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1. Introduction

Consider the initial value problem for the Benjamin-Bona-Mahony-Peregrine-Burgers(BBMPB) equation

Ut — Ugat — AUz + YUz + euux + /Buzzz =0

u(z,0) = uo(x)

where « is a positive constant, 6 and 8 are nonzero real numbers. The BBMPB equation can be (and is more conveniently)

written in the following non-local form

Ut + Quug = 95(1 — axz)_l(—Quum + auy — yu — Bugy + Gui)

The non-local form can be obtained from BBMPB equation as follows.

Ut — Ugzt — QUgz + YUz + euum + Bu:c:cac =0

adding and subtracting the terms 30u, . and Qutgyy

Ut + ouua: — Ugat — ouuzzz + Huuzzz - Bouzuzz + geuzuzz — QUgy + ’Yuz + ﬁuzzw = O

Ut + euuz — Ugzt — euuzzz — 39uzuzz = _euuzzz - 30uzuzz + QUgr — YUz — ﬂuzzz
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(1 — 83)(%5 + Guum) = —Oulprr — OUgUzy — 20UzUzy + QUzy — YUz — ﬂuzmx

(1 — 32)(ug + Ouny) = Oy [—Outizs + Quy — YU — Buge + Oul]
multiply bothsides by (1 — 92)™" we get
(ur + Ouny) = (1 — 82) " 0p [~ Outias + 0ty — YU — By + Ou’]
written this way, the BBMPB equation is a special case in the family of nonlinear wave equations of the form
ut + auugy = L(u).

2. Preliminaries

Definition 2.1. A Schwarz function j(z)eS(R) satisfying 0 < j(€) < 1 for all £€R, with j(&) =1 for |¢] <1 and j(£) =0
for €] > 2. We then define je(z) = % an(en)emz‘ Given je(x), we define Friedrichs mollifier on a test function f by the

convolution jef = je* f.

Definition 2.2. For any s€R the operator A° = (1 — 82)%/? is defined by
Asu(k) = (14 k) ?a(k)

where U is the fourier transform

The inverse relation is given by

Then, for ue H*(T) we have

1 S|~ s
el ry = 5 D (1+ K2 (k) = Al
kEZ

where A7 = (1 —92)7".

Theorem 2.3. For r < s we have

I 17— Jellcasmm=o(e")
Also, for any test function f, we have for all s >0, J.f — f € H®. We similarly have the growth estimate when r > s.

Theorem 2.4. Let r > s, then for any test function f
| Jef llar< e | f |lm

Let A = (1—8,2) so that for any test function f, we have F(A*f) = (14k>)* f(k). Then we have the following basic estimates.

Lemma 2.5. Let f be any test function, and o € R, then A% f|l 2 = |fll 4o, ||(1 - 812)71f||H0 = [[fllgo—2, 10efll e <
| fll got1- We define the commutator [A®, f] = A° f — fA®, in which a test function f is regarded as a multiplication operator.

We will use the following negative Sobolev space estimate.
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Proposition 2.6. If s > %,r—i— 1>0andr <s—1, then

1A, f1gllpz < esrllfll s N9l

Also, we will using the Kato-Ponce commutator estimate.

Proposition 2.7. If s > 0 then

A, f1gll 2 < es(10afll e [|A° gl Lo + 1A Fll 2 19l o)

Finally, replacing A with the Je operator, we have the commutator estimate.

Proposition 2.8. Let J. be the mollifier defined above, and f,g be two test functions, then

176, gl < ClAN L N9l - -

Lemma 2.9 (Algebra Property). Let s > % and f,g € H®, we have

1 9llgs < s 1F s Nl -

Lemma 2.10 (Sobolev Interpolation Lemma). Let so < s < s1 be real numbers, then

s1—3s s—sq

Il eze < I Es0™ I

Lemma 2.11. Let s > 0 and Je be defined as in Jef(x) = jef(x). Then for any fEH®, we have J.f — f in H°.

Lemma 2.12. Let w be such that ||0yw||, . Then there is a constant ¢ > 0 such that for any fEL?, we have
IJe; w0z fll L2 <c 1 Fll 2 102wl 2 -

Proposition 2.13. Given 0 = 3 + 1 and 1 < s < o, there exists €(0,1) such that HfHHS% <c||fllgor and

ull 12 <ellull oo

Lemma 2.14. If s > k + 2, where k is a nonnegative integer then H*(R"™) C C*(R™) N L™ (R™), where the inclusion is

continuous. In fact,

> 10%ull e <Ci llull e

la|<k

where Cs is independent of u.

