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1. Introduction

Consider the initial value problem for the Benjamin-Bona-Mahony-Peregrine-Burgers(BBMPB) equation

ut − uxxt − αuxx + γux + θuux + βuxxx = 0

u(x, 0) = u0(x)

where α is a positive constant, θ and β are nonzero real numbers. The BBMPB equation can be (and is more conveniently)

written in the following non-local form

ut + θuux = ∂x(1− ∂x2)−1(−θuuxx + αux − γu− βuxx + θu2
x)

The non-local form can be obtained from BBMPB equation as follows.

ut − uxxt − αuxx + γux + θuux + βuxxx = 0

adding and subtracting the terms 3θuxuxx and θuuxxx

ut + θuux − uxxt − θuuxxx + θuuxxx − 3θuxuxx + 3θuxuxx − αuxx + γux + βuxxx = 0

ut + θuux − uxxt − θuuxxx − 3θuxuxx = −θuuxxx − 3θuxuxx + αuxx − γux − βuxxx
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(1− ∂2
x)(ut + θuux) = −θuuxxx − θuxuxx − 2θuxuxx + αuxx − γux − βuxxx

(1− ∂2
x)(ut + θuux) = ∂x[−θuuxx + αux − γu− βuxx + θu2

x]

multiply bothsides by (1− ∂2
x)−1 we get

(ut + θuux) = (1− ∂2
x)−1∂x[−θuuxx + αux − γu− βuxx + θu2

x]

written this way, the BBMPB equation is a special case in the family of nonlinear wave equations of the form

ut + auux = L(u).

2. Preliminaries

Definition 2.1. A Schwarz function j(x)∈S(R) satisfying 0 ≤ ĵ(ξ) ≤ 1 for all ξ∈R, with ĵ(ξ) = 1 for |ξ| ≤ 1 and ĵ(ξ) = 0

for |ξ| ≥ 2. We then define jε(x) = 1
2π

∑
n ĵ(εn)einx. Given jε(x), we define Friedrichs mollifier on a test function f by the

convolution jεf = jε ? f .

Definition 2.2. For any s∈R the operator Λs = (1− ∂2
x)s/2 is defined by

ˆΛsu(k) = (1 + k2)s/2û(k)

where û is the fourier transform

û(k) =

∫
T

e−ikxu(x)dx

The inverse relation is given by

u(x) =
1

2π

∑
k∈Z

û(k)eikx

Then, for u∈Hs(T ) we have

‖u‖2Hs(T ) =
1

2π

∑
k∈Z

(1 + k2)s|û(k)|2 = ‖Λsu‖2L2(T ) .

where Λ−2 = (1− ∂2
x)−1.

Theorem 2.3. For r < s we have

‖ I − Jε ‖L(Hs;Hr)= o(εs−r)

Also, for any test function f, we have for all s > 0, Jεf −→ f ∈ Hs. We similarly have the growth estimate when r > s.

Theorem 2.4. Let r ≥ s, then for any test function f

‖ Jεf ‖Hr≤ εs−r ‖ f ‖Hs

Let Λ = (1−∂x2) so that for any test function f, we have F(Λsf) = (1+k2)sf̂(k). Then we have the following basic estimates.

Lemma 2.5. Let f be any test function, and σ ∈ R, then ‖Λσf‖L2 = ‖f‖Hσ ,
∥∥(1− ∂x2)−1f

∥∥
Hσ

= ‖f‖Hσ−2 , ‖∂xf‖Hσ ≤

‖f‖Hσ+1 . We define the commutator [Λs, f ] = Λsf − fΛs, in which a test function f is regarded as a multiplication operator.

We will use the following negative Sobolev space estimate.
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Proposition 2.6. If s > 3
2
, r + 1 ≥ 0 and r ≤ s− 1, then

‖[Λr∂x, f ] g‖L2 ≤ cs,r ‖f‖Hs ‖g‖Hr

Also, we will using the Kato-Ponce commutator estimate.

