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Abstract: The present paper is concerned with the analysis of magneto-thermodiffusive wave propagation in a homogeneous,

isotropic, thermally and perfectly conducting elastic medium with temperature dependent mechanical properties. The
formulation is established under the purview of dual-phase-lag thermoelasticity theory with diffusion. The modulus of

elasticity is taken as a linear function of reference temperature. The resulting non-dimensional coupled equations are

applied to a specific problem of a half-space whose surface is subjected to a time dependent mechanical shock. The
analytical expressions for the displacement components, stresses, concentration and temperature field in the physical do-

main are obtained by employing normal mode analysis. Finally, numerical solution is carried out for copper material and

corresponding graphs are plotted to illustrate and compare theoretical results. Discussions have been made to highlight
the effects of phase lag parameters, temperature dependent modulus of elasticity, frequency and time on the physical

fields. Some particular cases of interest have been deduced from the present investigation. The phenomenon of a finite

speed of propagation is observed graphically for each field.
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Nomenclature

σij : Components of stress tensor

λ, µ : Lame’s constants

β1 : (3λ+ 2µ)αt

β2 : (3λ+ 2µ)αc

αt : Coefficient of linear thermal expansion

αc : Coefficient of linear diffusion expansion

ui : Components of the displacement vector

ρ : Density of the medium

eij : Components of the strain tensor

e : Cubical dilatation
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K : Thermal conductivity

cE : Specific heat at constant strain

a : Measure of thermodiffusion effect

b : Measure of diffusive effect

D : Thermodiffusion constant

τq, τT : Thermal relaxation times of dual-phase-lag theory

τ̂q, τ̂T : Diffusion relaxation times of dual-phase-lag theory

θ : T − T0

T : Absolute temperature

T0 : Temperature of the medium in its natural state assumed to be
∣∣∣ θT0

∣∣∣� 1

δij : Kronecker delta

p : P − P0

P : Chemical potential per unit mass at non equilibrium conditions

P0 : Chemical potential per unit mass of natural state

c : C − C0

C : Non-equilibrium concentration

C0 : Mass concentration at natural state

µe : Magnetic permeability

ε0 : Electric permittivity

~H : Applied magnetic field

~E : Induced electric field

~h : Induced magnetic field

~J : Current density vector.

1. Introduction

Two well-known generalized thermoelastic models that drew attention of researchers are [11] model and [6] model. In

Lord-Shulman (L-S) model, a thermal relaxation time parameter is introduced in the Fouriers law of heat conduction and

this model is also known as single-phase-lag model, whereas in the model of Green-Lindsay (G-L), two different relaxation

times are introduced in the constitutive relations and it is known as temperature rate dependent thermoelasticity. In the

next generalization to thermoelasticity, [7–9, 9] provided sufficient basic modifications in the constitutive equations that

permit treatment of a much wider class of heat flow problems. These models are labeled as GN-I, GN-II and GN-III.

Another important generalization is known as dual-phase-lag thermoelasticity, which is developed by [26] and [2]. Tzou

[26] introduced two different phase lags, one for the heat flux vector and the other for the temperature gradient. According

to this model, the classical Fourier’s law ~q = −K~∇T has been replaced by ~q(P, t + τq) = −K~∇T (P, t + τT ), where the

temperature gradient ~∇T at a point P of the material at time t+ τT corresponds to the heat flux vector ~q at the same point

at time t+ τq. The delay time τT is supposed to be caused by the microstructural interactions and it is also called the phase

lag of the temperature gradient. The other delay time τq is interpreted as the relaxation time due to the fast transient

effects of the thermal inertia and is called the phase lag of heat flux. Quintanilla [21] discussed the stability of dual-phase-lag

heat conduction. Kalkal [10] investigated three-dimensional thermoelastic problem with temperature-dependent modulus
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of elasticity in the dual-phase-lag model by employing normal mode analysis. Othman [18] established a three dimensional

model of generalized thermoelasticity in a homogeneous, isotropic elastic half-space under the effect of gravity field in the

context of dual-phase-lag model. (Deswal et al., 2018) analyzed the thermodynamical interactions in a two-temperature

micropolar thermoelasticity with gravity using normal mode analysis. The formulation is applied to the dual-phase-lag

thermoelasticity theory.

