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1. Introduction

The graphs considered in this paper are simple, connected, nontrivial, undirected finite graphs with n vertices and m edges.

Let G be such a graph with the vertex set V (G) = {v1, v2, ..., vn} and the edge set E(G) = {e1, e2, ..., em}. The distance

between two vertices vi and vj , denoted by dG(vi, vj) is the length of the shortest path between the vertices vi and vj in G.

The shortest vi - vj path is called geodesic. The diameter of G, denoted by diam(G), is the length of any longest geodesic.

The degree of a vertex vi in G is the number of edges incident with vi and is denoted by dG(vi) = deg(vi). The complement

G of a graph G is a graph whose vertex set is V (G) in which two vertices are adjacent if and only if they are not adjacent

in G. Therefore G has n vertices and n(n−1)
2
−m edges. In this paper, we denote Cn, Pn, Sn, T , Kn and Kr,s for cycle,

path, star, tree, complete graph and complete bipartite graph, of order n respectively and a wheel of order n + 1 by Wn.

For undefined terms and notations refer [1]. In [6], Wiener used a linear formula of W (G) and Wp(G) to obtain the boiling

points tB of the paraffins, that is tB = aW (G) + bWp(G) + c, where a, b and c are constants for a given isomeric group. The

Wiener index (or Wiener number) [6] W (G) of a graph G, is the sum of distances between all (unordered) pairs of vertices

of G.

W (G) =
∑
i<j

dG(vi, vj).

The Wiener index of a graph belongs to the molecular structure-descriptors called topological indices, which are used for the

design of molecules with desired properties [3]. Its mathematical properties are reasonably well understood. The Wiener

polarity index [6] Wp(G) of a graph G, is equal to the number of unordered pairs of vertices of distance three in G.

Wp(G) = |{(u, v)|dG(u, v) = 3}|.
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The Wiener Finer index WF (G) of a graph G, is equal to the number of unordered pairs of vertices of distance four in G.

WF (G) = |{(u, v)|dG(u, v) = 4}|.

The Hosoya polynomial was initially defined by Haruo Hosoya [2] and termed in honour of Harold Wiener who coined the

Wiener index. The Hosoya polynomial [4] of a connected graph G is denoted by W (G; q) and is defined by,

W (G; q) =
∑
i<j

qdG(vi,vj)

where q is a parameter. The relation between Hosoya polynomial and Wiener index is,

W (G) =
d

dq
(W (G; q))

∣∣∣
q=1

. (1)

Hence, we can derive the expression for the Wiener index of G from that of the Hosoya polynomial of G. The following

theorems are useful for proving our results.

Theorem 1.1 ([7]). If G is a connected graph with the connected complement and diam(G) > 3, diam(G) = 2.

Theorem 1.2 ([4]). The Hosoya polynomial satisfies the following conditions:

(1). deg(W (G; q)) equals the diameter of G.

(2). [qo]W (G; q) =0.

(3). [q1]W (G; q) = |E(G)|, where E(G) is an edge set of G.

(4). W (G; 1) =
(|V (G)|

2

)
, where V (G) is the vertex set of G.

(5). W ′(G; 1) = W (G).

Definition 1.3 (Semitotal point graph and its complement). Let G be a simple (n,m)-graph. The semitotal point graph

T2(G) of a graph G is the graph with vertex set V (G) ∪E(G) and two vertices in T2(G) are adjacent if and only if they are

either adjacent vertices of G or one is a vertex and the other is an edge incident with it in G. The order and size of T2(G)

are respectively n + m and 3m. Also those of the complement of semitotal point graph T2(G) are n + m and
(
n+m

2

)
− 3m

respectively.

We refer [5] for details of semitotal point graph and its related concepts.

Figure 1. self-explanatory examples of the parent graph G and semitotal point graph with its complement.
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2. Hosoya Polynomial of T2(G)

Theorem 2.1. For any graph G, the semitotal point graph T2(G) is connected if and only if G is connected.

Proof. Suppose G is connected. Then T2(G) is connected as S(G) is a connected spanning subgraph of T2(G).