Proposition 2.7. If s ≥ 0 then

‖[Λs, f ] g‖L2 ≤ cs(‖∂xf‖L∞
∥∥Λs−1g

∥∥
L2 + ‖Λsf‖L2 ‖g‖L∞)

Finally, replacing Λ with the Jε operator, we have the commutator estimate.

Proposition 2.8. Let Jε be the mollifier defined above, and f,g be two test functions, then

‖[Jε, f ]g‖L2 ≤ C ‖f‖Lip ‖g‖H−1 .

Lemma 2.9 (Algebra Property). Let s > 1
2

and f, g ∈ Hs, we have

‖fg‖Hs ≤ cs ‖f‖Hs ‖g‖Hs .

Lemma 2.10 (Sobolev Interpolation Lemma). Let s0 < s < s1 be real numbers, then

‖f‖Hs ≤ ‖f‖
s1−s
s1−s0
Hs0 ‖f‖

s−s0
s1−s0
Hs1 .

Lemma 2.11. Let s > 0 and Jε be defined as in Jεf(x) = jεf(x). Then for any f∈Hs, we have Jεf → f in Hs.

Lemma 2.12. Let w be such that ‖∂xw‖L∞ . Then there is a constant c > 0 such that for any f∈L2, we have

‖[Jε, w]∂xf‖L2 ≤c ‖f‖L2 ‖∂xw‖L2 .

Proposition 2.13. Given σ = n
p

+ 1 and 1 < s < σ, there exists θ∈(0, 1) such that ‖f‖
H
s,
p
θ
≤c ‖f‖Hσ,p and

‖u‖
L

p
1−θ
≤c ‖u‖Hs−1,p .

Lemma 2.14. If s > k + n
2

, where k is a nonnegative integer then Hs(Rn) ⊂ Ck(Rn) ∩ L∞(Rn), where the inclusion is

continuous. In fact, ∑
|α|≤k

‖∂αu‖L∞ ≤Cs ‖u‖Hs ,

where Cs is independent of u.

Lemma 2.15. Let σ∈
(
1
2
, 1
)
, then

‖fg‖Hσ−1 ≤‖f‖Hσ−1 ‖g‖Hσ .

Lemma 2.16. Given q≥0, let u = u(x)∈Hq be any function such that ‖ux‖L∞ < ∞. Then the there is a constant cq

depending only on q such that the following inequalities hold∣∣∣∣∫
R

ΛquΛ(uux)dx

∣∣∣∣ ≤ cq ‖ux‖L∞ ∥∥u2
∥∥
Hq∣∣∣∣∫

R
ΛquΛ(u2)dx

∣∣∣∣ ≤ cq ‖u‖L∞ ‖u‖2Hq
On the other hand, one may estimate the following integral using integration by parts∣∣∣∣∫

R
fΛquΛquxdx

∣∣∣∣ =
1

2

∣∣∣∣∫
R
fx(Λqu)2dx

∣∣∣∣≤1

2
‖fx‖L∞ ‖u‖

2
Hq .
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3. Local Well-posedness

To prove well-posedness, we employ a Galerkin approximation argument. The strategy will be to mollify the nonlinear

terms in the BBMPB equation to construct a family of ODEs. Then, we will extract a sequence of solutions to the ODEs,

which converges to the solution of the BBMPB equation in an appropriate space. We apply the mollifier Jε to the BBMPB

equation to construct family of ODEs in Hs.

∂tuε + θJε(JεuεJε∂xuε) = ∂x(1− ∂x2)−1[−θ(uε∂2
xuε) + α∂xuε − γuε − β∂2

xuε + θ(∂xuε)
2]

uε(x, 0) = u0(x)

Using the fact that

λ−2 = (1− ∂2
x)−1

The non local form can be written as

∂tuε + θJε(JεuεJε∂xuε) = ∂xλ
−2[−θ(uε∂2

xuε) + α∂xuε − γuε − β∂2
xuε + θ(∂xuε)

2]

Our strategy is now to demonstrate that the Cauchy problem satisfies the hypotheses of the Fundamental ODE theorem.