The theory of magneto-thermoelasticity is concerned with the effect of magnetic field on the elastic and thermoelastic

deformations of solid body and has received the attention of researchers. Paria [20] discussed the theoretical outline of the

development of magneto-thermoelasticity and also studied the propagation of plane magneto-thermoelastic waves in an

isotropic unbounded medium under the influence of a magnetic field acting transversely to the direction of propagation.

Sherief [23] examined a two-dimensional half-space problem subjected to a non-uniform thermal shock in the context

of electromagneto-thermoelasticity theory. Sinha [25] investigated the effects of rotation and relaxation time on wave

propagation using the methodology of Laplace transformation and eigenvalue approach. Mukhopadhyay [12] applied

the technique of Laplace transform to analyze the thermoelastic interactions in a homogeneous and isotropic medium

with a cylindrical cavity in the purview of different theories of thermoelasticity. Effects of rotation and magnetic field

on two-dimensional thermoelastic interactions in the purview of three theories, namely, L-S, GN-II and coupled theory,

has been studied by Othman [16]. Abbas, [1] solved a three-dimensional problem of generalized thermoelasticity using

normal mode analysis and eigenvalue approach in the context of Green-Naghdi model-II with temperature dependent

material properties. Said, [22] applied normal mode technique to analyze the influences of rotation and magnetic field

on a thermoelastic medium in the context of three-phase-lag model. Othman [19] discussed the effect of rotation and

gravitational field on a micropolar magneto-thermoelastic solid in the context of dual-phase-lag model by using normal

mode analysis.

Thermodiffusion in an elastic solid is due to the coupling of the fields of temperature, mass diffusion and that of strain.

Nowacki, [13–15, 15] developed the theory of thermoelastic diffusion by using a coupled thermoelastic model. Sherief

[24] extended the theory of thermoelastic diffusion and derived the governing equations for the generalized thermoelastic

diffusion problem in an elastic solid which allows the finite speeds of propagation for thermoelastic and diffusive waves.

Under different kind of loads, Deswal [3] examined various problems employing the theory of generalized thermoelastic

diffusion. Othman [17] investigated the disturbances in a homogeneous, isotropic reference temperature-dependent elastic

medium with fractional order generalized thermoelastic diffusion by employing normal mode analysis. Deswal [4] discussed

an axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order

heat conduction using Laplace and Hankel transforms.

The current manuscript is concerned with the investigation of disturbances in a homogeneous, isotropic, temperature-

dependent elastic medium with dual-phase-lag theory under the effect of diffusion. Normal mode analysis is used to obtain

the exact solutions for displacement components, stresses, temperature field and concentration. These expressions are

calculated numerically for a copper-like material and depicted graphically to observe the effects of phase lags, temperature

dependent parameter, frequency and time. The present study is motivated by the importance of thermoelastic diffusion

process in the field of oil extraction. This model is not only of theoretical interest, but may have practical applications in

various fields such as geomechanics, earthquake engineering, seismology, soil dynamics and other related topics.
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2. Field Equations and Constitutive Relations

Consider the field equations and constitutive relations in the context of homogeneous, isotropic, thermally and perfectly

conducting elastic medium with dual-phase-lags and diffusion as:

(i). the equation of motion

ρüi = σji,j + Fi. (1)

(ii). heat conduction equation with dual-phase-lags

K

(
1 + τT

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+

1

2
τ2q

∂2

∂t2

)
(ρcE θ̇ + β1T0ė+ aT0ċ). (2)

(iii). the constitutive equations

σij = 2µeij + δij(λe− β1θ − β2c), (3)

p = −β2e+ bc− aθ, (4)

eij =
1

2
(ui,j + uj,i). (5)

(iv). equation of mass diffusion

Dβ2

(
1 + τ̂T

∂

∂t

)
e,ii +Da

(
1 + τ̂T

∂

∂t

)
θ,ii +

∂

∂t

(
1 + τ̂q

∂

∂t
+

1

2
τ̂2q

∂2

∂t2

)
c = Db

(
1 + τ̂T

∂

∂t

)
c,ii . (6)

In the above equations, a comma denotes material derivative and the summation convention is used. Linearized Maxwell

equations governing the electromagnetic field for a perfectly conducting medium are taken as

curl ~h = ~J + ε0
∂ ~E

∂t
, (7)

curl ~E = −µe
∂~h

∂t
, (8)

