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considered. Here, {cn}, {dn}, {pn}, and {an} are sequence of positive real number for n0 ∈ N, f is a continuous function
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1. Introduction

Consider the nonlinear delay difference equation

∆ (cn∆ (dn∆xn)) + pn∆xn+1 + qnf (xn−σ) = 0, n ≥ n0, (1)

where n0 ∈ N is fixed integer, ∆ denotes the forward difference operator ∆xn = xn+1 − xn, and σ is a nonnegative integer.

The real sequence {cn}∞n=n0
, {dn}∞n=n0

, {pn}∞n=n0
, {qn}∞n=n0

, and the function f satisfy the following conditions:

(h1) {dn}∞n=n0 is positive, lim
n→∞

R1(n, s) =∞, where R1(n, s) =
n∑
k=s

1
dk

for n > s ≥ n0;

(h2) {cn}∞n=n0
is positive, lim

n→∞
R2 (n, s) =∞, where R2 (n, s) =

n∑
k=s

1
ck

for n > s ≥ n0;

(h3) pn ≥ 0, qn ≥ 0 and qn 6= 0 for infinitely many values of n ∈ N (n0);

(h4) f ∈ C (R,R) , f (u) /u ≥ K for some k > 0 and for all u 6= 0.

By a solution of Equation (1) we mean a nontrivial real sequence {xn} that is defined for n ≥ n0 − σ and satisfies Equation

(1) for all n ≥ n0. clearly if xn = An for n = n0−σ, n0−σ+1, . . . , n0−1 are given, then Equation (1) has a unique solution

satisfying the above initial conditions. A solution {xn} of Equation (1) is said to be oscillatory if is neither eventually

positive nor eventually negative, and nonoscillatory otherwise. Equation (1) is called nonoscillatory if all its solutions are

nonoscillatory.

The oscillation problem for difference equations has been investigated in recent years; for first-order, second-order, and

higher-order equations, respectively; see [15,20,8,9,11,19,21]. For general theory of oscillation of difference equations, we

refer to [1-3,14], and over 500 refer encescited therein. Compared to the second-order difference equations, the study of
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third-order difference equations has received considerably less attention in the literature even though such equations arises

in economics, mathematical biology, and other areas of Mathematics (5). Some recent results on third-order difference

equations can be found [10,24-31]. However, it seems that there is much less known regarding the oscillation of Equation

(1).

There are many papers dealing with the oscillatory and asymptotic behaviour of solution of difference and differential

equations, see for instance Jiang [12], Jiang and Li [13], Li [17], Li and Yeh [16], Li [17], Luo [18], Philos [22], saker [26, 27].

The oscillatory behaviour of solution of difference equations and that of their discrete analogs may be quite different. For

instance, the differential equation

ym + 8y = 0

admits a nonoscillatory solution y1 (t) = e−2t and a pair of oscillatory solutions y2 (t) = et cos
√

3t and y3 (t) = et sin
√

3t,

but the difference equation

∆3xn + 8xn = 0

Which is a discrete analog of the above difference equation, has there oscillatory solutions x1
n = (−1)n, x2

n =(√
7
)n

cos
[
n
(

arctan
√

3/2
)]

, and x3
n =

(√
7
)n

sin
[
n
(

arctan
√

3/2
)]

. We note that Equation (1) may be considered

as a discrete analog of the delay differential equation

(
c (t)

(
d (t)x′

)′)′
+ p (t)x′ + q (t) f (x (t− σ)) = 0 (2)

For some work regarding the oscillation of Equation (2), we refer to Saker [27] (p (t) ≡ 0) and Tiryaki and Aktas [32] and

the references cited therein. A number of dynamical behaviours of solutions of difference equations are possible; here we

will only be concerned with conditions which are sufficient for every solution of Equation (1) to be either oscillatory or

convergent to zero as n→∞. Recently, Saker [26] has established some new conditions which are sufficient for all solution

of

∆ (cn∆ (dn∆xn)γ) + qnf (xn−σ) = 0, n ≥ n0, (3)

Where γ ≥ 1 is quotient of odd positive integers, to be either oscillatory or tend to zero as n→∞. Our aim in this paper

is to present some new oscillation criteria for Equation (1) by making use of a Riccati type transformation and arguments

developed for differential equations in [32]. It should be noted that the results obtained in this paper extend and improve

the related ones in [26]. The paper is organized as follows. In section 2, we will present some lemmas which are useful in

establishing our main results. In Section 3 we will state and prove the main results and give examples to illustrate them.