We will therefore obtain a unique solution uε(., t) ∈ Hs, |t| < Tε, for some Tε > 0.

Energy estimate and lifespan of solution uε

For each ε, there is a solution uε to the mollified BBMPB equation. The lifespan of each of these solutions has a lower

bound Tε. In this subsection, we shall demonstrate that there is actually a lower bound T > 0 that does not depend upon ε.

To show the existence of T , we shall derive an energy estimate for the uε. Applying the operator λs to both sides of i.v.p,

multiplying by λsuε, and integrating over the torus yields the Hs-energy of uε.

∫
λs∂tuελ

suεdx+

∫
λsθJε(JεuεJε∂xuε)λ

suεdx =

∫
λs∂xλ

−2[−θ(uε∂2
xuε) + α∂xuε − γuε − β∂2

xuε + θ(∂xuε)
2]λsuεdx

Consider the first term of the left hand side

∫
λs∂tuελ

suεdx =
1

2

d

dt
‖uε‖2Hs

1

2

d

dt
‖uε‖2Hs +

∫
λsθJε(JεuεJε∂xuε)λ

suεdx =

∫
λs∂x(1− ∂x2)−1[−θ(uε∂2

xuε) + α∂xuε

− γuε − β∂2
xuε + θ(∂xuε)

2]λsuεdx

using the fact that

λ−2 = (1− ∂2
x)−1

1

2

d

dt
‖uε‖2Hs = −

∫
λsθJε(JεuεJε∂xuε)λ

suεdx+

∫
λs∂xλ

−2α∂xuελ
suεdx

− γ
∫
λs∂xλ

−2uελ
suεdx− β

∫
λs∂xλ

−2∂2
xuελ

suεdxθ

∫
λs∂xλ

−2(∂xuε)
2λsuεdx

To bound the energy, we will need the following Kato-Ponce commutator estimate. We now rewrite the first term by first

commuting the exterior Jε and then commuting the operator λs with (Jεuε) arriving at

θ

∫
λsJε(JεuεJε∂xuε)λ

suεdx = θ

∫
λs[Jεuε∂xJεuε]λ

sJεuεdx
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adding and subtracting the term on the right hand side θ
∫

(Jεuε)λ
s∂xJεuελ

sJεuεdx

θ

∫
λsJε(JεuεJε∂xuε)λ

suεdx = θ

∫
λs[Jεuε∂xJεuε]λ

sJεuεdx− θ
∫

(Jεuε)λ
s∂xJεuελ

sJεuεdx

+ θ

∫
(Jεuε)λ

s∂xJεuελ
sJεuεdx

θ

∫
λsJε(JεuεJε∂xuε)λ

suεdx = θ

∫
[λs, Jεuε]∂xJεuελ

sJεuεdx+ θ

∫
(Jεuε)λ

s∂xJεuελ
sJεuεdx

Setting v = Jεuε, we can bound the first term of right hand side by first using the Cauchy-Schwarz inequality and then

applying the lemma (Kato-Ponce) and using the Sobolev theorem, we get

θ

∫
[λs, v]∂xvλ

svdx ≤ ‖[λs, v]∂xv‖L2 ‖λsv‖L2

≤
(
cs
(
‖λsv‖L2 ‖∂xv‖L∞ + ‖∂xv‖L∞

∥∥λs−1∂xv
∥∥
L2

))
‖v‖Hs

≤
(
cs
(
‖v‖Hs ‖∂xv‖L∞ + ‖∂xv‖L∞ ‖∂xv‖Hs−1

))
‖v‖Hs

≤
(
cs
(
‖v‖Hs ‖∂xv‖L∞ + ‖∂xv‖L∞ ‖v‖Hs

))
‖v‖Hs

≤
(
cs
(
‖v‖Hs ‖v‖Hs + ‖v‖Hs ‖v‖Hs

))
‖v‖Hs

= 2cs ‖v‖3Hs

Next consider the second term of eqn , integrating by parts and using the Sobolev theorem, we have

