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Abstract: The principal aim of this paper is to investigate the thermoelastic responses in a generalised oblate spheroid subjected time-
independent volumetric heat sources in each layer and sectional heat supply on the inner and outer curved surfaces. The

closed-form solution is obtained for transient temperature distributions by establishing Sturm-Liouville integral transform
considering series expansion function in terms of an eigenfunction of Sturm-Liouville boundary value problem for the

composite region consisting of multilayered composites in an oblate spheroidal coordinate system. The relations obtained

in this paper can be applied to any arbitrary boundary and initial conditions to avoid structural failure due to thermal
stress response. Some results which are derived using computational tools are accurate enough for the practical purpose

were depicted graphically. The three-layer elliptic region has been computed numerically and exhibited in a graphical

form, by using dimensionless values and therefore discussed.

MSC: 35B53, 35G30, 35K05, 44A10.

Keywords: multilayer oblate spheroid, transient heat conduction, thermal stresses, integral transform, composite.

c© JS Publication. Accepted on: 21.05.2018

1. Introduction

An oblate spheroid is a surface generated by the rotation of an ellipse about its minor axis, and depending upon the

ellipses eccentricity, the spheroid will be flattened about the minor axis [1]. Oblate spheroidal shells have many practical

applications; two of these are liquid oxygen tanks used in several upper stages of space vehicles and the protective shell

used as the housing of the early-warning scanner of Airborne Warning and Control System (AWACS) aircraft. Analytical

solutions for such shells are inadequately investigated due to the complexity of the governing equations and the difficulty

of obtaining their solutions [2]. Oblate spheroidal coordinates are the natural choice for the translation of any ellipsoid

parallel to a principal axis [3]. There are many textbook examples giving applications of spheroidal coordinates. Some

of the applications include the gravitational potential of an astronomical body, the solution to Maxwell’s equations in

electromagnetism, solid mechanics, and the study of various problems in quantum mechanics. A short history of the

research work associated with the heat conduction with spheroidal coordinate system insights many novels and remarkable

methods introduced by Green-Lam, Mathieu, Niven etc. The mathematical treatment of the problem of the conduction

of heat for spheroids in terms of spheroidal wave functions was investigated dates back by Niven [4] which constitute a

generalization of the corresponding solution for the sphere. Few highly cited literature on heat conduction in spheroid

(prolate or oblate) making use of the spheroidal wave functions were considered by Flammer [5], Abramowitz and Stegun
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[6], Hodge [7], Meixner [8] and Li [9] in their books. Norminton and Blackwell [10] obtained the formal solutions for the

transient heat flow from constant-temperature prolate and oblate spheroids as series in descending powers of the time, useful

for large time calculations. Ozisik [11] gives the heat conduction equations in prolate and oblate spheroidal coordinate

systems. Juncu [12] used numerical methods to investigate the transient heat transfer from an oblate/prolate spheroid to a

steady stream of viscous, incompressible fluid. Alassar [13] obtained the analytical solutions of the problem of conduction

heat transfer from oblate and prolate spheroids to an infinite medium. Very recently, Alassar [14] investigated two solutions

of the problem, first by making use of the spheroidal wave functions and other by using an implicit finite difference scheme

for an unsteady heat conduction from a spheroid (prolate or oblate). However, it was observed from the previous literature

that almost all researchers have considered heat conduction without internal heat source subjected to radiation conditions.

Things get further complicated when internal heat generation persists on the object under consideration and further becomes

unpredictable when sectional heat supply is impacted by the body. Both analytical and numerical techniques have proved to

be the best methodology to solve such problems. Nonetheless, numerical solutions are preferred and prevalent in practice,

due to either non-availability or mathematical complexity of the corresponding exact solutions. Rather, limited utilisation

of analytical solutions should mustn’t diminish their merit over numerical ones; since exact solutions, if available, provide

an insight into the governing physics of the problem, that is often missing in any numerical solution. In this regards Gupta

[15] has introduced an integral transform applicable to spheroidal wave functions analogous to finite Fourier transform

which applies to few boundary value problem relating to spheroids. Wankhede [16] generalized the transforms defined by

Gupta for the prolate spheroidal geometry. Moreover, analysing closed-form solutions to obtain optimal design options for

any particular application of interest is relatively simpler. Thus, a set of an integral transform and its inverse theorem

for a heat conduction problem for multilayered composites in an oblate spheroidal coordinate system subjected to internal

heat supply and radiation type boundary conditions are needed to obtain an exact solution. Again this integral transform

defined is nothing but the generalization of the transforms defined in [15, 16] by establishing the Sturm-Liouville transform

for the composite region consisting of k -layers by considering series expansion of a function in terms of eigenfunctions of