~E = −µe
(
∂~u

∂t
× ~H

)
, (9)

div ~h = 0. (10)

3. Problem Formulation

Consider a homogeneous, isotropic, thermally and perfectly conducting elastic medium with diffusion and temperature-

dependent modulus of elasticity. We shall use the rectangular cartesian co-ordinate system (x, y, z), having the surface of

the half-space as the plane z = 0, with z-axis pointing vertically inwards as shown in Fig. A. The orientation of the primary

magnetic field ~H = (0, H0, 0) is taken towards the positive direction of y-axis. Due to the application of this magnetic

field, there arises in the medium an induced magnetic field ~h and an induced electric field ~E. Further ~h and ~E are small

in magnitude in accordance with the assumptions of the linear theory of thermoelasticity. We restrict our analysis to x-z

plane. Thus all the quantities in the medium are independent of the variable y. So the displacement vector ~u will have the

components

u = ux = u(x, z, t), v = vy = 0, w = wz = w(x, z, t). (11)
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Also, the medium is supposed to be initially at rest and the undisturbed state is maintained at uniform temperature. The

components of the initial magnetic field vector ~H are

Hx = 0, Hy = H0, Hz = 0. (12)

The electric intensity vector is normal to both the magnetic intensity and the displacement vector. Also, the electric intensity

vector ~E is parallel to the current density vector ~J , thus

Ex = E1, Ey = 0, Ez = E3, Jx = J1, Jy = 0, Jz = J3. (13)

From (7)-(10), one can obtain

E1 = µeH0
∂w

∂t
, E2 = 0, E3 = −µeH0

∂u

∂t
, (14)

h1 = 0, h2 = −H0e, h3 = 0, (15)

J1 = H0
∂e

∂z
− ε0µeH0

∂2w

∂t2
, J2 = 0, J3 = −H0

∂e

∂x
+ ε0µeH0

∂2u

∂t2
. (16)

Lorentz’s force ~F is given by the relation

~F = µe( ~J × ~H). (17)

Inserting (12) and (16) in (17), we can obtain the components of the Lorentz’s force ~F as

Fx = µeH
2
0

(
∂e

∂x
− ε0µe

∂2u

∂t2

)
, Fy = 0, Fz = µeH

2
0

(
∂e

∂z
− ε0µe

∂2w

∂t2

)
. (18)

Our goal is to investigate the effect of the temperature-dependence of the modulus of elasticity keeping the other elastic and

thermal parameters as constant. Therefore, we assume

E = E0f(θ), λ = E0λ0f(θ), µ = E0µ0f(θ), β1 = E0β10f(θ) β2 = E0β20f(θ), (19)
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where f(θ) = 1 − α∗T0 is a given non-dimensional function of temperature, λ0 = v
(1+v)(1−2v)

, µ0 = 1
2(1+v)

, β10 = αt
(1−2v)

,

β20 = αc
(1−2v)

and v is the Poisson’s ratio. In case of a temperature-independent modulus of elasticity, f(θ) = 1 and E = E0.

Taking into consideration (19), stress components are reduced to the forms

σzz = E0f(θ)[(λ0 + 2µ0)
∂w

∂z
+ λ0

∂u

∂x
− β10θ − β20c], (20)

σxx = E0f(θ)[(λ0 + 2µ0)
∂u

∂x
+ λ0

∂w

∂z
− β10θ − β20c], (21)

σzx = µ0E0f(θ)

(
∂w

∂x
+
∂u

∂z

)
. (22)

Plugging the components of Lorentz force and stresses into the equation of motion along with the consideration of two-

dimensional problem, the field equation (1) converts to

ρü = E0f(θ)

[
(λ0 + µ0)

∂e

∂x
+ µ0∇2u− β10

∂θ

∂x
− β20

∂c

∂x

]
+ µeH

2
0

[
∂e

∂x
− ε0µe

∂2u

∂t2

]
, (23)

ρẅ = E0f(θ)

[
(λ0 + µ0)

∂e

∂z
+ µ0∇2w − β10

∂θ

∂z
− β20

∂c

∂z

]
+ µeH

2
0

[
∂e

∂z
− ε0µe

∂2w

∂t2

]
. (24)

Heat conduction equation (2) and diffusion equation (6), in view of expressions (19), take the form

