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Abstract: This paper describes a Prey and Two predators Ecological model. Continuous type gestational delay is incorporated in the
interaction of Prey and first predator is taken for investigation. The system dynamics is studied at its equilibrium points.

We construct a suitable Lyapunov function for global stability. The effect of Time delay on the dynamical behiviour of
the system is studied. Using Numerical simulation, it is shown that the delay arguments with different kernels exhibit

rich dynamics.
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1. Introduction

Mathematical modeling in biology and Ecology gains a lot of importance in recent decades. The results are in this field are

very interesting. The models in population ecology are studied Lokta [1] and Volterra [2]. Most of the models in biology,

medicine, epidemiology, ecology are widely discussed by Kapur [3, 4]. Authors [5–7] studied the stability and complexity of

in population dynamics with different interaction in ecological models. These models are widely represented by differential

equations. Braun [8] and Simon’s [9] explain the applications of differential equations. In last few decades, Delay differential

equations become popular in biology and ecology models. Time delays are naturally occurs in every biological and ecological

phenomenon. These delays are significant in stability analysis. A delay can switch over from stable equilibrium to unstable

or vice versa. A detailed time delay interactions are briefly explained by Cushing, J.M [10], Sreehari Rao [11], Gopalaswamy.

K [12]. Paparao [13–17] studied the stability analysis of three species ecological models with time delay in prey, predator

and competitor. Time delays in growth response are playing a major role in describing the stability of the systems. In

the present paper is we study the stability analysis of a three species model with prey and two predators. We include the

time delay on the interaction of prey and first predator. Local and global stability analysis is carried out at the equilibrium

points. The effect of time delay arguments with different kernel strength is studied by numerical simulation in support of

stability analysis using MAT LAB simulation. It is shown that the delay arguments exhibit rich dynamics.

∗ E-mail: paparao.alla@gmail.com
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2. Mathematical Model

A three species ecological model with a prey and two predators are considered for investigation. Two predators namely first

predator (N2), second predator (N3) are competing for the same prey (N1). A time delay is introduced in the interaction

of prey and first predator (Gestation period of the predator) Death rates of three populations are also considered for

investigation .Keeping the above aspects in view, the model is characterized by the following system of integro-differential

equations.

dN1

dt
= a1N1 − α11N

2
1 − α12N1

∫ t

−∞
k2(t− u)N2(u)du− α13N1N3 − d1N1

dN2

dt
= a2N2 − α22N

2
2 + α21N2

∫ t

−∞
k1(t− u)N1(u)du− α23N2N3 − d2N2

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 − α32N2N3 − d3N3

(1)

Where the parameters in the above model is described as follows

2.1. Nomenclature

S.No Parameter Description

1 N1, N2 & N3 Population strengths of prey, first predator and a second predator respectively

2 a1, a2, a3 Growths rates of prey, first predator and second predator respectively

3 αii (i = 1, 2, 3) Internal competition rates of prey ,first predator and second predator respectively (negative values)

4 α12 Interaction coefficient of prey and first predator ( negative value)

5 α21 Interaction coefficient of first predator and prey ( positive value)

6 α23 Interaction coefficient of first predator and second predator(negative value)

7 α32 Interaction coefficient of second predator and first predator (negative value)

7 α13 Interaction coefficient of prey and second predator (negative value)

9 α31 Interaction coefficient of second predator and prey (positive value)

10 d1, d2, d3 Death rates of prey, first predator and a second predator

11 k1(t− u) & k2(t− u) Delay kernels of prey and first predator influence at time t.

Choose the kernels k1 and k2 such that

∫ ∞
0

k1(z)dz = 1,

∫ ∞
0

k2(z)dz = 1,

∫ ∞
0

zk1(z)dz <∞,
∫ ∞
0

zk2(z)dz <∞ (2)

By the normalization the system of equation (1) becomes

dN1

dt
= a1N1 − α11N

2
1 − α12N1

∫ ∞
0

k2(z)N2(t− z)dz − α13N1N3 − d1N1

dN2

dt
= a2N2 − α22N

2
2 + α21N2

∫ ∞
0

k1(z)N1(t− z)dz − α23N2N3 − d2N2

dN3

dt
= a3N3 − α33N

2
3 + α31N1N3 − α32N2N3 − d3N3

(3)

3. Equilibrium States

By equating dNi
dt

= 0, i = 1, 2, 3 we get the following eight equilibrium states.