Lemma 2.15. Let o€ (%, 1), then
1f 9l o1 <N flgro—1 llgll 7o -

Lemma 2.16. Given ¢>0, let u = u(x)eH? be any function such that ||uz|| . < o0o. Then the there is a constant c,

depending only on q such that the following inequalities hold

2
< cqlluall oo |47 o

/ AuA(uug)dx
R

< e llull poo llull7a

/AquA(uQ)dx
R

On the other hand, one may estimate the following integral using integration by parts

1 2
<5 Ifell oo el -

/ fo(A%)dz
R

1
2

/ FAuN U dx
R




Existence and Continuous Dependence of the Solutions of the Benjamin-Bona-Mahony-Peregrine-Burger’s Equation on the Circle

3. Local Well-posedness

To prove well-posedness, we employ a Galerkin approximation argument. The strategy will be to mollify the nonlinear
terms in the BBMPB equation to construct a family of ODEs. Then, we will extract a sequence of solutions to the ODEs,
which converges to the solution of the BBMPB equation in an appropriate space. We apply the mollifier J. to the BBMPB

equation to construct family of ODEs in H*.

Ote + 0Jc(Jeue JeOzue) = 05 (1 — 8z2)71[—0(u68§u6) + aOpUe — YU — ﬂazue + 0(81u6)2]

Ue(x,0) = uo(x)

Using the fact that

AP=a-a0)"

The non local form can be written as
Orue + 0Jc(Jeue JeOpue) = 81)\72[—0(%621;5) + @OpUe — YUe — 5a§u5 + 9(8zu5)2}

Our strategy is now to demonstrate that the Cauchy problem satisfies the hypotheses of the Fundamental ODE theorem.

We will therefore obtain a unique solution uc(.,t) € H®, |t| < T., for some T. > 0.

Energy estimate and lifespan of solution u,

For each ¢, there is a solution u. to the mollified BBMPB equation. The lifespan of each of these solutions has a lower
bound T.. In this subsection, we shall demonstrate that there is actually a lower bound 7" > 0 that does not depend upon e.
To show the existence of T', we shall derive an energy estimate for the u.. Applying the operator A* to both sides of i.v.p,

multiplying by A\ue, and integrating over the torus yields the H®-energy of wue.
/x\satue)\suedx + / AN 0Jc(Jeue JeOzue) N ueda = //\Sax)\_2[—9(u53§ug) + aBptie — Yue — BO2uc + 0(8xu5)2]/\su€daz

Consider the first term of the left hand side

L 1d
[ 3o uds = 5 5 el
1d 2 s s s 21 2
5% ||u6||HS —|—/A 9J5(J5u6J681u6)A uedx = /)\ 81(1 — Ox ) [_a(ueamue) +Oéag;LLe

— yue — BOZuc 4 0(8pue)’ |\ ucda
using the fact that

A= (1-dP)

1d

3 llwell?s = —/)\SOJE(Jeuejeaxue))\suedm—l—/)\SGIA_Za@qu)\Suedx

—V/Asazx?uevuedx—ﬂ/AsazA*QaiueAsuedxa/Asamx“'(azue)%suedx

To bound the energy, we will need the following Kato-Ponce commutator estimate. We now rewrite the first term by first

commuting the exterior J. and then commuting the operator A\* with (Jeu.) arriving at

G/ASJC(JeuEJEBIuE))\Sude = G/AS[JEueazJeue])\SJeueda:
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adding and subtracting the term on the right hand side 6 f(JeuE))\SazJeue)\sJeusdm

O/ASJE(JEuEJeazuC))\Suedx = 0//\5[J6u65‘zJ6u5])\5J5u6dx —0/(Jeu5))\SBIJEuE)\SJeude
+ 9/(Jeue))\581J€ue/\5J5u5dx

Q/ASJS(JEungazuE))\Suedx = 9/[/\8,Jeué]ﬁzJeué)\sJeuédm+0/(J€ue)/\sazJ€u5/\SJeu€dx

Setting v = Jecue, we can bound the first term of right hand side by first using the Cauchy-Schwarz inequality and then

applying the lemma (Kato-Ponce) and using the Sobolev theorem, we get

IN

0 [\ 0losoXvde < N l0rl,z X702

IN

(s (N0l L2 1000 oo + 1020]| poo [|X* B0 2) ) 0]l
(es (Ivll gz 1020l oo + 110201l oo 100l a1 )) 0]l g7
(es (I

(es (Iollgzs 0l gze + M0l 0l gre)) 0l e

IN

IN

U”Hs ”afvv”Loo + ||811’||L0o HUHHb)) HUHHS

IN

= 2¢ ol

Next consider the second term of eqn , integrating by parts and using the Sobolev theorem, we have

1

_ ! ’/(Asv)anvdx

‘9/1}8;;)\51))\5%& 5

IN

1020l oo [0l

IN

2
[0l s (0]l

3
[0l s

Combining, we get

IN

G/ASJG(Jeuejeagcue))\sude (20 + 1) 0],

IN

3
(20 + 1) [ e

A

3
(20 + 1) fJucll%.