K

(
1 + τT

∂

∂t

)
∇2θ =

(
1 + τq

∂

∂t
+

1

2
τ2q

∂2

∂t2

)
(ρcE θ̇ + E0β10T0f(θ)ė+ aT0ċ), (25)

Db

(
1 + τ̂T

∂

∂t

)
∇2c = Dβ20E0f(θ)

(
1 + τ̂T

∂

∂t

)
∇2e+Da

(
1 + τ̂T

∂

∂t

)
∇2θ +

(
1 + τ̂q

∂

∂t
+

1

2
τ̂2q

∂2

∂t2

)
∂c

∂t
, (26)

where e = div ~u =
∂u

∂x
+
∂w

∂z
and ∇2 =

∂2

∂x2
+
∂2

∂z2
is the Laplacian operator. Now, we will use the following non-dimensional

variables to transform the above equations into non-dimensional forms:

(x′, z′, u′, w′) = c0η0(x, z, u, w), (t′, τ ′T , τ
′
q, τ̂
′
T , τ̂

′
q) = c20η0(t, τT , τq, τ̂T , τ̂q), σ′ij =

σij
ρc20

, θ′ =
β10E0

ρc20
θ, c′ =

β20E0

ρc20
c. (27)

where η0 =
ρcE
K

, c20 =
(λ0 + 2µ0)E0

ρ
. Using Helmholtz decomposition, the displacement components can be written as

u =
∂q

∂x
+
∂ψ

∂z
, w =

∂q

∂z
− ∂ψ

∂x
and ψ = (−~U)y (28)

where q(x, z, t) and ψ(x, z, t) are scalar potential functions and ~U(x, z, t) is the vector potential function.

Introducing the above dimensionless parameters and potentials functions, equations (23)-(26) recast into the following forms

(dropping the primes)

(
γ3∇2 − δ0

∂2

∂t2

)
ψ = 0, (29)(

γ1∇2 − γ2
∂2

∂t2

)
q − θ − c = 0, (30)[(

1 + τT
∂

∂t

)
∇2 −

(
1 + τq

∂

∂t
+

1

2
τ2q

∂2

∂t2

)
∂

∂t

]
θ −

(
1 + τq

∂

∂t
+

1

2
τ2q

∂2

∂t2

)
∂

∂t
(γ4∇2q − γ5c) = 0, (31)

ξ1

(
1 + τ̂T

∂

∂t

)
∇4q + ξ2

(
1 + τ̂T

∂

∂t

)
∇2θ +

[
ξ3

(
1 + τ̂q

∂

∂t
+

1

2
τ̂2q

∂2

∂t2

)
∂

∂t
−
(

1 + τ̂T
∂

∂t

)
∇2

]
c = 0, (32)

where

γ1 = 1 +
α0µeH

2
0

ρc20
, γ2 = α0δ0, γ3 =

µ0E0

ρc20α0
, γ4 =

E2
0β

2
10T0

Kρη0α0c20
,

γ5 =
aT0β10
Kη0β20

, ξ1 =
β2
20E

2
0

ρbc20α0
, ξ2 =

aβ20
bβ10

, ξ3 =
1

η0Db
and δ0 = 1 +

ε0µ
2
eH

2
0

ρ
.
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4. Normal Mode Analysis

The solutions of the physical variables can be decomposed in terms of normal modes in the following form

[u,w, q, ψ, θ, σij , c, p1](x, z, t) = [u∗, w∗, q∗, ψ∗, θ∗, σ∗ij , c
∗, p∗1](z) exp(ωt+ ιmx), (33)

where ω is the complex time constant (frequency), ι is the imaginary unit, m is the wave number in x-direction and

u∗, w∗, q∗, ψ∗, θ∗, σ∗ij , c
∗ and p∗1 are the amplitudes of the functions. By virtue of (33), equations (29)-(32) transform to the

forms

(D2 − ε1)ψ∗(z) = 0, (34)

(γ1D
2 − ε2)q∗(z)− θ∗(z)− c∗(z) = 0, (35)

(ε3D
2 − ε5)θ∗(z)− ωε4γ4(D2 −m2)q∗(z) + γ5ωε4c

∗(z) = 0, (36)

ε6(D4 − 2m2D2 +m4)q∗(z) + ε9ξ2(D2 −m2)θ∗(z)(ε9D
2 − ε8)c∗(z) = 0, (37)

where D =
d

dz
, ε1 = m2 +

δ0ω
2

γ3
, ε2 = γ1m

2 + γ2ω
2, ε3 = 1 + τTω,

ε4 = 1 + τqω +
1

2
τ2q ω

2, ε5 = ε3m
2 + ε4ω, ε6 = ξ1(1 + τ̂Tω),

ε7 = ξ3ω(1 + τ̂qω +
1

2
τ̂2q ω

2), ε8 = m2ε9 + ε7, ε9 = 1 + τ̂Tω.