Sturm-Liouville linear homogeneous boundary value problem for the composite region consisting of k -layers. To the best

of authors knowledge, no research work has been taken for the thermoelastic analysis of oblate spheroids with internal

heat source subjected to prescribed temperature on the curved surface. Owing to the lack of research in this field, the

authors have been motivated to conduct this study. In this present paper, the realistic problem of spheroids subjected to

initial temperature is studied. The theoretical calculation has been considered using the dimensional parameter, whereas,

graphical calculations are carried out using the dimensionless parameter. The success of this research mainly lies on the

new mathematical procedures which present a much more straightforward approach for optimization of the design in terms

of material usage and performance in engineering problem, particularly in the determination of thermoelastic behaviour in

spheroids engaged as pressure vessels, furnaces, etc.

2. Formulation of the Problem

We consider a composite oblate spheroidal shell occupying space D : {(ξ, η) ∈ R2: ξi < ξ < ξi+1, −1 < η < 1}, 1 ≤ i ≤ k.

We assume that each rigid layer is homogeneous and isotropic, with thermal properties independent of temperature and that

the layers are in imperfect thermal contact at the interfaces, which is characterised by the finite interfacial conductances

hi > 0, i = 1, 2, ..(k − 1). The internal heat sources are arbitrary but integrable functions of space and time. These are

also called volume (bulk) source function, surface source function and interfacial source function respectively. Initially, the

temperature distribution in each layer is given by an arbitrary but integrable function of space. These latter are also called
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initial excitations or initial source functions. Under these prescribed source conditions and considerably general boundary

and interfacial conditions, we wish to determine the transient temperature distribution in each layer of composite shell.

2.1. Temperature distribution

The differential equation governing transient temperature distribution θi(ξ, η, t) with internal heat source for a composite

oblate spheroidal shell defined by [16] in the ith layer as

λi∇2θi +Qi(ξ, η, t) = (ρCv)i θi,t , ξi < ξ < ξi+1, −1 < η < 1, i = 1, 2..k, t > 0 (1)

subjected to initial and boundary conditions

θi(ξ, η, 0) = Θi(ξ, η)

h0θi(ξ, η, t)− α1θi(ξ, η, t),ξ |ξ=ξ1 = f1(η, t), h0 ≥ 0,

hkθk(ξ, η, t) + αkθk(ξ, η, t),ξ |ξ=ξk+1
= f2(η, t), hk ≥ 0,

αiθi(ξ, η, t),ξ |ξ=ξi+1
= αi+1θi+1(ξ, η, t),ξ |ξ=ξi+1

[θi+1(ξi+1, η, t)− θi(ξi+1, η, t)]/Ri|ξ=ξi+1
+ Q̄i(η, t), i = 1, 2, ...(k − 1)

(2)

in which Qi(ξ, η, t) denotes prescribed arbitrary volume source per unit volume per unit time, Θi(ξ, η) is the initial sur-

rounding temperature, λi for thermal conductivity and heat capacity per unit volume (ρC)i with ρi for density and Ci as

specific heat for the ith layer, respectively. the prime ( , ) in equations denotes differentiation with respect to the variable

specified in the subscript, the Laplacian operator in spheroidal coordinates is represented as

∇2 =
1

c2 (ξ2 + η2)

[
∂

∂ξ
(1 + ξ2)

∂

∂ξ
+

∂

∂η
(1− η2)

∂

∂η

]

with f1(η, t) and f2(η, t) represents sectional heat supply, c is the interfocal distance, and Q̄i(η, t) denotes distributed heat

source for the ith layer, respectively. The physical significance of the interface boundary conditions [i.e. equation (2)] is as

follows: (i) the finite value of the layer coefficient hi > 0, i = 1, 2, ..(k − 1) in the first two lines of equation (2) represents

a discontinuity of temperature at the corresponding interface, and (ii) last line of equation (2) implies that the heat flux is

continuous at the same interface or perfect thermal conduct there.