Conversely, assume G has atleast two components say G1 and G2. Then T2(G) = T2(G1) ∪ T2(G2). Clearly T2(G) is

disconnected, a contradiction.

The Wiener polarity index Wp(G) and Wiener Finer Index WF (G) of the semitotal point graph of some graph families are

given in the following observation:

Observation 2.2. Let G be a connected graph with n vertices and m edges. Then

(1). Wp(T2(Kr,s)) = rs
2

(rs + 1− r − s) and WF (T2(Kr,s)) = 0.

(2). Wp(T2(Kn)) = 1
8
(n4 − 6n3 + 11n2 − 6n) and WF (T2(Kn)) = 0.

(3). Wp(T2(Wn)) = n(n− 2) and WF (T2(Wn)) =


m if n ≥ 7

3 if n = 6

0 otherwise

Theorem 2.3. Let G be a graph of order n and size m with diam(G) ≤ 4. Then

W (G; q) = WF (G)q4 + Wp(G)q3 +

((
n

2

)
−WF (G)−Wp(G)−m

)
q2 + mq

and

W (G) = 2WF (G) + Wp(G) + n(n− 1)−m. (2)

Proof. Let G be a graph of order n and size m with diam(G) ≤ 3. Then by definition of Hosoya polynomial, we have

W (G; q) =
∑

u,v∈V (G)

qdG(u,v)

and by Theorem 1.2, the highest power of polynomial is equal to the diameter of G. Let Ai(G) = |{(u, v)/dG(u, v) = i}|.

Therefore the expected Hosoya polynomial for G is

W (G; q) =

4∑
i=1

Ai(G)qi.

By definition of Ai(G), we have A1(G) = m, A4(G) = WF (G), A3(G) = Wp(G) and A2(G) =
(
n
2

)
−m−Wp(G). Therefore,

W (G; q) = WF (G)q4 + Wp(G)q3 +

((
n

2

)
−WF (G)−Wp(G)−m

)
q2 + mq.

From Equation (1), the Wiener index for G is

W (G) =
d

dq
(W (G; q))

∣∣∣
q=1

= 4WF (G) + 3Wp(G) + 2

((
n

2

)
−WF (G)−Wp(G)−m

)
+ m

= 2WF (G) + Wp(G) + n(n− 1)−m.
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Corollary 2.4. Let Kr,s be a complete bipartite graph. Then

W (T2(Kr,s); q) =
1

2
rs(rs + 1− r − s)q3 +

((
rs + r + s

2

)
− 1

2
rs(rs− r − s− 5)

)
q2 + 3rsq

and

W (T2(Kr,s)) =
3

2
rs(rs + r + s− 2) + r2 + s2 − r − s.

Corollary 2.5. Let Kn be a complete graph of order n. Then

W (T2(Kn); q) =
1

8
(n4 − 6n3 + 11n2 − 6n)q3 +

1

2
(2n3 − 6n2 + 4n)q2 +

3n(n− 1)

2
q

and

W (T2(Kn)) =
1

8
(3n4 − 2n3 − 3n2 + 2n)

Corollary 2.6. Let Wn be a wheel graph. Then

W (T2(Wn); q) = Wp(Cn)q4 + n(n− 2)q3 +

(
1

2
(7n2 − 23n + 18)−Wp(Cn)

)
q2 + 6(n− 1)q

and

W (T2(Wn)) = 2Wp(Cn) + (10n2 − 23n + 12).

The diameter of the semitotal point graph of a graph increases as the order of the graph increases. Therefore, we have the

following three corollaries.

Corollary 2.7. Let Sn be a star of order n. Then W (T2(Sn)) = (4n2 − 9n + 5).

Corollary 2.8. Let Pn be a path of order n. Then W (T2(Pn) = 2n3−5n+3
3

.

Corollary 2.9. For a nontrivial tree T of order n, 4n2 − 9n + 5 ≤W (T2(T )) ≤ 2n3−5n+3
3

.

Theorem 2.10. If Cn is a cycle, then W (T2(Cn)) = n3+2n2−n
2

.