Eliminating q∗(z), c∗(z) and θ∗(z) from equations (35)-(37), we get the following six order differential equation

[D6 + PD4 +QD2 +R][q∗(z), θ∗(z), c∗(z)] = 0, (38)

where

P =
A1B4 −B2ε3 −A3B1

B1ε3
,

Q =
B3ε3 +A3B2 −A1B5 −A2B4

B1ε3
,

R =
A2B5 −A3B3

B1ε3
,

A1 = ε4ω(γ1γ5 − γ4), A2 = ε4ω(ε2γ5 −m2γ4), A3 = ε5 + ωε4γ5,

B1 = ε9γ1 − ε6, B2 = ε9ε2 + ε8γ1 − 2m2ε6 B3 = ε2ε8 − ε6m4,

B4 = ε9(1 + ξ2), B5 = ε8 +m2ε9ξ2.

Equation (38) can be factorized as

[(D2 − λ2
1)(D2 − λ2

2)(D2 − λ2
3)][q∗(z), θ∗(z), c∗(z)] = 0, (39)

where λ2
n, (n = 1, 2, 3) are the roots of the characteristic equation

λ6 + Pλ4 +Qλ2 +R = 0, (40)

and are given by

λ1 =

√
1

3
[2p sin(q)− P ],

λ2 =

√
1

3
[−P − p(

√
3 cos(q) + sin(q)],
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λ3 =

√
1

3
[−P + p(

√
3 cos(q)− sin(q)],

p =
√
P 2 − 3Q, q =

sin−1(r)

3
, r =

−2P 3 + 9PQ− 27R

2p3
.

The solution of equation (38), which is bounded as z →∞, is given by

q∗(z) =

3∑
n=1

Mn(m,ω)e−λnz, (41)

θ∗(z) =

3∑
n=1

M ′n(m,ω)e−λnz, (42)

c∗(z) =

3∑
n=1

M ′′n (m,ω)e−λnz, (43)

where Mn,M
′
n and M ′′n are some parameters depending upon m and ω. Using solutions (41)-(43) in equations (35)-(37), we

get the following relations

θ∗(z) =

3∑
n=1

H1nMn(m,ω)e−λnz, (44)

c∗(z) =

3∑
n=1

H2nMn(m,ω)e−λnz, (45)

where

H1n =
ωε4[γ4(λ2

n −m2)− γ5(γ1λ
2
n − ε2)]

ε3λ2
n − ε5 − ωε4γ5

, H2n = γ1λ
2
n − ε2 −H1n.

The solution of equation (34) can be written as

ψ∗(z) = M4(m,ω)e−λ4z, (46)

where

λ4 =

√
m2 +

δ0ω2

γ3
.

5. Application

We consider a homogeneous, isotropic, thermally and perfectly conducting elastic medium with diffusion and temperature-

dependent modulus of elasticity occupying the half space z ≥ 0. The constants Mn’s will be determined by imposing the

proper boundary conditions.

Mechanical load on the surface of the half-space

The surface z = 0 is taken to be isothermal. Hence, the boundary conditions in this case are

σzz(x, 0, t) + σ̄zz(x, 0, t) = −P1(x, t), (47)

σzx(x, 0, t) + σ̄zx(x, 0, t) = 0, (48)

θ(x, 0, t) = 0, (49)

c(x, 0, t) = 0, (50)

where P1(x, t) is a given function of x and t and σ̄zj(j = x, y, z) is the Maxwell stress given in the form

σ̄zj = µe(Hzhj +Hjhz −Hkhkδzj). (51)
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Application of non-dimensionalization and normal mode analysis techniques defined in (27) and (33) respectively along with

P ′1 = P1

ρC2
0

transform the above boundary conditions to the forms

σ∗zz(z) + σ̄∗zz(z) = −P ∗1 , (52)

σ∗zx(z) + σ̄∗zx(z) = 0, (53)

θ∗(z) = 0, (54)

c∗(z) = 0, at z = 0, (55)

where

σ̄∗zz(z) =

3∑
n=1

H ′3nMne
−λnz, σ̄∗zx(z) = 0 and H ′3n = µeH

2
0 (λ2

n −m2).