2.2. Thermal displacements and thermal stresses

The components of displacement given by [17] vector are represented by

2Guξ = h ᾱ ∂ϕ0
∂ξ

+ chᾱ
{
β̄2 ∂ϕ4

∂η
− 4(1− υ)β ϕ4

}
,

2Guη = −hβ̄ ∂ϕ0
∂η

+ chβ̄
{
ᾱ2 ∂ϕ4

∂η
− 4(1− υ)αϕ4

} (3)

in which the notations were taken as α = sinh ξ, ᾱ = cosh ξ, β = cos η, β̄ = sin η for mathematical simplicity, while G and

υ are the shear modulus and Poisson’s ratio, respectively, and h = 2/c2(α2 + β2). The potential functions must satisfy

∇2
1ϕ0 = Kθ, ∇2

1ϕ4 = 0 withϕ0 = 0 att = 0 (4)

where K is the restraint coefficient, and

∇2
1 = h2ᾱ2(∂2/∂ξ2) + 2h2α(∂/∂ξ) + h2β̄2(∂2/∂η2) + 2h2β(∂/∂η)
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The corresponding stress components defined by [17] are given by

σξξ = h2
{
ᾱ2 ∂2ϕ0

∂ξ2
− c2h2β̄2

(
ξ ∂ϕ0
∂ξ
− η ∂ϕ0

∂η

)}
+ ch2

{
ᾱ2β̄2 ∂2ϕ4

∂ξ ∂η

− ᾱ2β [c2h2β̄2 + 2(2− υ) ] ∂ϕ4
∂ξ
− α β̄2[c2h2ᾱ2 − (1− 2υ)] ∂ϕ4

∂η

}
σηη = h2

{
β̄2 ∂2ϕ0

∂η2
− c2h2ᾱ2

(
ξ ∂ϕ0
∂ξ
− η ∂ϕ0

∂η

)}
− ch2

{
ᾱ2β̄2 ∂2ϕ4

∂ξ ∂η

− ᾱ2β [c2h2β̄2 + (1− 2υ) ] ∂ϕ4
∂ξ
− α β̄2[c2h2ᾱ2 − 2(2− υ)] ∂ϕ4

∂η

}
σξη = h2ᾱ β̄

{
− ∂2ϕ0
∂ξ ∂η

+ c2h2
(
ξ ∂ϕ0
∂η
− η ∂ϕ0

∂ξ

)}
− ch2ᾱ β̄

{
1
2

(
ᾱ2 ∂2ϕ4

∂ξ2
− β̄2 ∂2ϕ4

∂η2

)
− α [c2h2β̄2 − 2(1− υ) ] ∂ϕ4

∂ξ
+ β [c2h2ᾱ2 + 2(1− υ)] ∂ϕ4

∂η

}
(5)

and for traction free surface stress functions

σξξ = σξη = 0, ξ = ξ1 (6)

The equations (1) to (6) constitute the mathematical formulation of the problem under consideration.

3. Solution for the Problem

3.1. Solution for temperature distribution

In order to solve fundamental differential equation (2) using the theory of integral transformation, firstly introducing a new

integral transform of order n and m over the variable ξ and η as

f̄i(qn) = βi

ξi+1∫
ξi

1∫
−1

(ξ2 + η2) Φi,n,m(ξ, η)fi(ξ, η) dξ dη (7)

in which Φi,n,m(ξ, η) is the kernel and f̄i(qn) is Sturm-Liouville transform for the composite region of fi(ξ, η) and weight

function (ξ2 + η2) (refer Appendix C). The inversion theorem is given by

fi(ξ, η) =
∞∑
n=1

A(n) Φi,n,m(ξ, η)
k∑
i=1

f̄i(qn) (8)

Applying the above Sturm-Liouville transform defined in equation (7) on equation (1), and using the boundary conditions

(2), we obtain
∞∑
i=1

θ̄i(qn, t),t +K2
n θ̄i(qn, t) = G(qn, t) (9)

subjected to

θ̄i(qn, 0) = Θ̄i(qn) (10)

in which Kn = 2qn/c with q2
n as the eigenvalue of the problem, and

G(qn, t) =

∞∑
i=1

ξi+1∫
ξ1

1∫
−1

Φi,n,0(ξ, η)Qi(ξ, η, t) dξ dη +

1∫
−1

Φi,n,0(ξi+1, η) (ξ2
i+1 + η2) f2(η, t) dη

+

1∫
−1

Φi,n,0(ξk, η) (ξ2
k + η2) f1(η, t) dη +

1∫
−1

k−1∑
i=1

[Φi,n,0(ξi+1, η)− Φi+1,n,0(ξi+1, η)](ξ2
k + η2) Q̄1(η, t) dη

Applying Laplace transform on Equation (9) with Equation (10) and taking its inverse, we obtain

k∑
i=1

θ̄i(qn, t),t = exp(−K2
nt)

k∑
i=1

Θ̄i(qn) +

t∫
0

exp[−K2
n(t− τ)]G(qn, τ) dτ (11)
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Finally applying the inverse transform defined on (8), we obtain the temperature distribution as