2. Preparatory Lemmas

We begin with the following useful lemma.

Lemma 2.1. Suppose

(h5) ∆ (cn∆zn) + pn
dn+1

zn+1 = 0 is nonoscillatory.

If {xn} is a nonoscillatory solution of Equation (1) for n ≥ n0, then there exists a n1 ≥ n0 such that either xn (dn∆xn) > 0

or xn (dn∆xn) < 0 for all n ≥ n1.

Proof. Suppose that {xn} is a nonoscillatory solution of Equation (1) for n ≥ n0. Without loss of generality, we may

take xn > 0 and xn−σ > 0, n ≥ n1 ≥ n0. We see that yn = −dn∆xn is a solution of the order non homogeneous difference
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equation

∆ (cn∆yn) +
pn
dn+1

yn+1 = qnf (xn−σ) , n ≥ n1 (4)

Indeed, since xn is a oscillatory solution of Equation (1) we have

∆ (cn∆ (−dn∆xn)) +
pn
dn+1

(−dn+1∆xn+1) = qnf (xn−σ)

and hence

∆ (cn∆ (dn∆xn)) + pn∆xn+1 + qnf (xn−σ) = 0

We claim that solution of (4) are nonoscillatory. We may assume that zn > 0 for n ≥ n1. Note that {−zn} is also a solution.

Let yn be a oscillatory solution of (4). There exist n3 > n2 > n1 such that yn3 ≥ 0, yn3+1 ≤ 0, yn2 ≤ 0 and yn2+1 ≥ 0.

Summing

∆ (cn (yn+1zn − ynzn+1)) = zn+1qnf (xn−σ)

From n2 to n3 − 1, we have

cn3 (yn3+1zn3 − zn3+1yn3)− cn2 (yn2+1zn2 − zn2+1yn2) =

n3−1∑
k=n2

zk+1qkf (xk−σ) ,

a contradiction. The proof is complete.

Definition 2.2. Let {xn} be a solution of Equation (1). we say that the solution {xn} has property v2 if there exists n∗ ≥ n0

such that

xn∆xn > 0, xn∆ (dn∆xn) > 0, xn∆ (cn∆ (dn∆xn)) ≤ 0

For every n ≥ n∗.

Lemma 2.3. Let the assumption (h2) hold and {xn} be a nonoscillatory solution of Equation (1) such that xn (dn∆xn) ≥ 0

for every n ≥ n1 ≥ n0. Then {xn} has property V2.

Proof. Let {xn} be a eventually positive solution of Equation (1) Then there exists an n1 ≥ n0 such that xn−σ > 0

for n ≥ n1. Since xn (dn∆xn) > 0 for every n ≥ n1 ≥ n0, we have ∆xn > 0 for n ≥ n1. From Equation (1) we have

∆ (cn∆ (dn∆xn)) ≤ 0 for n ≥ n1. Then ∆ (dn∆xn) is monotone and eventually of one sign. We claim that there is a

n2 ≥ n1 such that for n ≥ n2, ∆ (dn∆xn) > 0. Suppose to the contrary that ∆ (dn∆xn) ≤ 0 for n ≥ n2. Since cn > 0

and cn∆ (dn∆xn) > 0 is nonincreasing there exists a negative constant C and an n3 ≥ n2 such that cn∆ (dn∆xn) ≤ C for

n ≥ n3. Dividing both sides by cn and summing from n3 to n− 1 , we obtain

dn∆xn ≤ dn3∆xn3 + C

n−1∑
k=n3

1

ck
.

Letting n → ∞, we see that dn∆xn → −∞ by a contradiction with the fact that ∆xn > 0. Then ∆ (dn∆xn) > 0. The

proof is complete.