I. The Extinct state

E1 : N1 = 0, N2 = 0, N3 = 0. (4)

II. Semi Extinct
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A: The state in which two of three species extinct and one survive

E2 : N1 = 0, N2 =
a2 − d2
α22

, N3 = 0. (5)

E3 : N1 = 0, N2 = 0, N3 =
a3 − d3
α33

. (6)

E4 : N1 =
a1 − d1
α11

, N2 = 0, N3 = 0 (7)

B: Only one species Extinct and two are survive

E5 : N1 =
(a1 − d1)α22 − α12(a2 − d2)

α11α22 + α12α21
, N2 =

(a2 − d2)α11 + α21(a1 − d1)

α11α22 + α12α21
, N3 = 0

This case arise only when

(a1 − d1)α22 > α12(a2 − d2) (8)

E6 : N1 =
(a1 − d1)α33 − (a3 − d3)α13

α11α33 + α13α31
, N2 = 0, N3 =

(a1 − d1)α31 + (a3 − d3)α11

α11α33 + α13α31
(9)

Exist only when

(a1 − d1)α33 > (a3 − d3)α13 (10)

E7 : N1 = 0, N2 =
(a2 − d2)α33 − (a3 − d3)α23

α22α33 − α23α32
, N3 =

(a3 − d3)α22 − (a2 − d2)α32

α22α33 − α23α32
(11)

Exists only when

(a2 − d2)α33 > (a3 − d3)α23, (a3 − d3)α22 > (a2 − d2)α32 & α22α33 > α23α32 (12)

C: Co-existing state

E8 : N1 =
(a1 − d1) (α22α33 − α23α32) + (a2 − d2) (α13α32 − α12α33) + (a3 − d3) (α12α23 − α13α22)

α11 (α22α33 − α23α32) + α12 (α21α33 − α31α23) + α13 (α31α22 − α21α32)

N2 =
(a1 − d1) (α21α33 − α31α23) + (a2 − d2) (α11α33 + α13α31)− (a3 − d3) (α11α23 + α13α21)

α11 (α22α33 − α23α32) + α12 (α21α33 − α31α23) + α13 (α31α22 − α12α32)
,

N3 =
(a1 − d1) (α22α31 − α21α32)− (a2 − d2) (α11α32 + α12α31) + (a3 − d3) (α11α22 + α12α21)

α11 (α22α33 − α23α32) + α12 (α21α33 − α31α23) + α13 (α31α22 − α12α32)
.

(13)

This equilibrium state exist only when,

N1 > 0, N2 ⇒ 0, N3 > 0 (14)

4. Stability Analysis

We discuss the system stability for E5, E6, E7 & E8.

4.1. Stability analysis of equilibrium point E5

The variational matrix for linearized system of (1) is given by

J =


a1 − 2α11N1 − α12N2 − d1 −α12N1k

∗
2(λ) −α13N1

α21N2k
∗
1(λ) a2 − 2α22N2 + α21N1 − d2 −α23N2

0 0 a3 + α31N1 − α32N2 − d3

 (15)
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The Characteristic equation of the system is

(
λ−

(
a3 + α31N1 − α23N2 − d3

)) (λ− (a2 − 2α22N2 + α21N1 − d2
)) (

λ−
(
a1 − 2α11N1 − α12N2 − d1

))
+α12α21N1N2k

∗
1(λ)k∗2(λ)

 = 0 (16)

The system is stable if the following conditions are satisfied

(i).
(
a3 + α31N1

)
<
(
d3 + α23N2

)
(ii).

(
a1 + a2 + α21N1 < 2α11N1 + 2α22N2 + α12N2 + d1 + d2

)
(iii).

 a1a2 + a1α21N1 + α12α21N1N2k
∗
1(λ)k∗2(λ) + 3α11α22N1N2 + 2α12α22N2

2
+ a1d2

> 2a2α11N1 + 2a1α22N2 + a2α12N2 + 2α11α21N1
2

+ 2d2α11N1 + d1d2 + d2α12N2

 (17)

4.2. Stability analysis of equilibrium point E6

The Jacobian matrix for this case is

J =


a1 − 2α11N1 − α13N3 − d1 −α12N1k

∗
2(λ) −α13N1

0 a2 + α21N1 − α23N3 − d2 0

α31N1 −α32N2 a3 − 2α33N3 + α31N1 − d3

 (18)

The characteristic equation is

(
λ−

(
a2 + α21N1 − α23N3 − d2

)) (λ− (a3 − 2α33N3 + α31N1 − d3
)) (

λ−
(
a1 − 2α11N1 − α13N3 − d1

))
+α13α31N1N3

 = 0 (19)

The system is stable if the following conditions are satisfied

(i). (a2 + α21N1) <
(
d2 + α23N3

)
(ii).