θi(ξ, η, t) =

∞∑
n=1

A(n) Φi,n,0(ξ, η)

k∑
i=1

θ̄i(qn, t),t (12)

A more explicit form of Equation (12) using Equation (11) can be expressed as

θi(ξ, η, t) =
∞∑
n=1

A(n) Φi,n,0(ξ, η)
k∑
i=1

exp(−K2
nt)

×

〈
k∑
i=1

ξi+1∫
ξi

1∫
−1

(ρCv)i (ξ2 + η2) Φi,n,0(ξ, η) Θi(ξ, η) dξ dη

+
t∫

0

exp(−K2
nτ)

{
k∑
i=1

ξi+1∫
ξi

1∫
−1

(ξ2 + η2)Φi,n,0(ξ, η)Qi(ξ, η.t) dξ dη

+
1∫
−1

Φi,n,0(ξk+1, η)(ξ2
i+1 + 1)f2(η, τ) dη

+
1∫
−1

Φi,n,0(ξk, η)(ξ2
i+1 + 1)f1(η, τ) dη

+
1∫
−1

i−1∑
i=1

[Φi,n,0(ξi+1, η)− Φi+1,n,0(ξi+1, η)] Q̄i(η.t) dη

}
dτ

〉

(13)

3.2. Solution for thermal stresses

Now, we assume potential functions which satisfy condition (4) as,

ϕ
(i)
0 = K

∞∑
n=1

k∑
i=1

〈
Φi,n,0(ξ,η) exp(−K2

nt)

sin 2η (−1+qn)
[Bn cos 2ξ + sin 2η]− 1

qn
Φi,n,0(ξ, η)

〉
+

t∫
0

exp(−K2
nτ)

{
k∑
i=1

ξi+1∫
ξi

1∫
−1

(ξ2 + η2)Φi,n,0(ξ, η)Qi(ξ, η.t) dξ dη

+
1∫
−1

Φi,n,0(ξk+1, η)(ξ2
i+1 + 1)f2(η, τ) dη

+
1∫
−1

Φi,n,0(ξk, η)(ξ2
i+1 + 1)f1(η, τ) dη

+
1∫
−1

i−1∑
i=1

[Φi,n,0(ξi+1, η)− Φi+1,n,0(ξi+1, η)] Q̄i(η.t) dη

}
dτ

(14)

in which the arbitrary constant Bn is to be determined by using the condition (4), one obtains

Bn = − 1

qn

sin 2η

cos 2ξ
(15)

and

ϕ
(i)
4 =

∞∑
n=1

k∑
i=1

Φi,n,0(ξ, η) exp(−K2
nt)[Pn cos 2ξ +Qn cos 2η]

+
t∫

0

exp(−K2
nτ)

ξi+1∫
ξi

1∫
−1

(ξ2 + η2)Φi,n,0(ξ, η)Qi(ξ, η.t) dξ dη dτ

(16)

in which Pn and Qn are the arbitrary constants which can to be determined from the traction free surface stress condition

(6).

Pn = −β̄2
∞∑
n=1

k∑
i=1

XnZn + Yn[Wn − Zn(Rn +Xn)]

2YnβqnΦi,n,0(ξ, η)ᾱ2 sin 2ξ1(2(−2 + υ) + c2h2β̄2)(Rn +Xn)
(17)

Qn =

∞∑
n=1

k∑
i=1

XnZn + YnWn

Yn(2 qnΦi,n,0(ξ, η)(β̄2 cos 2η + 2β(−1 + υ) sin 2η) + (Xn Sn)
(18)

where,

Wn = qnc
2h2ᾱ2β + 2Φi,n,0(ξ, η) cos 2ηch2K(−1 + qn)ξ1,
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Xn = −β̄2(α(−2 + 2υ + c2h2β̄2)− ᾱ2 cot 2ξ1),

Yn = β ᾱ2(2(−2 + υ) + c2h2β̄2),

Zn = c h2(2K Φi,n,0(ξ, η)(−1 + qn)η cos 2η + c qnᾱ
2α)

Sn = 2 qn Φi,n,0(ξ, η)α (−1 + 2υ) sin 2η

Rn = 2qnΦi,n,0(ξ, η) (cos 2η β̄2 + 2β(−1 + υ) sin 2η)/Sn

Substituting the value of constant Bn from (15) in Equation (14), Pn and Qn from Equation (17) and (18) into the Equation

(16), one obtains the equation for potential functions.