Lemma 2.4. Let {xn} be a solution of Equation (1) and {g∗n}∞n=n0
be a sequence of integers which satisfies

(h6) g∗n ≤ n− σ − 1 and lim
n→∞

g∗n =∞.

If {xn} be a property V2, then there exists an n1 ≥ n0 such that dn−σ∆xn−σ ≥ R2 (n− σ − 1, g∗n) cn∆ (dn∆xn) for n ≥ n1.
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Proof. Let {xn} be a solution of Equation (1) which has property v2. Without loss of generality, we may also assume

that xn > 0 and xn−σ > 0, n ≥ n1 ≥ n0. Since lim
n→∞

g∗n = ∞ and ∆xn > 0, ∆ (dn∆xn) > 0, and ∆ (cn∆ (dn∆xn)) ≤ 0 for

every n ≥ n2 ≥ n1,

dn−σ∆xn−σ = dg∗n∆xg∗n +

n−σ−1∑
k=g∗n

ck∆ (dk∆xk)

ck
≥ R2 (n− σ − 1, g∗n) cn∆ (dn∆xn)

and then we have

dn−σ∆xn−σ ≥ R2 (n− σ − 1, g∗n) cn∆ (dn∆xn) .

The proof is complete.

Lemma 2.5. Let µn be a positive sequence defined for n ≥ n0 and set

φn = dn+2∆ (cn+1∆µn) + µnpn.

Furthermore assume that the following conditions are satisfied:

(h7) ∆µn ≥ 0, φn ≥ 0,∆ (dn+2∆ (cn+1∆µn)) ≥ 0 (or∆ (µnpn) ≤ 0) for n ≥ n0;

(h8)
∞∑

n=n0

(Kµnqn −∆φn) =∞, where Kµnqn −∆φn ≥ 0for n ≥ n0.

If (h1) holds and {xn} is a nonoscillatory solution of Equation (1) which satisfies xn (cn∆xn) ≤ 0 for n sufficiently large,

then lim
n→∞

xn = 0.

Proof. Let {xn} be a nonoscillatory solution of Equation (1). Without loss of generality, we may assume that xn > 0

and xn−σ > 0 for n ≥ n1 ≥ n0 for some n1 sufficiently large. The proof when {xn} is eventually negative is similar, as the

substitution yn = −xn transforms Equation (1) into an equation of the same form. Since xn (cn∆xn) ≤ 0 for n sufficiently

large, ∆xn becomes nonpositive for all n ≥ n2 for some n2 ≥ n1. Let lim
n→∞

xn = λ ≥ 0. Assume that λ 6= 0. There exists an

n3 ≥ n2 such that xn ≥ λ for n ≥ n3. Summing Equation (1) from n3 to n− 1, we obtain from that

µncn∆ (dn∆xn) ≤ C1 − λ
n−1∑
k=n3

(Kµkqk −∆φk) ,

where C1 is a constant. Employing we see from (2) that µncn∆ (dn∆xn) must take on negative values for n sufficiently large.

By using (h1) we see that xn must be eventually negative, a contradiction. Hence λ = 0. This complete the proof.

3. Oscillation Criteria

In this section we gave the main of our paper.

Theorem 3.1. Assume that (h1)− (h8) hold, and that there exists a positive sequence {ρn}∞n=n0
such that s

lim sup
n→∞

n∑
k=n0

[
Kρkqk −

dk−σ (∆ρkdk+1 − ρkpkR2 (k − σ − 1, g∗k))2

4ρkR2 (k − σ − 1, g∗k) d2
k+1

]
=∞. (5)

Then every solution {xn} of Equation (1) is either oscillatory or satisfies xn → 0 as n→∞.