(
a1 + a3 + α31N1 < 2α11N1 + 2α33N3 + α13N3 + d1 + d2

)
(iii).

 a1a3 + a1α31N1 + 4α11α33N1N3 + 2α13α33N3
2

+ a1d3

> 2a3α11N1 + 2a1α33N3 + a3α13N3 + 2α11α31N1
2

+ 2d3α11N1 + d1d3 + d3α13N3

 (20)

4.3. Stability analysis of equilibrium point E7

The variational matrix for this case is

J =


a1 − α12N2 − α13N3 − d1 0 0

α21N2k
∗
1(λ) a2 − 2α22N2 − α23N3 − d2 −α23N2

α31N1 −α32N2 a3 − 2α33N3 − α32N3 − d3

 (21)

The characteristic equation is

(
λ−

(
a1 − α12N2 − α13N3 − d1

)) (λ− (a3 − 2α33N3 − α32N2 − d3
))

(
λ−

(
a2 − 2α22N2 − α23N3 − d2

))
− α23α32N2N3

 = 0 (22)

The system is stable if the following conditions are satisfied

(i).
(
a1 − α12N2 − α13N3 − d1

)
< 0

(ii).
(
a2 + a3 < 2α22N2 + 2α33N3 + α23N3 + α32N2 + d2 + d3

)
(iii).

 a1a3 + 2α23α32N3
2

+ 4α22α33N2N3 + 2α22α32N2
2

+ a2d3

> 2a3α22N2 + 2a1α33N3 + a3α23N3 + a1α32N2 + 2d3α22N2 + d2d3 + d3α23N3

 (23)
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4.4. Stability of the equilibrium point E8

Theorem 4.1. The interior equilibrium point E8

(
N1, N2, N3

)
is locally asymptotically stable if the condition (29) is satisfied.

Proof. Let the variational matrix is given by

J =


a1 − 2α11N1 − α12N2 − α13N3 − d1 −α12N1k

∗
2(λ) −α13N1

α21N2k
∗
1(λ) a2 − 2α22N2 + α21N1 − α23N3 − d2 −α23N2

α31N3 −α32N3 a3 − 2α33N3 + α31N1 − α32N3 − d3


(24)

With The characteristic equation

λ3 + b1λ
2 + b2λ+ b3 = 0 (25)

Where

b1 = − (λ1 + λ2 + λ3) ,

b2 = λ1λ2 + λ2λ3 + λ1λ3 + α13α31N1N3 + α12α21N1N2k
∗
1(λ)k∗2(λ) + α23α32N2N3

b3 = (α12α31α23N1N2N3k
∗
2(λ) + α13α21α32N1N2N3k

∗
1(λ) + λ1λ2λ3

− λ1α32α23N2N3 + λ3α12α21α32N1N2k
∗
1(λ)k∗2(λ) + λ2α13α31N1N3)

(26)

And

λ1 =
(
a1 − 2α11N1 − α12N2 − α13N3 − d1

)
,

λ2 =
(
a2 − 2α22N2 + α21N1 − α23N3 − d2

)
,

λ3 =
(
a3 − 2α33N3 + α31N1 − α32N2 − d3

)
Here

(b1b2 − b3) =

 −λ2
1(λ2 + λ3)− λ2

2(λ1 + λ3)− λ2
3(λ1 + λ2)− 4λ1λ2λ3

−(λ1 + λ2)(α12α21N1N2k
∗
1(λ)k∗2(λ))− (λ1 + λ3)α13α31N1N3 + (λ2 + λ3)α23α32N2N3

 (27)

By Routh-Hurwitz criteria, the system is stable if

b1 > 0, (b1b2 − b3) > 0 and b3 (b1b2 − b3) > 0. (28)

If (
a1 < 2α11N1 + α12N2 + α13N3

)
,
(
a2 + α21N1 < 2α22N2 + α23N3

)
,
(
a3 + α31N1 < 2α33N3 + α32N2

)
(29)

Therefore the interior equilibrium point E8

(
N1, N2, N3

)
is locally asymptotically stable if the condition (29) is satisfied.