With the aid of non-dimensional quantities defined in (27), the expressions of stresses (20), (22) and displacement components

(28), in combination with relations (41), (44)-(46), recast into the following forms:

u∗(z) =
3∑

n=1

(ιmMne
−λnz)− λ4M4e

−λ4z, (56)

w∗(z) =

3∑
n=1

(−λnMne
−λnz)− ιmM4e

−λ4z, (57)

σ∗zz(z) =

3∑
n=1

(H3nMne
−λnz)−H34M4e

−λ4z, (58)

σ∗zx(z) =

3∑
n=1

(−H4nMne
−λnz) +H44M4e

−λ4z, (59)

where

H3n =
λ2
n − ε10m2 −H1n −H2n

α0
, H34 =

ιmλ4(ε10 − 1)

α0
, H4n = 2mιε11λn,

H44 = ε11(λ2
4 +m2), ε10 =

λ0E0

ρc20
, ε11 =

µ0E0

α0ρc20
, (n = 1, 2, 3).

The boundary conditions (52)-(55), with the help of expressions (44), (45), (58) and (59), yield a non-homogeneous system

of four equations, which can be written in matrix form as



H31 +H ′31 H32 +H ′32 H33 +H ′33 −H34

H41 H42 H43 −H44

H11 H12 H13 0

H21 H22 H23 0





M1

M2

M3

M4


=



−P ∗1

0

0

0


. (60)

The expressions of Mn, (n = 1, 2, 3) and M4 obtained by solving the system (60), when substituted in (44), (45) and (56)-(59),

provide us the following expressions of field variables

u∗(z) =
1

∆
[ιm∆1e

−λ1z + ιm∆2e
−λ2z + ιm∆3e

−λ3z − λ4∆4e
−λ4z], (61)

w∗(z) = − 1

∆
[λ1∆1e

−λ1z + λ2∆2e
−λ2z + λ3∆3e

−λ3z + ιm∆4e
−λ4z], (62)

θ∗(z) =
1

∆
[H11∆1e

−λ1z +H12∆2e
−λ2z +H13∆3e

−λ3z], (63)

σ∗zz(z) =
1

∆
[H31∆1e

−λ1z +H32∆2e
−λ2z +H33∆3e

−λ3z −H34∆4e
−λ4z], (64)

σ∗zx(z) =
1

∆
[−H41∆1e

−λ1z −H42∆2e
−λ2z −H43∆3e

−λ3z +H44∆4e
−λ4z], (65)

c∗(z) =
1

∆
[H21∆1e

−λ1z +H22∆2e
−λ2z +H23∆3e

−λ3z], (66)
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where

∆ = (H31 +H ′31)d1 − (H32 +H ′32)d2 + (H33 +H ′33)d3 +H34d4,

∆1 = −P ∗1 d1, ∆2 = P ∗1 d2, ∆3 = −P ∗1 d3, ∆4 = P ∗1 d4,

d1 = −H44(H12H23 −H13H22),

d2 = −H44(H11H23 −H13H21),

d3 = −H44(H11H22 −H21H12),

d4 = H41(H12H23 −H13H22)−H42(H11H23 −H21H13)

+H43(H11H22 −H12H21).

6. Particular Cases

6.1. Case 1: without dual-phase-lags

To discuss the problem of wave propagation in a thermally and perfectly conducting elastic medium with diffusion in the

context of L-S theory, it is sufficient to set the values of τq, τ̂q, τT , τ̂T , ε4 and ε7 as τq = τ0, τ̂q = τ0, τT = 0, τ̂T = 0,

ε4 = 1 + τ0ω and ε7 = ξ3ω(1 + τ0ω). The corresponding expressions for displacements, stresses, temperature field and

concentration can be obtained from expressions (61)-(66).

6.2. Case 2: without temperature dependent parameters

If we remove the temperature dependence effect, then we shall be dealing a half-space problem in electromagneto-

thermoelastic medium with diffusion under dual-phase-lag theory. So, by putting α∗ = 0 in (19), which implies f(θ) = 1, the

corresponding expressions for displacements, stresses, temperature field and concentration can be obtained from expressions

(61)-(66).