3.3. Thermal displacements and thermal stresses

By substituting the above values of potential functions into the components of displacement vector Equation (3), one obtains

u
(i)
ξ = 1

2G
c h

∞∑
n=1

k∑
i=1

{−4β(1− υ)Φi,n,0(ξ, η)[cos 2η(XnZn + 2ch2K(−1 + qn)

×Ynξ1Φi,n,0(ξ, η) cos 2η + c2h2qnβ Ynᾱ
2)/V2 − β̄2 cos 2ξ csc 2ξ1(Xn Sn/Yn

+2 c h2 K(−1 + qn) ξ1Φi,n,0(ξ, η) cos 2η + β ᾱ2c2h2qn − (Xn +Rn)Zn)/V1]

+ β̄2

V1 V
2
2

Φi,n,0(ξ, η)(−2V1(Xn Zn + 4 c h2K(−1 + qn)Yn ξ1Φi,n,0(ξ, η) cos 2η

+β ᾱ2c2h2 Yn qn)V2 sin 2η − V1 cos 2η (Xn Zn + 2 c h2K(−1 + qn) ξ1 Yn

×Φi,n,0(ξ, η) cos 2η + β ᾱ2c2h2 Yn qn)V2,η + β̄2 V 2
2 cos 2ξ csc 2ξ1

×(4 c h2K(−1 + qn) ξ1 Φi,n,0(ξ, η) sin 2η + ZnRn,η + (XnRn)Zn,η ) ) }

(19)

u
(i)
η = 1

2G
h β̄

∞∑
n=1

k∑
i=1

{−2K(−1 + qn) Φi,n,0(ξ, η) cos 2η/qn + c [−4α (1− υ)

×Φi,n,0(ξ, η) (cos 2η (Xn Zn + 2 c h2K(−1 + qn)Yn ξ1Φi,n,0(ξ, η) cos 2η

+β ᾱ2c2h2Yn qn)/ V2 − β̄2 cos 2ξ csc 2ξ1(Xn Sn/Yn + 2 c h2K

×(−1 + qn) ξ1 Φi,n,0(ξ, η) cos 2η + β ᾱ2c2h2qn − (Xn +Rn)Zn)/V1)

− ᾱ2

V1 V
2
2

Φi,n,0(ξ, η)(2V1(Xn Zn + 4 c h2K(−1 + qn) ξ1 Yn Φi,n,0(ξ, η) cos 2η

+β ᾱ2c2h2Yn qn)V2 sin 2η + V1 cos 2η (Xn Zn + 2 c h2K(−1 + qn) ξ1 Yn

×Φi,n,0(ξ, η) cos 2η + β ᾱ2c2h2Yn qn)V2,η − β̄2 V 2
2 cos 2ξ csc 2ξ1

×(4 c h2K(−1 + qn) ξ1 Φi,n,0(ξ, η) sin 2η + Zn Rn,η + (Xn Rn)Zn,η ) ) ] }

(20)

in which

V1 = 2qn(Xn +Rn(η))β ᾱ2Φi,n,0(ξ, η)(−4 + 2υ + c2h2 β̄2)

V2 = Yn(Xn Sn + 2qnΦi,n,0(ξ, η) cos 2η β̄2 + 4qnβ(−1 + υ)Φi,n,0(ξ, η) sin 2η)

The resulting equations of stresses can be obtained by substituting the Equation (14) and Equation (16) in Equation (5).

The equations of stresses are rather lengthy. Consequently the same has been omitted here for the sake of brevity, but have

been considered during graphical discussion using MATHEMATICA software.

4. Numerical Results, Discussion and Remarks

We introduce the following dimensionless values

ξ̄i = ξi/b, ā = a/b, b̄ = b/b, e = c/b, τ = κ t/b2,

θ̄ = θ/θ0, σ̄mn = σmn/Ei αi θ0, (i = 1, 2, 3; m, n = ξ, η)

 (21)
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For the sake of simplicity of numerical calculations, we consider a three-layered composite elliptic annulus plate. The

numerical computations have been carried out for Aluminium, Tin and copper metal with zero initial temperature and for (t

> 0) the temperature raised to finite value. The physical parameters are considered as ξ̄1 = a= 0.1 m, ξ̄4 = b = 1 m, ξ̄2 = 0.4

m, ξ̄3=0.7m, reference temperature θ0 as 1500C. The mechanical material properties are considered as specific heat capacity

at constant pressure Cv1=0.900 J/g0C, Cv2=0.21 J/g0C, Cv3=0.385 J/g0C, Modulus of Elasticity, E1= 69 GPa, E2 = 47