5. Global Stability

Theorem 5.1. The interior equilibrium point E8

(
N1, N2, N3

)
is globally asymptotically stable.
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Proof. Let the Lyapunov function be

V (N1, N2, N3) =

3∑
i=1

Ni −Ni −Ni log

(
Ni

Ni

)
+

1

2
α12

∫ ∞
0

k1 (z)

∫ t

t−z
[N2 −N2]

2
dudz+

1

2
α21

∫ ∞
0

k2 (z)

∫ t

t−z
[N1 −N2]

2
dudz

(30)

The time derivative of ‘V’ along the solutions of equations (1) is

V 1 (t) =

3∑
i=1

[
Ni −Ni

]
Ni

N1
i +

1

2
α12

∫ ∞
0

k1 (z)
[
N2 −N2

]2
dz − 1

2
α12

∫ ∞
0

k1 (z)
[
N2 (t− z)−N2

]2
dz

+
1

2
α21

∫ ∞
0

k2 (z)
[
N1 −N1

]2
dz − 1

2
α21

∫ ∞
0

k2 (z)
[
N1 (t− z)−N1

]2
dz (31)

From the relation of (2) we have

V 1 (t) =
[
N1 −N1

](
a1 − α11N1 − α12

∫ ∞
0

k1 (z)N2(t− z)dz − α13N3 − d1
)

+
[
N2 −N2

](
a2 − α22N2 + α21N1

∫ ∞
0

k2 (z)N1(t− z)dz − α23N3 − d2
)

+
[
N3 −N3

]
(a3 − α32N3 − α31N1 − α32N2 − d3) +

1

2
α12

[
N2 −N2

]2
+

1

2
α21

[
N1 −N1

]2
− 1

2
α12

∫ ∞
0

k1 (z)
[
N2 (t− z)−N2

]2
dz − 1

2
α21

∫ ∞
0

k2 (z)
[
N1 (t− z)−N1

]2
dz

By proper choice of a1, a2 and a3

a1 = α11N1 + α13N3 + α12

∫ ∞
0

k1 (z)N2(t− z)dz + d1

a2 = α22N2 + α23N3 − α21

∫ ∞
0

k2 (z)N1(t− z)dz + d2

a3 = α33N3 + α31N1 + α32N2 + d3

= −α11

(
N1 −N1

)2 − α22

(
N2 −N2

)2 − α33

(
N3 −N3

)2
+ (α13 + α31)

(
N1 −N1

) (
N3 −N3

)
+ (α23 + α32)

(
N2 −N2

) (
N3 −N3

)
+

1

2
α12

[
N2 −N2

]2
+

1

2
α21

[
N1 −N1

]2
− 1

2
α12

∫ ∞
0

k1 (z)
[
N2 (t− z)−N2

]2
dz − 1

2
α21

∫ ∞
0

k2 (z)
[
N1 (t− z)−N1

]2
dz

(32)

Using the inequality

ab ≤ a2 + b2

2
,

∫ ∞
0

k1 (z)
[
N2 (t− z)−N2

]2 ≤ ∫ ∞
0

k1 (z) dz = 1,

∫ ∞
0

k2 (z)
[
N1 (t− z)−N1

]2 ≤ ∫ ∞
0

k2 (z) dz = 1,

= −α11

(
N1 −N1

)2 − α22

(
N2 −N2

)2 − α33

(
N3 −N3

)2
+

(α13 + α31)

2

[(
N1 −N1

)2
+
(
N3 −N3

)2]
+

1

2
α12

[
N2 −N2

]2
+

1

2
α21

[
N1 −N1

]2
+

(α23 + α32)

2

[(
N2 −N2

)2
+
(
N3 −N3

)2]− 1

2
(α12 + α21)

≤ −
∥∥∥∥(α11 −

1

2
α13 −

1

2
α31 −

1

2
α21

)∥∥∥∥ (N1 −N1

)2 − ∥∥∥∥(α22 −
1

2
α12 −

1

2
α23 −

1

2
α32

)∥∥∥∥ (N2 −N2

)2
−
∥∥∥∥(α33 −

1

2
α13 −

1

2
α31 −

1

2
α23 −

1

2
α32

)∥∥∥∥ (N3 −N3

)2 − 1

2
‖(α12 + α21)‖

V 1 (t) ≤ −µ
3∑
i=1

[
Ni −Ni

]2
< 0

Where µ = min
(
α11 + α22 + α33 − 1

2
α13 − 1

2
α31 − 1

2
α23 − 1

2
α32 − 1

2
(α12 + α21)

)
dV

dt
< 0,

Therefore the system is globally stable at interior equilibrium E8

(
N1, N2, N3

)
.

32



A. V. Paparao and N.V.S.R.C. Murty Gamini

6. Numerical Example

Let us define the two kernelsas follows k1(u) = e−αu, k2(u) = e−βu, α > 0, β > 0. The results are simulated for the system

of equations (2) Using MAT LAB simulation.