Proof. Let V (G) = {v1, v2, ..., vn} be the vertex set and E = {v′1, v′2, ..., v′n} be the edge set of Cn. Then T2(Cn) is the

semitotal point graph of cycle Cn with vertex set V ′ = V ∪ {v′1, v′2, ..., v′n}.

Splitting the summation of Wiener index of T2(Cn) into four parts,

W (T2(Cn)) = half of the shortest distance between the vertices vi and vj

+half of the shortest distance between the vertices v′i and v′j

+half of the shortest distance between the vertices vi and v′j

+half of the shortest distance between the vertices v′i and vj

=
1

2

∑
vi,vjεV

d(vi, vj) +
1

2

∑
viεV ′,vjεV

d(vi, vj) +
1

2

∑
viεV,v

′
jεV

′

d(vi, vj) +
1

2

∑
v′i,v

′
jεV

′

d(v′i, v
′
j)

=
1

2



d(v1, v1) + d(v1, v2) + ... + d(v1, vn)

+d(v2, v1) + d(v2, v2) + ... + d(v2, vn)

+... + ... + ........... + ..............+

+d(vn, v1) + d(vn, v2) + ... + d(vn, vn)


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+
1

2



d(v′1, v1) + d(v′1, v2) + ... + d(v′1, vn)

+d(v′2, v1) + d(v′2, v2) + ... + d(v′2, vn)

+... + ... + ......... + ..................+

+d(v′n, v1) + d(v′n, v2) + ... + d(v′n, vn)



+
1

2



d(v1, v
′
1) + d(v1, v

′
2) + ... + d(v1, v

′
n)

+d(v2, v
′
1) + d(v2, v

′
2) + ... + d(v2, v

′
n)

+... + ... + ........... + ..............+

+d(vn, v
′
1) + d(vn, v

′
2) + ... + d(vn, v

′
n)



+
1

2



d(v′1, v
′
1) + d(v′1, v

′
2) + ... + d(v′1, v

′
n)

+d(v′2, v
′
1) + d(v′2, v

′
2) + ... + d(v′2, v

′
n)

+... + ... + ......... + ..................+

+d(v′n, v
′
1) + d(v′n, v

′
2) + ... + d(v′n, v

′
n)


= W (Cn) +

1

2
[2W (Cn) + n.diam(Cn)] +

1

2
[2W (Cn) + n.diam(Cn)] +

1

2

[
2W (Cn) +

n(n− 1)

2

]
= 4W (Cn) +

n(n− 1)

2
+ n(diam(T2(Cn))).

Case (1): For even cycle, diam(T2(Cn)) = n
2
. Therefore,

W (T2(Cn)) = 4W (Cn) +
n(n− 1)

2
+ n(diam(T2(Cn)))

= 4(
n3

8
) +

n(n− 1)

2
+ n(

n

2
) =

n3 + 2n2 − n

2
.

Case (2): For odd cycle, diam(T2(Cn)) = n+1
2

. Therefore,

W (T2(Cn)) = 4W (Cn) +
n(n− 1)

2
+ n(diam(T2(Cn)))

= 4(
n3 − n

8
) +

n(n− 1)

2
+ n

n + 1

2
=

n3 + 2n2 − n

2
.

From the above two cases W (T2(Cn)) = n3+2n2−n
2

.

Theorem 2.11. If G is a connected graph of order n ≥ 2, then W (G) < W (T2(G)).

Proof. Let G be a connected graph with n vertices and m edges. Then the semitotal point graph T2(G) has n1 = n + m

vertices and m1 = 3m edges. Since, the Wiener index of a graph increases when new vertices are added to it and G is

induced subgraph of T2(G). Hence, Wiener index of semitotal point graph T2(G) is greater than Wiener index of a graph

G. Therefore W (G) < W (T2(G)).

Lemma 2.12. For any connected graph G of order n,

(4n2 − 9n + 5) ≤W (T2(G)) ≤ 1

8
(3n4 − 2n3 − 3n2 + 2n).

Upper bound attains if G is a complete graph and lower bound attains if G is a star.