Consider the second term of the right hand side is bounded by first applying the Cauchy-Schwarz inequality and then using

the estimate and the algebra property of H®, we get

/Asazxzajeazuxuedw < XN 0AF b uc| o A ue 2
< |0eA P adue| ;. llucll s
< laOoue|l s —1 [Jwell g
< o |ue| s el s
< el grs lwell g
= luel7re
oA < [0 Il
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< [0 A e[y Nutell g7
< el grs—1 uell gs
< luells
B / NN ueN wedr < [N 0eAT2O0ue| 5 X uell 2
< [J0eA 0wy el
< |02 ue| 4o lttell e
< |Ozttell ot [tell gre
< wel] pate el e
< el grs llwell s
< HUGHHS ||u€||H5
= ||uell?.
O/Asaz)\d(azus)z)\suediv < H)‘saz)‘iz(azuéfHL? 1A el 2
< 0N 2000l | . el g
< [1@sue)|] focn lluell e
< luelfge lluell g
< el
1d 2 3 2
5 Iellzre < es +3) lluellfre + 3 Jluel |,
%%Iluellis < (2es +3) luellyye + 3 luell

3
= (2¢s +6) [lucllp-

Solving this inequality, gives

ol )
uc (). < H
lrae (O < <1f<2cs+6>t||uo||Hs

which yields the minimum lifespan, T and energy estimate

1
TS —m————
2(2c. +6) [uall -
and
e @)l s < 2luoll s
for |t| < T.

Refinement 1

Claim : To show that there exists a subsequence {u.;} of {uc} which converges in L*°([-T,T]; H®).

The family {uc} is bounded in L*([-T,T]; H®), since the family {u.} is bounded (by the previous energy estimate) in
C([-T,T); H®). Since L*°([~T,T); H®) is the dual of L'([~T,T]; H*), we may apply Alaoglu’s theorem. By Alaoglu’s
theorem there exists a subsequence {u.;} of {u.} which converges to an element u € L'([=T, T]; H®) in the weak* topology.

Moreover, the limit point u, satisfies the same size estimation bound and minimum lifespan estimate as the u. solutions.

Refinement 2
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Claim : To show that there is a further subsequence of our sequence {u.} which converges to u in C([-T,T]; H*™1).
To prove this we will employ Ascoli’s theorem. First to prove equicontinuity, let ¢1 and to € [T, T]. By the mean value

theorem

lue(tr) — ue(t2)ll o < sup [|Oruell fra—n [t2 — tof (1
te[—T,T]

Now consider the mollified equation
Ortie + 0Jc(Jeue JOrue) = Ox A 2 [—0(ucD2uc) + adptic — e — BO2uc + 00,u?]
Applying norm on both sides and using the triangle inequality and lemma, we have

[8rucll gemr = [|02A 2 [~0(wed2uc) + aBauc — yue —BOuc + 005ul]|| .,

IN

|0: A2 0ucd2uc| oy + |02A " Q0tue| ey + 1=7tell o — ||BO3uc|| yues + [|00x02]| 1yaes

IN

alluoll s + blluoll e + llwoll 4
Substituting in inequality (1), we get
lue(tr) = ue(t2) || o < (allwollis +blluollfe + clluollge) [tr — t2

which implies {ue(t)} is equicontinuous. Next, we observe that for each t € [0,77] the set U(t) = {ue} ¢ (o) is bounded in
H*. Since T is a compact manifold, the inclusion mapping i : H* — H®"! is a compact operator, and therefore we may
deduce that U(t) is a precompact set in H*~'. As the two hypotheses of Ascoli’s theorem have been satisfied, we have a

subsequence {u., } that converges in ([—T, TY; Hsfl). By uniqueness of limits, this subsequence must converge to u.
Refinement 3

Claim : To refine the subsequence we show that the limit u is in the space C' ([—T, T7; HS_") for all o € (0,1].
As in the previous case, we will prove that the family u. satisfies the hypotheses of Ascoli’s theorem, and to do so we will
show that the sequence wue is equicontinuous in H°? and uniformly bounded. In fact, we will show that the following

modulus of continuity
[ue(tr) — ue(ta)ll gemo < (luollfys + luollzye + lluoll ) [t1 — ta2|” (2)
To prove the above inequality, we begin by estimating
lue(tr) = uc(t)ll oo < el (oo b1 = t2/7- ®3)