∣∣∣∣θ ∫ v∂xλ
svλsvdx

∣∣∣∣ =
1

2

∣∣∣∣∫ (λsv)2∂xvdx

∣∣∣∣
≤ ‖∂xv‖L∞ ‖v‖

2
Hs

≤ ‖v‖Hs ‖v‖
2
Hs

= ‖v‖3Hs

Combining, we get

θ

∫
λsJε(JεuεJε∂xuε)λ

suεdx ≤ (2cs + 1) ‖v‖3Hs

≤ (2cs + 1) ‖Jεuε‖3Hs

≤ (2cs + 1) ‖uε‖3Hs

Consider the second term of the right hand side is bounded by first applying the Cauchy-Schwarz inequality and then using

the estimate and the algebra property of Hs, we get

∫
λs∂xλ

−2αJε∂xuελ
suεdx ≤

∥∥λs∂xλ−2α∂xuε
∥∥
L2 ‖λ

suε‖L2

≤
∥∥∂xλ−2α∂xuε

∥∥
Hs
‖uε‖Hs

≤ ‖α∂xuε‖Hs−1 ‖uε‖Hs

≤ α ‖uε‖Hs ‖uε‖Hs

≤ ‖uε‖Hs ‖uε‖Hs

= ‖uε‖2Hs

γ

∫
λs∂xλ

−2uελ
suεdx ≤

∥∥λs∂xλ−2uε
∥∥
L2 ‖λ

suε‖L2
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≤
∥∥∂xλ−2uε

∥∥
Hs
‖uε‖Hs

≤ ‖uε‖Hs−1 ‖uε‖Hs

≤ ‖uε‖2Hs

β

∫
λs∂xλ

−2∂2
xuελ

suεdx ≤
∥∥λs∂xλ−2∂2

xuε
∥∥
L2 ‖λ

suε‖L2

≤
∥∥∂xλ−2∂2

xuε
∥∥
Hs
‖uε‖Hs

≤
∥∥∂2

xuε
∥∥
Hs
‖uε‖Hs

≤ ‖∂xuε‖Hs+1 ‖uε‖Hs

≤ ‖uε‖Hs+2 ‖uε‖Hs

≤ ‖uε‖Hs ‖uε‖Hs

≤ ‖uε‖Hs ‖uε‖Hs

= ‖uε‖2Hs

θ

∫
λs∂xλ

−2(∂xuε)
2λsuεdx ≤

∥∥λs∂xλ−2(∂xuε)
2
∥∥
L2 ‖λ

suε‖L2

≤
∥∥∂xλ−2∂xu

2
ε

∥∥
Hs
‖uε‖Hs

≤
∥∥(∂xuε)

2
∥∥
Hs−1 ‖uε‖Hs

≤ ‖uε‖2Hs ‖uε‖Hs

≤ ‖uε‖3Hs
1

2

d

dt
‖uε‖2Hs ≤ (2cs + 3) ‖uε‖3Hs + 3 ‖uε‖2Hs

1

2

d

dt
‖uε‖2Hs ≤ (2cs + 3) ‖uε‖3Hs + 3 ‖uε‖3Hs

= (2cs + 6) ‖uε‖3Hs

Solving this inequality, gives

‖uε(t)‖2Hs ≤
(

‖u0‖Hs
1− (2cs + 6)t ‖u0‖Hs

)2

which yields the minimum lifespan, T and energy estimate

T <
1

2(2cs + 6) ‖u0‖Hs

and

‖uε(t)‖Hs ≤ 2 ‖u0‖Hs

for |t| < T .

Refinement 1

Claim : To show that there exists a subsequence {uεj} of {uε} which converges in L∞([−T, T ];Hs).