Proof. Let G be a graph of order n and size m. Then T2(G) has n + m vertices and 3m edges. Any graph G of order n

has maximum number of edges if and only if G ∼= Kn and T2(G) has maximum number of vertices if and only if G ∼= Kn.

We know that Wiener index of a graph G increases when new vertices are added to the graph and T2(Kn) has maximum
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number of vertices compared with any other T2(G), where G is a graph of order n. Therefore, W (T2(G)) ≤ W (T2(Kn)).

From Corollary 2.5, W (T2(Kn)) = 1
8
(3n4 − 2n3 − 3n2 + 2n). Therefore,

W (T2(G)) ≤ 1

8
(3n4 − 2n3 − 3n2 + 2n). (3)

with equality in (3) if and only if G ∼= Kn. Any graph G of order n has minimum number of edges if and only if G ∼= T

and T2(G) has minimum number of vertices if and only if G ∼= T . Therefore, W (T2(T )) ≤ W (T2(G)). From Corollary 2.9,

W (T2(Sn)) = (4n2 − 9n + 5) ≤W (T2(T )). Therefore,

4n2 − 9n + 5 ≤W (T2(G)) (4)

with equality in (4) if and only if G ∼= Sn. From (3) and (4), we have

(4n2 − 9n + 5) ≤W (T2(G)) ≤ 1

8
(3n4 − 2n3 − 3n2 + 2n).

Upper bound attains if G is a complete graph and lower bound attains if G is a star.

3. Hosoya Polynomial of T2(G)

In this section, we obtain the Hosoya polynomial and Wiener index of the complement of the semitotal point graph T2(G)

of a graph G.

Theorem 3.1. For any graph G, the complement of the semitotal point graph of G is connected if and only if G is not a

star.

Proof. Suppose G = K1,n, n ≥ 1 and u is the central vertex of the star. Then u′ is an isolated vertex of T2(G), and is

not connected. On the other hand, if G is not connected, then G (⊆ T2(G)) is connected. Since every edge e ∈ E(G) is

not incident with each vertex v ∈ V (G) not in the same component. By definition, v′ and e′ are adjacent in T2(G). Now

suppose G is connected. Since G is not a star, each vertex v ∈ V (G) is not incident with at least one edge e ∈ E(G). By

definition, v′ and e′ are adjacent in T2(G). Thus T2(G) is connected.

Theorem 3.2. If G is not a star, then diam(T2(G)) ≤ 3, and the equality holds if and only if G ∼= P4,K3.

Proof. For e1, e2 ∈ E(G), since all the line-vertices of T2(G) form a complete subgraph, e′1 and e′2 are adjacent in T2(G).

For u ∈ V (G) and e ∈ E(G), if they are not incident in G, then u′ and e′ are adjacent in T2(G). Otherwise, there is an edge

ei not incident with u, then u′, e′i, e
′ is a path in T2(G). For u, v ∈ V (G), if they are not adjacent in G, then u′ and v′ are

adjacent in T2(G). Suppose u and v are adjacent in G. If u and v are not adjacent to a common vertex w in G, then u′, w′,

v′ is a path in T2(G). If u and v are not incident with a common edge ei in G, then u′, e′i, v
′ is a path in T2(G). Otherwise,

u and v are not incident with e1 and e2 respectively in G, then u′, e′1, e′2, v′ is a path in T2(G).

It is easy to see that if G ∼= P4,K3, then diam(T2(G)) = 3. On the other hand, diam(T2(G)) = 3. Let r′, s′ ∈ V (T2(G))

such that the distance of r′, s′ in T2(G) is 3. By the above argument, we see that r, s ∈ V (G), r and s are adjacent and

neither not adjacent to a common vertex nor not incident with a common edge. Hence the only possibility is G ∼= P4 or

K3.
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Theorem 3.3. Let G � Sn, P4,K3 be a graph of order n and size m. Then

W (T2(G); q) =

((
n + m

2

)
− 1

2
(n(n− 1) + m(m− 7))−mn

)
q2 +

(
1

2
(n(n− 1) + m(m− 7)) + mn

)
q

and

W (T2(G)) = (n + m)(n + m− 1)− 1

2
(n(n− 1) + m(m− 7))−mn.