By definition of the Holder norm

(4)

[ue(tr) — ue(t2)ll oo
€ o LHs—o) — e(t s—o
[ullgm ey = P ue(@llge—e + sup B

The first term of the right hand side of (4) is bounded by 2||uol|| 4. using the Sobolev embedding theorem followed by

estimate.

sup ue(t)ll ga—o < sup  |Jue(®)ll e < 2|uoll s -
te[-T,T) te[—=T,T)
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For the second term is more difficult, and we will open the norm to analyze it. We have

1/2
lee(ts) = wet)llee _y oo (Zﬂ R ) @(m)F)

|ty — ta|” ;
First, as o € (0,1), we have

1 1 7 1
<|(14++———> <l+—5.
(L4 k)7t — taof7 — < (L4 k)|t — t2|2> T (R —t2f?

Using this inequality

(1+K)®
[t — t22(1 + K2)

2\s 1/2
e (Z(HW @) = @) + 3 s |@<k,t1>—@<k,tz>>
& 1

(1+k%)° <
(1 + k2)‘7|t1 — t2|2‘7 -

(14K +

[ty —t2|” k — o2 (1 + k2)

l[ue (1) — ue(t2)ll gra—o
[t1 — ta]”

IN

2 sup HuSHHS + ||u€HCl([—T,T];HS—1) .
te[—=T,T]

Using the solution size estimate and the estimate found in the previous refinement, we obtain
3 2
el o (1-mmysms-oy < (44 ) uoll s + alluollys +blluollzs

Substituting into inequality (3) we establish a uniform modulus of continuity, and we conclude that the family {u.} is
equicontinuous in the variable t. The precompactness condition is established in exactly the same fashion as the previous
case as the inclusion mapping of H® into H*™ 7 is a compact operator. As the two hypotheses of Ascoli have been satisfied,
we may extract a subsequence that converges to v in C ([07 T);H Sf"). Similarly, we can refine the sequence {u.} several
times, by finding a sub-sequence of solutions which converges to a solution to BBMPB equation. Hence the proof of existence

of a solution to the BBMPB equation.

Continuity of the data-to-solution map
Here we show that the dependence of the solution of the BBMPB equation on initial data is continuous.

Theorem 3.1 (Continuous dependence). The data-to-solution map uo — u(t) for the cauchy problem of the BBMPB

equation is continuous from H° — C(I; H®).

Proof. TFixuo € H® and let {uo,n} C H® be a sequence with lim wuo» = uo. If u is the solution to the BBMPB equation
n—-o0
with initial data uo and if u, is the solution to the BBMPB equation with initial data o, we will demonstrate that

lim w, =wu in C(I; H®). Equivalently, let > 0. We need to show that there exists an N > 0 such that

n—oo

n>N=|u-— u"HC’(I;HS) <n
As we will be using energy estimates in the H® norm, to get around the difficulty of estimating the terms, we will use the
Je convolution operator to smoooth out the initial data. Let £ € (0,1]. We take u® be the solution to the Cauchy problem

for BBMPB equation with initial data J.uo = je * uo and u;, be the solution with initial data Jeuo,. Applying the triangle

inequality, we arrive at

flu— un“c(I;Hs) < lu— UEHc([;Hs) + [u” = Ui”cu;Hs) + [Jun — Un”o(z;Hs) :



R. Gokilam

We will prove that each of these terms can be bounded by % for suitable choices of ¢ and N. We note that the ¢ we have
introduced will be independent of N and will only depend on 7; whereas, the choice of N will depend on both 1 and e.

Estimating [[u® — ug|[q(j,p+): Setting v =u® —u;

Ou® = (—0u"9,u’) + A"29, (—Ousazue + adguf —yut — BO2uE + 0(8zu5)2)

s, = (—0us0,us) + A 20, (—0us,dzus;, + adauy, — yuy, — BOZuE + 0(81u2)2)

Subtracting
Or(ue — ) = (—Ou8pu® + 0uS0,us) + N 20, (—0u pu® + 0uS0,us) + A 20,00, (u° — us)
—y(u = up) = B (uT — up) + 6 ((8:u7)” — (Dou7)?)
Let
F(u®) = (—0udu’) + A\ 20, (—0udpu) + A 20,0(dpu’)?
Let

Fus) = (—0us,0pus) + A 20, (—0u,0pus) + A 20,0(05us,)?
(V) = (—0uT Dt + Ous,0oul) + N 200 (—0upu’ + Ous,8,ul) + X 20,00, (v)
— A7 20:7(v) = AT20.802(v) + A 20:0 ((02u°)? — (Osus)?)