The family {uε} is bounded in L∞([−T, T ];Hs), since the family {uε} is bounded (by the previous energy estimate) in

C([−T, T ];Hs). Since L∞([−T, T ];Hs) is the dual of L1([−T, T ];Hs), we may apply Alaoglu’s theorem. By Alaoglu’s

theorem there exists a subsequence {uεj} of {uε} which converges to an element u ∈ L1([−T, T ];Hs) in the weak∗ topology.

Moreover, the limit point u, satisfies the same size estimation bound and minimum lifespan estimate as the uε solutions.

Refinement 2
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Claim : To show that there is a further subsequence of our sequence {uε} which converges to u in C([−T, T ];Hs−1).

To prove this we will employ Ascoli’s theorem. First to prove equicontinuity, let t1 and t2 ∈ [−T, T ]. By the mean value

theorem

‖uε(t1)− uε(t2)‖Hs−1 ≤ sup
t∈[−T,T ]

‖∂tuε‖Hs−1 |t1 − t2| (1)

Now consider the mollified equation

∂tuε + θJε(JεuεJε∂xuε) = ∂xλ
−2[−θ(uε∂2

xuε) + α∂xuε − γuε − β∂2
xuε + θ∂xu

2
ε ]

Applying norm on both sides and using the triangle inequality and lemma, we have

‖∂tuε‖Hs−1 =
∥∥∂xλ−2[−θ(uε∂2

xuε) + α∂xuε − γuε −β∂2
xuε + θ∂xu

2
ε ]
∥∥
Hs−1

≤
∥∥∂xλ−2θuε∂

2
xuε
∥∥
Hs−1 +

∥∥∂xλ−2α∂xuε
∥∥
Hs−1 + ‖−γuε‖Hs−1 −

∥∥β∂2
xuε
∥∥
Hs−1 +

∥∥θ∂xu2
ε ]
∥∥
Hs−1

≤ a ‖u0‖3Hs + b ‖u0‖2Hs + ‖u0‖Hs

Substituting in inequality (1), we get

‖uε(t1)− uε(t2)‖Hs−1 ≤
(
a ‖u0‖3Hs + b ‖u0‖2Hs + c ‖u0‖Hs

)
|t1 − t2|

which implies {uε(t)} is equicontinuous. Next, we observe that for each t ∈ [0, T ] the set U(t) = {uε}ε∈(0,1] is bounded in

Hs. Since T is a compact manifold, the inclusion mapping i : Hs −→ Hs−1 is a compact operator, and therefore we may

deduce that U(t) is a precompact set in Hs−1. As the two hypotheses of Ascoli’s theorem have been satisfied, we have a

subsequence {uεv} that converges in
(
[−T, T ];Hs−1

)
. By uniqueness of limits, this subsequence must converge to u.

Refinement 3

Claim : To refine the subsequence we show that the limit u is in the space C
(
[−T, T ];Hs−σ) for all σ ∈ (0, 1].

As in the previous case, we will prove that the family uε satisfies the hypotheses of Ascoli’s theorem, and to do so we will

show that the sequence uε is equicontinuous in Hs−σ and uniformly bounded. In fact, we will show that the following

modulus of continuity

‖uε(t1)− uε(t2)‖Hs−σ ≤
(
‖u0‖3Hs + ‖u0‖2Hs + ‖u0‖Hs

)
|t1 − t2|σ (2)

To prove the above inequality, we begin by estimating

‖uε(t1)− uε(t2)‖Hs−σ ≤ ‖uε‖Cσ([−T,T ];Hs−σ) |t1 − t2|
σ. (3)

By definition of the Holder norm

‖uε‖Cσ([−T,T ];Hs−σ) = sup
t∈[−T,T ]

‖uε(t)‖Hs−σ + sup
t1 6=t2

‖uε(t1)− uε(t2)‖Hs−σ
|t1 − t2|σ

(4)