GPa and E3 = 117 GPa; Shear modulus, G1 = 26 GPa, G2 = 15.6 GPa, G3 = 48 GPa; Poisson ratio, υ1 = 0.35, υ2 = 0.325

andυ3= 0.34;Thermal expansion coefficient, α1 = 23.0×10−6/0C, α2 = 24.8×10−6 /0C, α3 = 16.5×10−6 /0C; Thermal

conductivity λ1 = 204.2 Wm−1 K−1, λ2 = 66 Wm−1 K−1 andλ3= 386 Wm−1 K−1; f1(t)=00C, f2(t)=200C. Substituting

the dimensionless value of equation (21) in the equation of temperature distribution and in its stress components, we obtain

the expressions for the temperature and stresses for our numerical discussion. In order to examine the influence of heating on

the plate, we performed the numerical calculation for all variables, and numerical calculations are depicted in the following

figures with the help of MATHEMATICA software. Plotted Fig. 1-Fig. 10 illustrate the numerical results of temperature

distribution and the thermal stresses of the oblate spheroidal shell due to internal heat generation within the solid. Fig. 1

shows the temperature distribution along ξ̄- direction for different time parameters. In this figure, temperature increases

gradually towards the outer end of each layer due to the combined effect of sectional heat supply and internal heat energy.

Figure 1. Temperature distribution along ξ̄ -direction for different τ .

Figure 2. Temperature distribution along η -direction for different time τ .
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Figure 3. Temperature distribution along time τ for different ξ̄.

As shown in Fig. 2, the temperature distribution along η-direction for different time parameters approaches to a minimum

at both extreme ends i.e. at η = 0 and η = π due to more compressive force, whereas due to a tensile force, the temperature

is high at centre i.e. at η = π/2, which gives an overall bell-shaped curve for all three layers of different materials. Fig.

3 shows the time variation of the temperature distribution of the plate for various values of ξ̄. Initially, the temperature

profile approaches to zero, whereas increases gradually attaining the maximum value of temperature magnitude occurs as

time increases due to the accumulation of energy from the available sectional heat supply. It was observed that further

increase of time increases the temperature profile.

Figure 4. Radial stress σ̄
(i)
ξξ along time τ for different ξ̄.

Figure 5. Radial stress σ̄
(i)
ξξ along ξ̄- direction for different time τ .
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Figure 6. Radial stress σ̄
(i)
ξξ along η for different ξ̄.

It is observed from the Fig. 4 that radial stress along time τ increases linearly from negative to positive values for different

values of ξ̄. Fig. 5 illustrates the axial stress along the ξ̄- direction which is initially attained zero due to more compressive

stress occurring at the inner edge which goes on increasing along the radius and attains a maximum at the outer edge. From

Fig. 6, it is observed that the radial stress along the angular direction for different radius, the slight increase in radial stress

due to the available internal heat source and heat accumulation due to sectional heat supply.

Figure 7. Tangential stress σ̄(i)
ηη along ξ̄- direction for different time τ .

Figure 8. Tangential stress σ̄(i)
ηη along η for different ξ̄.
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Fig. 7 shows the tangential stress along the radial direction for different time, initially, minimum tangential stress occurs

at the inner core whereas maximum stress occurs towards the outer end of each layer due to the internal heat energy and

sectional heat supply. In Fig. 8, the tangential stress representing sinusoidal curve nature with a small crest and a large

trough along the angular direction, thermal expansion occurs on the inner edge due to sectional heat supply and internal

heat energy followed by the compressive stress occurring on the outer core of the ellipse. During analysis, it was observed

Figure 9. Shear stress σ̄
(i)
ξη along ξ̄- direction for the different time τ .

Figure 10. Shear stress σ̄
(i)
ξη along η for different ξ̄.

that the temperature distribution and stresses attain zero at ξ̄ = ξ̄1 satisfying the condition (6), which gradually increases

along the radial direction and finally attains high at the outer edge. The above claim is illustrated in Fig. 1, Fig. 5, Fig. 7

and Fig. 9. In the foregoing investigation, as expected, there is an increment in the rate of heat propagation along a radius

which leads to compressive force in the inner part and expands more on the outer surface whenever graph was plotted for

temperature distributions, stress functions. Fig. 9 depicts shear stress along the angular direction; initially, stress goes on

slightly increasing and suddenly decreases towards outer edge even with the growth of angles due to compressive force and

again increases at the outer core. These changes could owe due to thermal expansion. Fig. 10 shows the changes of shear

stress profile with different values of ξ̄.
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5. Conclusion

The proposed analytical solution of transient thermal stress problem in multilayer composites oblate spheroidal region was

dealt in a spheroidal coordinates system with the presence of a source of internal heat. The integral transform defined in

(7) is nothing but a generalization of the transforms defined in [15, 16] and the results can be deduced by specializing the

coefficients and parameters involved therein. The analysis of non-stationary three-dimensional equation of heat conduction

is investigated with the integral transformation method by establishing Sturm-Liouville integral transform considering series

expansion function in terms of an eigenfunction of Sturm-Liouville boundary value problem. The following results were

obtained during our research

1. The advantage of this method is its generality and its mathematical power to handle different types of mechanical

and thermal boundary conditions.