7. Numerical results and discussion

With an aim to illustrate the theoretical results obtained in the preceding sections, we now present some numerical results.

The numerical work has been carried out with the help of computer programming using the software MATLAB. Material

chosen for this purpose is copper, the physical data for which is given as Othman et al. (2013):

ρ = 8954 kg m−3, ε0 = 10−9

36π
Fm−1, H0 = 107

4π
Am−1 µe = 4π(10)−7 Hm−1

αt = 1.78× 10−5K−1, αc = 1.98× 10−4m3 kg−1, K = 386 W m−1K−1,

cE = 383.1 J kg−1K−1, τq = 0.02 s, τT = 0.015 s, τ̂T = 0.15 s, τ̂q = 0.2 s, a = 1.2 × 104 m2s−2K−1, b =

0.9× 106 m5kg−1s−2, T0 = 293 K,

D = 0.85× 10−8 kg s m−3, E0 = 10.4× 1010 kg m−1 s−2, v = 0.33.

Utilizing the above values of parameters, values of the non-dimensional field variables have been evaluated and the results

are displayed in the form of graphs at different positions of z at x = 1.0. From application point of view, we have divided the

graphs into two categories. In first category (Figures 1-4), all the field quantities have been examined for four different cases:

(i) Dual-phase-lag magneto-thermoelastic diffusion theory with temperature dependence at ω = 1.0 [DPL (ω = 1.0), solid

line], (ii) Dual-phase-lag magneto-thermoelastic diffusion theory with temperature dependence at ω = 1.3 [DPL (ω = 1.3),

long-dashed line], (iii) Lord-Shulman magneto-thermoelastic diffusion theory with temperature dependence at ω = 1.0 [L-S

(ω = 1.0), small-dashed line] and (iv) Lord-Shulman magneto-thermoelastic diffusion theory with temperature dependence

at ω = 1.3 [L-S (ω = 1.3), dotted line]. All the figures in first category are displayed at t = 0.01 and α∗ = 0.001. In second
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category (Figures 5-8), the comparisons of the dimensionless physical quantities are made for the four different cases: (i)

with temperature dependent elastic moduli at t = 0.01 (α∗ = 0.001, t = 0.01, solid line), (ii) with temperature dependent

elastic moduli at t = 0.05 (α∗ = 0.001, t = 0.05, long-dashed line), (iii) without temperature dependent elastic moduli

at t = 0.01 (α∗ = 0.0, t = 0.01, small-dashed line) and (iv) without temperature dependent elastic moduli at t = 0.05

(α∗ = 0.0, t = 0.05, dotted line). All the figures in second category describing the effects of temperature dependence and

time are displayed at ω = 1.0.

7.1. Category I

Figure 1 depicts the distribution of displacement component w with distance z in the context of the two theories DPL

and L-S at ω = 1.0 and 1.3. It is observed that the distribution of displacement w begins with positive values, thereafter

decreases smoothly and ultimately tends to zero for z ≥ 3.6. The behaviour of displacement field based on the DPL

and LS theories for the two different value of ω is similar and it can also be noticed from the plot that the displacement

distribution for frequency (ω = 1.0) has large values in comparison to the values at frequency (ω = 1.3). Hence frequency

has a decreasing effect on the profile of displacement distribution, whereas phase lags are having a very small effect on this

distribution. Variation in normal stress σzz with spatial coordinate z has been displayed in Figure 2. We observe that the

behaviour of normal stress field is similar in nature for both theories at ω = 1.0 and 1.3 i.e it begins with negative values

on the boundary of half space, then decreases to minimum and thereafter tends to zero. We can see from the figure that

the value of normal stress for L-S theory is less (in magnitude) as compared to DPL and the stress decreases as we increase

the value of frequency ω.