The first term of the right hand side of (4) is bounded by 2 ‖u0‖Hs using the Sobolev embedding theorem followed by

estimate.

sup
t∈[−T,T ]

‖uε(t)‖Hs−σ ≤ sup
t∈[−T,T ]

‖uε(t)‖Hs ≤ 2 ‖u0‖Hs .
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For the second term is more difficult, and we will open the norm to analyze it. We have

‖uε(t1)− uε(t2)‖Hs−σ
|t1 − t2|σ

= |t1 − t2|−σ
(∑

k

(1 + k2)s−σ|ûε(k, t1)− ûε(k, t2)|2
)1/2

First, as σ ∈ (0, 1), we have

1

(1 + k2)σ|t1 − t2|2σ
≤
(

1 +
1

(1 + k2)|t1 − t2|2

)σ
≤1 +

1

(1 + k2)|t1 − t2|2
.

Using this inequality

(1 + k2)s

(1 + k2)σ|t1 − t2|2σ
≤ (1 + k2)s +

(1 + k2)s

|t1 − t2|2(1 + k2)

‖uε(t1)− uε(t2)‖Hs−σ
|t1 − t2|σ

=

(∑
k

(1 + k2)s |ûε(k, t1)− ûε(k, t2)|2 +
∑
k

(1 + k2)s

|t1 − t2|2(1 + k2)
|ûε(k, t1)− ûε(k, t2)|

)1/2

‖uε(t1)− uε(t2)‖Hs−σ
|t1 − t2|σ

≤ 2 sup
t∈[−T,T ]

‖uε‖Hs + ‖uε‖C1([−T,T ];Hs−1) .

Using the solution size estimate and the estimate found in the previous refinement, we obtain

‖uε‖Cσ([−T,T ];Hs−σ) ≤ (4 + c) ‖u0‖Hs + a ‖u0‖3Hs + b ‖u0‖2Hs

Substituting into inequality (3) we establish a uniform modulus of continuity, and we conclude that the family {uε} is

equicontinuous in the variable t. The precompactness condition is established in exactly the same fashion as the previous

case as the inclusion mapping of Hs into Hs−σ is a compact operator. As the two hypotheses of Ascoli have been satisfied,

we may extract a subsequence that converges to u in C
(
[0, T ];Hs−σ). Similarly, we can refine the sequence {uε} several

times, by finding a sub-sequence of solutions which converges to a solution to BBMPB equation. Hence the proof of existence

of a solution to the BBMPB equation.

Continuity of the data-to-solution map

Here we show that the dependence of the solution of the BBMPB equation on initial data is continuous.

Theorem 3.1 (Continuous dependence). The data-to-solution map u0 7−→ u(t) for the cauchy problem of the BBMPB

equation is continuous from Hs −→ C(I;Hs).

Proof. Fix u0 ∈ Hs and let {u0,n} ⊂ Hs be a sequence with lim
n−→∞

u0,n = u0. If u is the solution to the BBMPB equation

with initial data u0 and if un is the solution to the BBMPB equation with initial data u0,n, we will demonstrate that

lim
n−→∞

un = u in C(I;Hs). Equivalently, let η > 0. We need to show that there exists an N > 0 such that

n > N ⇒ ‖u− un‖C(I;Hs) < η

As we will be using energy estimates in the Hs norm, to get around the difficulty of estimating the terms, we will use the

Jε convolution operator to smoooth out the initial data. Let ε ∈ (0, 1]. We take uε be the solution to the Cauchy problem

for BBMPB equation with initial data Jεu0 = jε ∗ u0 and uεn be the solution with initial data Jεu0,n. Applying the triangle

inequality, we arrive at

‖u− un‖C(I;Hs) ≤ ‖u− u
ε‖C(I;Hs) + ‖uε − uεn‖C(I;Hs) + ‖uεn − un‖C(I;Hs) .
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We will prove that each of these terms can be bounded by η
3

for suitable choices of ε and N. We note that the ε we have

introduced will be independent of N and will only depend on η; whereas, the choice of N will depend on both η and ε.