0i(v) = (F(u) = F(uz)) + A 20x {ads (v) = (v) = B2 (v) }
We calculate the H® energy of v.
/)\S(?tv)\svdw = //\5 (F(u®) — F(uy,)) A vdz —l—/)\s)\*QBZ {@d,(v) — ~(v) — BOZ(v)} Nvdx

Applying Cauchy-Schwarz inequality

| =

@Il <IN (F W) = Fi)ligz X0l 2 + [|AA?00 {ada (v) —5(v) = BO; ()} ] 1 X0l 2

IF () = Fup)ll g [10ll g7 + [|A7202 {@da(v) = 7(v) = BOZ(0) }| o 0]l -

N[ =
ISH

t

IN

Consider the first term of inequality
IF (@) = Flup)ll e [0l < ol

Consider the second term of inequality and using the triangle inequality

220 {02 (v) — 1) — BEW | [ollge < N 200002 0) o + [N 000 + 8 [A20:820)] .
< alllgs + vl gs-r + [0l s
M
< T ol

Where M is positive constant. Combining the above estimates, we obtain the differential inequality

1 d 2 M 2
st < (142 1ol
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Let
Cs M
(14 =
e -0+ 3)
1d 2 Cs 2
- < =5
5o ol < 2 ol (5)

for some constant cs, Solving (5) gives for all t € T

csT
e = [[v(0)l s

IA

(@)l g+

Cs

T
e T |luo — uonll s (6)

IA

We observe that (6) does not place any constraints on &; however, handling the first and third terms of (6) will require € to

be small. After € is chosen, we take N sufficiently large so that

csT
luo = wonll e < ()€

there by yielding

n
||U€—Ui||C(I;H5) < 3

Estimation of |lu — u®||o(;, ysy and [[u® — ug o, ey Let

Opu = —(Oudyu) + N 20 [—Oudiu + adyu — yu — BOou + 0(0,u)?]

Ou’ = (—0u"0u”) + A 20: (—0u02u° + adou’ — yu® — BIu° + 0(9,u”)?)

As the differences u® — u and u;, — u, satisfy the same inequalities, we will use the unified notation v = v — u and

v = uj, — un and omit all n subscripts in formulae until we reach the point where different analysis for each case is needed.
In constructing this Cauchy problem for v, we note that as we are taking energy estimates in H®, we will want to avoid
having any u coefficients for the Burgers-type part of the equation as this may give rise to an expression of the form ||u|| ;.41
which is undefined. There is no such problem for the nonlocal part of the equation so we will have F'(u® — F'(u)) as this can

be estimated.

O(u— ue) = A0 [0 (u — ue) — y(u — ue) — Bz (u — ue)] — [F(u) — F(u)]
O = N\ "20,[ad,v — yv — BOv] — [F(u) — F(u))

v(z,0) = Jeuo — uo
Now let us obtain the H® energy of v,
/)\Sc?tv)\svd:v = /)\5)\7281 [@8,v — v — BOZVI N vdz — //\S (F(u) — F(u®)) N vdx
Applying the Cauchy-Schwarz inequality

1d sy — s s € s
@ @) 17e < [N A7*0[a0ev — yv = BOZ0]| Lo [N 0l 2 + IX°(F(u) = F)]l 2 X0l 2
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1d - B
5 31 PO < [A720:[a00 — yv = Bzl . 10l gre + 1(F(w) = F@ )l e [19] o

Consider the second term of the inequality
2
1E(u) = F@ )l s 0llge < N0l
Consider the first term of the inequality and using the triangle inequality

|A™202[00sv — v — BOIV]|| . [|0]] s

IA

PN 0e00s0]] . + IV F0e70]| g + 08050

IA

alollgs +yllollge-1 + Bllvll gos

Choosing M a positive constant

M

"/\7281[04811; e 55’3”}”1{5 vl s < =

2
[0] s

Combining the above estimates, we obtain the following differential inequality

1d 2 M 2
st < (142 1ol

As in the previous estimation we will get

n
[Jlu — “EHC([;HS) < 3
Similarly we can obtain
u® —u, o< 1
|| e < 3
By combining all the inequalities ,we get
n.,.n,n
llu— Un”c([;Hs) < 3 + 3 + 3
Hence
”u_uan(I;Hs) <
Hence the data-to-solution map is continuous. O
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