Proof. Let {xn} be a nonoscillatory solution of Equation (1) Without loss of generality, we may assume that xn > 0 and

xn−σ > 0 eventually. From Lemma 2.1 it following that ∆xn > 0 or ∆xn < 0 for n ≥ n1 ≥ n0. If ∆xn > 0 for n ≥ N ≥ n1
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then {xn} has property V2 by Lemma 2.2. We define wn = ρn
cn∆(dn∆xn)

xn−σ
, n ≥ N . Then, wn > 0 and in view of Equation

(1) by employing Lemma 2.3 we have

∆wn = −f (xn−σ)

xn−σ
ρnqn −

ρn
xn−σ

pn∆xn+1 +
cn+1∆ (dn+1∆xn+1)xn−σ∆ρn

xn−σxn−σ+1
− cn+1∆ (dn+1∆xn+1) ρn∆xn−σ

xn−σxn−σ+1

≤ −Kρnqn −
(
w2
n+1

(
ρnR2 (n− σ − 1, g∗n)

(ρn+1)2 dn−σ

)
− wn+1

(
∆ρn
ρn+1

− pnρnR2 (n− σ − 1, g∗n)

dn+1ρn+1

))
= −Kρnqn −Anw2

n+1 + wn+1Bn, (6)

Where

An =
ρnR2 (n− q − 1, g∗n)

ρ2
n+1dn−σ

, Bn =
∆ρn
ρn+1

− pnqnR2 (n− q − 1, g∗n)

dn+1ρn+1
.

Completing the square in (3.2) we obtain

∆wn < −
[
Kρnqn −

B2
n

4An

]
. (7)

Summing (7) from N to n, we obtain

−wN < wn+1 − wN < −
n∑

k=N

[
Kρkqk −

B2
k

4Ak

]

which yields
n∑

k=N

[
Kρkqk −

B2
k

4An

]
< wN

For all large n and this is contrary to (5). If ∆xn < 0 for n ≥ N , then by Lemma 2.4 we have lim
n→∞

xn = 0. The proof is

complete.

Example 3.2. Consider the third order delay difference equation

∆3xn +
1

5n2
∆xn+1 +

(
1− 1

5n2

)
xn−3 = 0, n ≥ 1 (8)

Note that ∆2zn + 1
5n2 zn+1 = 0 is nonoscillatory by [1]. Taking µn = ρn = 1 and g∗n = n− 4, we have

lim sup
n→∞

n∑
k=n0

[
Kρkqk −

dk−σ (∆ρkdk+1 − ρkpkR2 (k − σ − 1, g∗k))2

4ρkR2 (k − σ − 1, g∗k) d2
k+1

]
=

∞∑
k=1

(
1− 1

5k2
− 1

100k4

)
=∞.

Thus, condition (5) is satisfied. The other conditions of Theorem 3.1 are also satisfied. Hence every solution {xn} of

Equation (8) is either oscillatory or satisfies xn → 0 as n → ∞. We note that
{

cos nπ
3

}
is an oscillatory solution of

Equation (8).

Example 3.3. consider the their order difference equation

∆3xn +
1

2n+1
∆xn+1 +

1

8

(
1 +

1

2n

)
xn = 0, n ≥ 1. (9)

Note that ∆3zn + 1
2n+1 zn+1 = 0 is nonoscillatory [1]. Taking µn = ρn = 1 and g∗n = n − 1, condition (5) is satisfied.

The other conditions of Theorem 3.1 are also satisfied. Hence, every solution {xn} of Equation (9) is either oscillatory or

satisfies xn → 0 as n→∞. Indeed, the sequence
{

2−n
}

is such a solution of Equation (9).

Theorem 3.4. Assume that (h1)− (h8) hold. Let {ρn}∞n=n0
be a positive sequence and {Hm,n}, m ≥ n ≥ n0, be a double

sequence such that
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(1). Hm,m = 0 for m ≥ n0;

(2). Hm,n > 0 for m > n ≥ n0;

(3). ∆2Hm,n = Hm,n+1 −Hm,n ≤ 0 and −∆2Hm,n = hm,n
√
Hm,n for m ≥ n ≥ n0.

If

lim sup
m→∞

1

Hm,m0

m−1∑
n=m0

[
KHm,nρnqn −

Q2
m,n

4An

]
=∞ for every m0 ≥ n0, (10)

where

Qm,n = hm,n −
(

∆ρn
ρn+1

− pnρnR2 (n− σ − 1, g∗n)

dn+1ρn+1

)√
Hm,n, An =

ρnR2 (n− σ − 1, g∗n)

ρ2
n+1dn−σ

,

Then every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.