Example 6.1. Let a1 = 6, a11 = 0.01, a12 = 0.45, a13 = 0.3, a2 = 2.5, a21 = 0.43, a22 = 0.1, a23 = 0.32, a3 = 3,

a31 = 0.01, a32 = 0.12, a33 = 0.23, d1 = 0.02, d2 = 0.02, d3 = 0.03, N1 = 15, N2 = 15, N3 = 15.

For above mentioned parameters with different delay kernel values of α and β, the graphs are plotted and observe the

dynamics of the system. The rich dynamics is observed and is shown in the Table 1. The graphs for above kernels are shown

below: odd numbered figures shown the time series evolution and even numbered figures shows respective phase portraits

S.No Parameters values α and β and Converging equilibrium point E Nature of system

1 α = 0.5, β = 0.05 E (0.08, 4.62, 10.45) The system is asymptotically stable converging to a fixed equi-
librium point which exhibits periodic oscillations and limit cy-

cle behaviour .

2 α = 0.05, β = 0.5 E (2.01, 0.12, 12.9) The system is asymptotically stable converging to a fixed equi-

librium point which exhibits periodic oscillations and limit cy-
cle behaviour.

3 α = 0.05, β = 0.05 E (0, 0, 13) The prey and first predator populations are extinct. The sec-
ond predator population stabilizes at a fixed point. The system

exhibits limit cycles and periodic oscillations forms an asymp-
totically stable system.

4 α = 0.005, β = 1.5 E (6, 0, 13) The first predator population is extinct. The prey and second
predator populations are exist. The system is asymptotically

stable with periodic solutions.

5 α = 0.5, β = 1.5 E (5.4, 2.67, 11.75) The system is asymptotically stable and exhibit oscillatory be-

havior up to the time lag t = 40, later it stabilizes and con-
verging to fixed equilibrium point.

6 α = 0.05, β = 1.5 E (6, 0, 13) The first predator population is extinct, hence the prey and

second predator populations are surviving due to the lag in

prey, predator interaction, the prey population exhibit oscilla-
tory behaviour and exhibit limit cycles forms a stable system.

7 α = 1.5, β = 0.5 E (0.8, 15, 6) The system is asymptotically stable and exhibit oscillatory be-
havior up to the time lag t = 20, later it stabilizes and con-

verging to fixed equilibrium point.

8 α = 1.5, β = 0.05 E (0, 14, 5) The Prey species is almost extinct due to lime lags in first

predator, still it is serving. This lag also helps to sustain second
predator. Hence the system exhibits stable behaviour.

9 α = 1.5, β = 0.005 E (0, 0, 0) The three populations are extinct and the system is stable and

converging to origin.

Table 1.

For the above mentioned kernels the system is asymptotically stable and produces periodic solutions for the kernels shown

in above table. The kernels for α = 1.5, β = 0.005, the three populations are extinct. So delay has significant impact on the

dynamics of the system.
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Figure 1. α = 0.5, β = 0.05 E (0.08, 4.62, 10.45)

Figure 2. α = 0.05, β = 0.5 E (2.01, 0.12, 12.9)

Figure 3. α = 0.05, β = 0.05 E (0, 0, 13)
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Figure 4. α = 0.005, β = 1.5 E (6, 0, 13)

Figure 5. α = 0.5, β = 1.5 E (5.4, 2.67, 11.75)

Figure 6. α = 0.05, β = 1.5 E (6, 0, 13)
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Figure 7. α = 1.5, β = 0.5 E (0.8, 15, 6)

Figure 8. α = 1.5, β = 0.05 E (0, 14, 5)

Figure 9. α = 1.5, β = 0.005 E (0, 0, 0)
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7. Conclusion

A three species ecological model with two Predators is considered for investigation. Here two predators are competing for

the same Prey. The time delay is imposed on the prey and first predator species. The possible equilibrium points are

identified .The system is conditionally stability for the equilibrium states E5, E6,E7& E8 .The global stability is studied by

Lyapunov’s function. The dynamics of the system is studied using numerical simulation in support of stability analysis. We

consider a numerical examples in which the death rates of the populations are smaller than their birth rates. The impact

of delay with different kernel strength is studied and observes the rich dynamics as shown in table1. The delay kernels are

taken in [0.05, 1.5] for different combinations of two delay kernels, the systems is asymptotically stable, exhibit periodic

solutions and limit cycles. Hence Delay arguments play a significant role in system dynamics.
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