Estimating ‖uε − uεn‖C(I;Hs): Setting v = uε − uεn

∂tu
ε = (−θuε∂xuε) + λ−2∂x

(
−θuε∂xuε + α∂xu

ε − γuε − β∂2
xu

ε + θ(∂xu
ε)2
)

∂tu
ε
n = (−θuεn∂xuεn) + λ−2∂x

(
−θuεn∂xuεn + α∂xu

ε
n − γuεn − β∂2

xu
ε
n + θ(∂xu

ε
n)2
)

Subtracting

∂t(uε − uεn) = (−θuε∂xuε + θuεn∂xu
ε
n) + λ−2∂x(−θuε∂xuε + θuεn∂xu

ε
n) + λ−2∂xα∂x(uε − uεn)

−γ(uε − uεn)− β∂2
x(uε − uεn) + θ

(
(∂xu

ε)2 − (∂xu
ε
n)2
)

Let

F (uε) = (−θuε∂xuε) + λ−2∂x (−θuε∂xuε) + λ−2∂xθ(∂xu
ε)2

Let

F (uεn) = (−θuεn∂xuεn) + λ−2∂x (−θuεn∂xuεn) + λ−2∂xθ(∂xu
ε
n)2

∂t(v) = (−θuε∂xuε + θuεn∂xu
ε
n) + λ−2∂x(−θuε∂xuε + θuεn∂xu

ε
n) + λ−2∂xα∂x(v)

− λ−2∂xγ(v)− λ−2∂xβ∂
2
x(v) + λ−2∂xθ

(
(∂xu

ε)2 − (∂xu
ε
n)2
)

∂t(v) = (F (uε)− F (uεn)) + λ−2∂x
{
α∂x(v)− γ(v)− β∂2

x(v)
}

We calculate the Hs energy of v.

∫
λs∂tvλ

svdx =

∫
λs (F (uε)− F (uεn))λsvdx+

∫
λsλ−2∂x

{
α∂x(v)− γ(v)− β∂2

x(v)
}
λsvdx

Applying Cauchy-Schwarz inequality

1

2

d

dt
‖v(t)‖2Hs ≤ ‖λ

s(F (uε)− F (uεn))‖L2 ‖λsv‖L2 +
∥∥λsλ−2∂x

{
α∂x(v)− γ(v)− β∂2

x(v)
}∥∥

L2 ‖λ
sv‖L2

≤ ‖F (uε)− F (uεn)‖Hs ‖v‖Hs +
∥∥λ−2∂x

{
α∂x(v)− γ(v)− β∂2

x(v)
}∥∥

Hs
‖v‖Hs

Consider the first term of inequality

‖F (uε)− F (uεn)‖Hs ‖v‖Hs ≤ ‖v‖
2
Hs

Consider the second term of inequality and using the triangle inequality

∥∥λ−2∂x
{
α∂x(v)− γ(v)− β∂2

x(v)
}∥∥

Hs
‖v‖Hs ≤

∥∥λ−2∂xα∂x(v)
∥∥
Hs

+ γ
∥∥λ−2∂xv

∥∥
Hs

+ β
∥∥λ−2∂x∂

2
x(v)

∥∥
Hs

≤ α ‖v‖Hs + γ ‖v‖Hs−1 + ‖v‖Hs+1

≤ M

ε
‖v‖2Hs

Where M is positive constant. Combining the above estimates, we obtain the differential inequality

1

2

d

dt
‖v‖2Hs ≤

(
1 +

M

ε

)
‖v‖2Hs
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Let

cs
ε

= (1 +
M

ε
)

1

2

d

dt
‖v‖2Hs ≤

cs
ε
‖v‖2Hs (5)

for some constant cs, Solving (5) gives for all t ∈ I

‖v(t)‖Hs ≤ e
csT
ε ‖v(0)‖Hs

≤ e
csT
T ‖u0 − u0,n‖Hs (6)

We observe that (6) does not place any constraints on ε; however, handling the first and third terms of (6) will require ε to

be small. After ε is chosen, we take N sufficiently large so that

‖u0 − u0,n‖Hs <
(η

3

)
e
csT
ε

there by yielding

‖uε − uεn‖C(I;Hs) <
η

3
.