2. The maximum tensile stress shifting from central core to outer part in the spheroidal region may be due to heat,

stress, concentration or available internal heat sources under considered temperature field.

3. The maximum tensile stress occurring in the circular core on the major axis compared to spheroidal central part

indicates the distribution of weak heating. It might be due to insufficient penetration of heat through the spheroidal

inner surface.

4. Also by letting dξ/2 → r, η → cos θ as ξ → ∞, where (r, θ) are spherical coordinates, we can obtain temperature

distribution in the sphere.

5. Any particular case of interest can be deduced by assigning suitable values to the parameter and source functions

involved in the solutions
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Appendix A: THE REQUIRED TRANSFORMATION

1. The transformation and its essential property

Consider a system of equations for composite region consisting of k -layers

αiL [ψi,n,m(ξ, η)] = −βi q2
n(ξ2 + η2)ψi,n,m(ξ, η), ξi ≤ ξ ≤ ξi+1, −1 ≤ η ≤ 1, i = 1, 2, ...k (A1)

subjected to the boundary conditions and interfacial boundary conditions

−α1ψi,n,m(ξ, η),ξ |ξ=ξ1 = −h0ψi,n,m(ξ, η)|ξ=ξ1 , h0 ≥ 0,

αkψk,n,m(ξ, η),ξ |ξ=ξk+1
= −hkψk,n,m(ξ, η)|ξ=ξk+1

, hk ≥ 0,

αiψi,n,m(ξ, η),ξ |ξ=ξi+1
= αi+1ψi+1,n,m(ξ, η),ξ |ξ=ξi+1

[ψi+1,n,m(ξ, η)− ψi,m,n(ξ, η)]/Ri|ξ=ξi+1
, i = 1, 2, ...(k − 1)


(A2)

in which

L =
∂

∂ξ

[
(1 + ξ2)

∂

∂ξ

]
+

∂

∂η

[
(1− η2)

∂

∂η

]
+

m (ξ2 + η2)

(1 + ξ2)(1− η2)
,

eigenfunction of the i th layer is represented by ψi,n,m(ξ, η), q2
n is the eigenvalue of the problem, (αi , βi) stands for the

characteristics of the i th layer, Ri denotes the characterises of the i th interface, h0 for the surface coefficients at ξ = ξ1, and

hk for the surface coefficients at ξ = ξk+1, respectively. The general solution of equation (A1) is of the form

Φi,n,m(ξ, η) = [Ai,nR
1
nm(γicn, ξ) +Bi,nR

2
nm(γicn, ξ)]S

1
nm(γicn, η), γi = (αi/βi)

1/2 (A3)

satisfying the following boundary conditions, we get a system of 2k simultaneous equations so that arbitrary constants Ai,n

and Bi,n can be obtained. Also from this 2k system of equations, we get the frequency equation by eliminating Ai,n and

Bi,n. After substituting the values of Ai,n and Bi,n, we get the required solution of the Sturm-Liouville problem (A1)

subjected to the boundary and interfacial conditions (A2).
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2. Orthogonality of the eigenfunction ψi,n,m

If Φi,n,m and Φi,s,m be the solutions of Equation (A1), then we have

αiL [Φi,n,m(ξ, η)] = −βi q2
n(ξ2 + η2) Φi,n,m(ξ, η) (A4)

αiL [Φi,s,m(ξ, η)] = −βi q2
s(ξ2 + η2) Φi,s,m(ξ, η) (A5)

Multiplying Equation (A4) by Φi,s,m(ξ, η) and Equation (A5) by Φi,n,m(ξ, η), then subtract, and finally integrating with

respect to η within -1 to 1 and with respect to ξ within ξi to ξi+1, we have

k∑
i=1

〈
αi

ξi+1∫
ξi

1∫
−1

{Φi,s,r(ξ, η) [(1− η2)Φi,n,m(ξ, η),η ],η

−Φi,n,m(ξ, η)[(1− η2)Φi,s,m(ξ, η),η ],η }dξ dη

〉

+
k∑
i=1

〈
αi

ξi+1∫
ξi

1∫
−1

{Φi,s,r(ξ, η) [(1 + ξ2)Φi,n,m(ξ, η),ξ ],ξ

−Φi,n,m(ξ, η)[(1 + ξ2)Φi,s,m(ξ, η),ξ ],ξ }dξ dη

〉

=
k∑
i=1

βi(q
2
s − q2

n)
ξi+1∫
ξi

1∫
−1

(ξ2 + η2)Φi,n,m(ξ, η)Φi,s,m(ξ, η) dξ dη

(A6)