In Figure 3, we have plotted the variation of temperature θ with distance z for the theories DPL and L-S at different values

of frequency ω. It starts with a zero value which is completely in agreement with the boundary conditions. It can be seen

that the maximum impact zone of frequency ω is around 0.3 ≤ z ≤ 1.0. The value of temperature θ is zero initially, gradually

increases in the range 0.0 ≤ z ≤ 0.6, attaining maximum value at z = 0.6 and then ultimately approaches to zero for both

the theories. Figure 4 shows the distribution of mass concentration c with distance z for both the theories (DPL and L-S) at

different values of frequency (ω = 1.0, 1.3). It starts with a zero value which is completely in agreement with the boundary

conditions. In the beginning, the vibration amplitude quickly rises to its maximum value in the range 0.0 ≤ z ≤ 0.7. It

can also be noticed from the plot that the mass concentration for DPL theory has large values in comparison to L-S theory,

which illuminates that the phase lags are having a significant increasing effect on the profile of concentration field. Similar

effects of frequency can also be noticed from the figure.

7.2. Category II

Figure 5 depicts the effects of temperature dependence and time on the variations of displacement component w with

distance z. Displacement field starts with positive values having magnitudes 4.196191, 4.367441, 3.453728 and 3.594678 for

four different cases respectively, which confirms the significant impact of time as well as temperature dependent parameter

on the profile. We see that the increment in the time increases the magnitude of displacement component w. Hence it has

an increasing effect on the profile of normal displacement. For temperature dependent and temperature independent cases

at t = 0.01 and 0.05, the effect is more pronounced in the range 0.0 ≤ z ≤ 0.7. Figure 6 exhibits that the distribution of

normal stress σzz versus distance begins from negative values in the absence and presence of temperature dependence at

different times (i.e t = 0.01, 0.05). We see that the increment in time as well as the absence of temperature dependence

increase the magnitude of stress component σzz. It is also seen that all the curves show similar trends and the temperature
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dependent properties have more significant effects on variations of normal stress as compared to time.

Figure 7 shows the variation of temperature field θ with distance 0.0 ≤ z ≤ 5.6. As expected, temperature field is having

a coincident starting point of zero magnitude for all the four cases, which is in quite good agreement with the boundary

conditions. It can be noticed from the plot that the temperature distribution for t = 0.05 has large values in comparison

to the values at time t = 0.01 for both temperature dependent and temperature independent properties. Temperature field

has a qualitative similar behaviour for all the four cases. As can be seen from the figure, the maximum impact zone of time

is around the range 0.5 ≤ z ≤ 0.9. We further observe that the temperature field exhibits significant sensitivity towards the

presence and absence of temperature dependence. Presence of temperature dependent elastic moduli has lowered down the

values of temperature distribution. Figure 8 has been plotted to illustrate the influences of temperature dependence and

time on the profile of mass concentration distribution. It is evident that (i) the values of mass concentration field recorded

in temperature independent case are less than those values recorded in temperature dependent case, (ii) with the increase in

time t, values of mass concentration increases. Also, the effect of the temperature dependence is significant for 0.3 ≤ z ≤ 3.2

and the influence of time t is prominent in the range 0.5 ≤ z ≤ 1.6.

8. Conclusions

By using normal mode analysis, behaviour of normal displacement, normal stress, temperature and mass concentration in

a homogeneous, isotropic, thermally and perfectly conducting elastic medium with diffusion and temperature-dependent

modulus of elasticity has been examined within the framework of dual-phase-lag theory. The theoretical and numerical

results reveal that all the considered parameters have significant effects on the field variables. According to the above

analysis, we can conclude the following points:

• All the considered fields are found to be sensitive towards the dual-phase-lag parameters except the displacement field.

In the presence of these parameters, the magnitudes of stress and mass concentration field increase but the magnitude

of temperature field decreases.

• In all the figures, it is clear that all the fields are restricted in a limited region which is in accordance with the notion

of generalized thermoelasticity theory and supports the physical facts.

• An increment in the value of frequency causes a decrement in the values of displacement and stress fields. On the other

hand an increment in the value of frequency causes an increment in the values of temperature and mass concentration

fields.

• We observe that the temperature dependent properties have a significant effect on all the physical fields. When we

remove these properties, stress and temperature fields increase in magnitude, mass concentration field decreases, where

as displacement field has both increasing and decreasing effects.
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Figure 1. Normal displacement vs. distance

Figure 2. Normal stress vs. distance

Figure 3. Temperature vs. distance
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Figure 4. Mass concentration vs. distance

Figure 5. Effect of temperature dependence and time on normal displacement

Figure 6. Effect of temperature dependence and time on normal stress
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Figure 7. Effect of temperature dependence and time on temperature

Figure 8. Effect of temperature dependence and time on mass concentration
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