Estimation of ‖u− uε‖C(I;Hs) and ‖uε − uεn‖C(I;Hs): Let

∂tu = −(θu∂xu) + λ−2∂x[−θu∂2
xu+ α∂xu− γu− β∂2

xu+ θ(∂xu)2]

∂tu
ε = (−θuε∂xuε) + λ−2∂x

(
−θuε∂xuε + α∂xu

ε − γuε − β∂2
xu

ε + θ(∂xu
ε)2
)

As the differences uε − u and uεn − un satisfy the same inequalities, we will use the unified notation v = uε − u and

v = uεn − un and omit all n subscripts in formulae until we reach the point where different analysis for each case is needed.

In constructing this Cauchy problem for v, we note that as we are taking energy estimates in Hs, we will want to avoid

having any u coefficients for the Burgers-type part of the equation as this may give rise to an expression of the form ‖u‖Hs+1

which is undefined. There is no such problem for the nonlocal part of the equation so we will have F (uε−F (u)) as this can

be estimated.

∂t(u− uε) = λ−2∂x[α∂x(u− uε)− γ(u− uε)− β∂2
x(u− uε)]− [F (u)− F (uε)]

∂tv = λ−2∂x[α∂xv − γv − β∂2
xv]− [F (u)− F (uε)]

v(x, 0) = Jεu0 − u0

Now let us obtain the Hs energy of v,

∫
λs∂tvλ

svdx =

∫
λsλ−2∂x[α∂xv − γv − β∂2

xv]λsvdx−
∫
λs (F (u)− F (uε))λsvdx

Applying the Cauchy-Schwarz inequality

1

2

d

dt
‖v(t)‖2Hs ≤

∥∥λsλ−2∂x[α∂xv − γv − β∂2
xv]
∥∥
L2 ‖λ

sv‖L2 + ‖λs(F (u)− F (uε))‖L2 ‖λsv‖L2
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1

2

d

dt
‖v(t)‖2Hs ≤

∥∥λ−2∂x[α∂xv − γv − β∂2
xv]
∥∥
Hs
‖v‖Hs + ‖(F (u)− F (uε))‖Hs ‖v‖Hs

Consider the second term of the inequality

‖F (u)− F (uε)‖Hs ‖v‖Hs ≤ ‖v‖
2
Hs

Consider the first term of the inequality and using the triangle inequality

∥∥λ−2∂x[α∂xv − γv − β∂2
xv]
∥∥
Hs
‖v‖Hs ≤

∥∥λ−2∂xα∂xv
∥∥
Hs

+
∥∥λ−2∂xγv

∥∥
Hs

+
∥∥λ−2∂xβ∂

2
xv
∥∥
Hs

≤ α ‖v‖Hs + γ ‖v‖Hs−1 + β ‖v‖Hs+1

Choosing M a positive constant

∥∥λ−2∂x[α∂xv − γv − β∂2
xv]
∥∥
Hs
‖v‖Hs ≤

M

ε
‖v‖2Hs

Combining the above estimates, we obtain the following differential inequality

1

2

d

dt
‖v‖2Hs ≤

(
1 +

M

ε

)
‖v‖2Hs

As in the previous estimation we will get

‖u− uε‖C(I;Hs) <
η

3

Similarly we can obtain

‖uε − uεn‖C(I;Hs) <
η

3

By combining all the inequalities ,we get

‖u− un‖C(I;Hs) <
η

3
+
η

3
+
η

3

Hence

‖u− un‖C(I;Hs) < η

Hence the data-to-solution map is continuous.
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