Proof. The complement of the semitotal point graph T2(G) has the diameter ≤ 2, for any graph G other than Sn, P4,K3.

Therefore, from Theorem 1.2 we have the Hosoya polynomial and the Wiener index as

W (T2(G); q) =

((
n + m

2

)
− 1

2
(n(n− 1) + m(m− 7))−mn

)
q2 +

(
1

2
(n(n− 1) + m(m− 7)) + mn

)
q

and

W (T2(G) = (n + m)(n + m− 1)− 1

2
(n(n− 1) + m(m− 7))−mn. (5)

The Hosoya polynomial and Wiener index of complement of semitotal point graph of some standard classes of graphs are

obtained analogously.

Corollary 3.4. For a nontrivial tree T � Sn, P4 of order n,

W (T2(T ); q) = 3(n− 1)q2 + 2(n− 1)(n− 2)q and W (T2(T )) = 2(n2 − 1).

Corollary 3.5. For a cycle Cn of order n > 3,

W (T2(Cn); q) = 3nq2 + 2n(n− 2)q and W (T2(Cn)) = n(2n− 5).

Corollary 3.6. For a complete graph Kn of order n,

W (T2(Kn); q) =
3

2
n(n− 1)q2 +

1

8
(n4 + 2n3 − 13n2 + 10n)q

and

W (T2(Kn)) =
1

8
(n4 + 2n3 + 11n2 − 14n).

Corollary 3.7. For a complete bipartite graph Kr,s � Sn,

W (T2(Kr,s); q) = 3rsq2 +
1

2
(rs(2r + 2s + rs− 3) + (r − s)2 − r − s)q

and

W (T2(Kr,s)) =
1

2
(rs(2r + 2s + rs + 9) + (r − s)2 − r − s).

Corollary 3.8. For a wheel graph Wn,

W (T2(Wn); q) = 6(n− 1)q2 +
3

2
(3n2 − 9n + 6)q

and

W (T2(Wn)) =
3

2
(3n2 − n− 2).
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Lemma 3.9. For any connected graph G � P4,K3 of order n,

2(n2 − 1) ≤W (T2(G)) ≤ 1

8
(n4 + 2n3 + 11n2 − 14n).

Upper bound attains if G is a complete graph and lower bound attains if G is a path.

Proof. Let G be a graph of order n and size m. Then T2(G) has n + m vertices and 3m edges. Any graph G of order n

has maximum number of edges if and only if G ∼= Kn and T2(G) has maximum number of vertices if and only if G ∼= Kn.

We know that Wiener index of a graph G increases when new vertices are added to the graph and T2(Kn) has maximum

number of vertices compared with any other T2(G), where G is a graph of order n. Therefore, W (T2(G)) ≤ W (T2(Kn)).

From Corollary 3.6, W (T2(Kn)) = 1
8
(n4 + 2n3 + 11n2 − 14n). Therefore,

W (T2(G)) ≤ 1

8
(n4 + 2n3 + 11n2 − 14n). (6)

with equality in (6) if and only if G ∼= Kn. Any graph G of order n has minimum number of edges if and only if G ∼= T

and T2(G) has minimum number of vertices if and only if G ∼= T other than P4. Therefore, W (T2(T )) ≤ W (T2(G)). From

Corollary 3.4, W (T2(Pn)) = 2(n2 − 1) ≤W (T2(T )). Therefore,

2(n2 − 1) ≤W (T2(G)) (7)

with equality in (7) if and only if G ∼= Sn. From (6) and (7), we have

2(n2 − 1) ≤W (T2(G)) ≤ 1

8
(n4 + 2n3 + 11n2 − 14n).

Upper bound attains if G is a complete graph and lower bound attains if G � P4 is a path.

The following theorem gives the Nordhaus-Gaddum type inequality for Wiener index of semitotal point graph.

Theorem 3.10. For a connected graph G of order n ≥ 4,

3(2n2 − 3n + 1) ≤W (T2(G)) + W (T2(G)) ≤ n

2
(n3 + 2n− 3).

Proof. This bound is immediate from Lemmas 2.12 and 3.9.
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