and finally using the boundary and the interfacial conditions for the eigenfunctions Φi,n,m(ξ, η) and Φi,s,m(ξ, η), we find

that the first and second group of terms on the left-hand side results to be zero. Hence from (A6) an orthogonality relation

of the eigenfunctions Φi,n,m(ξ, η) can be expressed as

A(n)

k∑
i=1

ξi+1∫
ξi

1∫
−1

(ξ2 + η2)Φi,n,m(ξ, η)Φi,s,m(ξ, η)dξ dη = δns =

 0, if n 6= s

1, if n = s
(A7)

in which
√
A(n) is the normalizing constant.

3. Property of the transform

Let us consider the effect of transform defined above

k∑
i=1

ξi+1∫
ξi

1∫
−1

βi (ξ2 + η2) Φi,n,m(ξ, η)L[fi(ξ, η)] dξ dη

=
1∫
−1

{Φi,n,m(ξi+1, η) (ξ2
i+1 + 1) [αi ψi,n,m(ξ, η),ξ +hi ψi,n,m(ξ,η)] ξ=ξi+1 dη}

+
1∫
−1

〈
i−1∑
i=1

Φi,n,m(ξi+1, η) (ξ2
i+1 + 1) {αi fi(ξ, η),ξ −[fi+1(ξ, η)− fi(ξ, η)]/Ri }ξ=ξi+1 dη

−Φi+1,n,m(ξi+1, η)(ξ2
i+1 + 1) {αi+1 fi+1(ξ, η),ξ −[fi+1(ξ, η)− fi(ξ, η)]/Ri }ξ=ξi+1

〉
dη

−
1∫
−1

{ψ1,n,m(ξ1, η)(ξ2
i+1 + 1)[α1 f1(ξ, η),ξ −h0 f1(ξ, η)]ξ=ξ1}dη

〉
− q2

n

k∑
i=1

fi(qn)

(A8)

Hence (A8) is the fundamental property of the Sturm-Liouville transform for the composite region.
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Appendix B: OBLATE SPHEROIDAL COORDINATES

Here for the spheroidal wave functions, the notations used are given in Flammer [5] textbook.

Figure 11. The oblate spheroidal coordinate system

For the present problems, it is convenient to use an oblate spheroidal coordinate system that can be established by revolving

the two-dimensional elliptic coordinate system about the major axes of the ellipse [5] as shown in Fig. 11. The scale factors

(metric coefficients) hξ, hη and hϕ, for the oblate spheroidal coordinates system about rectangular coordinates (x, y, z) by

the transformation can be taken as

x = c sinh ξ sin η cosϕ, y = c sinh ξ sin η sinϕ, z = c cosh ξ cos η (B1)

alternatively, other equivalent transformation [18] from Equation (B1) as

x = (c/2) (ξ2 − 1)1/2(1− η2)1/2 cosϕ,

y = (c/2) (ξ2 − 1)1/2(1− η2)1/2 sinϕ,

z = (c/2) ξ η

(B2)

with either

−1 ≤ η ≤ 1, 0 ≤ ξ <∞, 0 ≤ ϕ ≤ 2π, c > 0

or

0 ≤ η ≤ 1, −∞ ≤ ξ <∞, 0 ≤ ϕ ≤ 2π, c > 0

moreover, the oblate spheroidal coordinate scale factors are given as

hξ =
∣∣∣ ∂r∂ξ ∣∣∣ = c

2
(ξ2+η2)1/2

(1+ξ2)1/2
,

hη =
∣∣∣ ∂r∂η ∣∣∣ = c

2
(ξ2+η2)1/2

(1−η2)1/2
,

hϕ =
∣∣∣ ∂r∂ϕ ∣∣∣ = c

2
(1 + ξ2)1/2(1− η2)1/2

 (B3)

in which r is the Cartesian position vector of r = xi + yj + zk, (ξ̂, η̂, ϕ̂) is the unit vectors defined as

[(∂r/∂ξ)/hξ, (∂r/∂η)/hη, (∂r/∂ϕ)/hϕ)], c is the positive constant represents the semi-focal length, and here the metric

coefficients are used to transform the governing equations from rectangular coordinates into the oblate spheroidal coordinate

system [19].
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