization problems in future.
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