Proof. Let {xn} be a nonoscillatory solution of Equation (1) which may assume to be eventually positive. Proceeding as

in the proof of Theorem 3.1 we arrive at the inequality 3.2 Then we see that

m−1∑
n=N

KHm,nρnqn ≤
m−1∑
n=N

Hm,n
(
−∆wn + wn+1Bn −Anw2

n+1

)
= Hm,NwN +

m−1∑
n=N

{
wn+1∆2Hm,n

(
Bnwn+1 −Anw2

n+1

)}
= Hm,NwN −

m−1∑
n=N

{
w2
n+1AnHm,n + wn+1

(
hm,n

√
Hm,n −Hm,nBn

)}
≤ Hm,NwN +

m−1∑
n=N

(hm,n −Bn
√
Hm,n)2

4An
, (11)

where Bn is as defined in the proof of Theorem 3.1. Thus we obtain

1

Hm,N

m−1∑
n=N

[
KHm,nρnqn −

Q2
m,n

4An

]
≤ wN ,

Where clearly contradicts (10). If ∆xn < 0 for n ≥ N , then by Lemma 2.4, we have lim
n→∞

xn = 0. The proof is complete.

As an immediate consequence of Theorem 3.2 we get the following corollary.

Corollary 3.5. Assume that all the assumption of Theorem 3.2 holds, except that the condition (10) is replaced by

(1). lim sup
m→∞

1
Hm,m0

m−1∑
n=m0

Hm,nρnqn =∞ for every m0 ≥ n0,

(2). lim sup
m→∞

1
Hm,m0

m−1∑
n=m0

Q2
m,n

An
< 0 for every m0 ≥ n0.

Then, every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.

Example 3.6. Consider the third order delay difference equation

∆3xn +
9

2n+1
∆xn+1 +

27

32

(
1− 1

2n

)
xn−2 = 0 (12)

Taking µn = ρn = 1, g∗n = n − 3 and Hm,n = m − n condition (10) is satisfied. The other condition of Theorem 3.2 are

also satisfied. Hence every solution {xn} of Equation (12) is either oscillatory or satisfies xn → 0 as n→∞. The sequence

{(−1/2)n} is such a solution of Equation (12).
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Example 3.7. Consider the third order delay difference equation

∆3xn +
27

32
xn−2 = 0, n ≥ 1 (13)

Taking µn = ρn = 1, g∗n = n− 3 and Hm,n = m− n, we have

lim
m→∞

sup
1

Hm,n0

m−1∑
n=n0

[
KHm,nρnqn −

Q2
m,n

4An

]
= lim sup

m→∞

1

m− 1

m−1∑
n=1

[
27

32
(m− n)− 1

4 (m− n)

]
=∞.

Thus, condition (10) is satisfied. The other condition of theorem are also satisfied. Hence every solution {xn} of Equation

is either oscillatory or satisfies x→ 0 as n→∞. The sequence
{

2−n
}

is a solution of Equation (13).

Remark 3.8. One may choose {Hm,n} in appropriate manners, to derive several special oscillation criteria for Equation

(1) Some choices are

Hm,n = (m− n)λ , λ ≥ 1,m ≥ n ≥ n0,

Hm,n =

(
log

m+ 1

n+ 1

)λ
, λ ≥ 1,m ≥ n ≥ n0,

Hm,n = (m− n)(λ) , λ > 2,m ≥ n ≥ n0,

Where (m− n)(λ) = (m− n) (m− n+ 1) . . . (m− n+ λ− 1).

Theorem 3.9. Let {Hm,n} and {hm,n} be as in Theorem 3.2 and let

0 < inf
n≥n0

[
lim inf
m→∞

Hm,n
Hm,n0

]
≤ ∞ (14)

lim sup
m→∞

1

Hm,n0

m−1∑
n=n

Q2
m,n

An
<∞ (15)

If there is a sequence {ΨN} such that

lim sup
m→∞

1

Hm,N

m−1∑
n=N

[
KHm,nρnqn −

Q2
m,n

4An

]
≥ ψN for every N ≥ n0 (16)

and
∞∑

n=n0

An
[
ψ+
n+1

]2
=∞, where ψ+

n+1 = max {ψn+1, 0} (17)

Then every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.

Proof. As in the proof of Theorem 3.2, we have (11), Then, we have

m−1∑
n=N

KHm,nρnqn ≤ Hm,NwN +

m−1∑
n=N

Q2
m,n

4An
−
m−1∑
n=N

[
wn+1

√
AnHm,n +

Qm,n

2
√
An

]2

(18)

The remainder of the proof of this case is similar to ones given in [16,18] and hence is omitted.

Example 3.10. Consider the third order difference equation

∆2

(
1

n3
∆xn

)
+

2n+ 1

[n (n+ 1)]2
(
xn + x3

n

)
= 0, n ≥ 1. (19)
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We take µn = n2, ρn = 1, g∗n = n− 1, Hm,n = m− n and ψn = 1
n2 . In view of Qm,n = 1√

m−n and An = n3, we see that

lim sup
m→∞

1

Hm,n0

m−1∑
n=n0

Q2
m,n

An
= lim sup

m→∞

1

m− 1

m−1∑
n=1

1

(m− n)n3
= 0 <∞,

∞∑
n=n0

An
[
ψ+
n+1

]2
=

∞∑
n=1

n3

(n+ 1)4 =∞

and

lim sup
m→∞

1

Hm,n

m−1∑
n=N

[
KHm,nρnqn −

Q2
m,n

4An

]
= lim sup

m→∞

1

m−N

m−1∑
n=N

[
(m− n)

(
1

n2
− 1

(n+ 1)2 −
1

4 (m− n)n3

)]
=

1

N2
= ψN.

Since the conditions of Theorem 3.3 hold, every solution {xn} of Equation (19) is either oscillatory or satisfies xn → 0 as

n→∞.

Theorem 3.11. Let {Hm,n} and {hm,n} be as in Theorem 3.2 and let (14) hold. Suppose that

lim inf
m→∞

1

Hm,n0

m−1∑
n=n0

KHm,nρnqn <∞, (20)

and there is a sequence {ψN} satisfying (17) and

lim inf
m→∞

1

Hm,N

m−1∑
n=N

[
KHm,nρnqn −

Q2
m,n

4An

]
≥ ψN for every N ≥ n0 (21)

Then every solution {xn} of Equation (1) either oscillatory or lim
n→∞

xn = 0.

Proof. The proof of Theorem 3.4 is similar to that of Theorem 3.3 and hence is omitted.

Theorem 3.12. Assume that (h1)-(h8) hold. Suppose there exists a positive sequence {ρn}∞n=n0
and a sequence

{Fm,n}∞m,n=n0
such that 1 +

Fm,n
ρn+1

+ pnρnR2
dn+1ρn+1

− ∆ρn
ρn+1

≥ 0 and

lim sup
m→∞

m∑
n=n0

 n−1∏
k−n0

(
1 +

Fm,k
ρk+1

−Bk
)(Kρnqn − 1

4An

(
Fm,n
ρn+1

)2
)

=∞, (22)

Then every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.

Proof. Let {xn} be a nonoscillatory solution of Equation (1) Without loss of generality, we may assume that xn > 0 and

xn−σ > 0 for some N ≥ n0. Proceeding as in the proof of Theorem 3.1 we arrive at

∆wn ≤ −Kρnqn + wn+1Bn − w2
n+1

(
ρnR2

ρ2
n+1dn−σ

)
, n ≥ N (23)

From (23) and Young’s inequality, we have

∆wn ≤ −Kρnqn + wn+1Bn − w2
n+1

ρnR2

ρ2
n+1dn−σ

− 1

4An

(
Fm,n
ρn+1

)2

+
1

4AN

(
Fm,n
ρn+1

)2

, n ≥ N

or

wn+1 − wn ≤ −Kρnqn + wn+1

(
Bn −

Fm,n
ρn+1

)
+

1

4An

(
Fm,n
ρn+1

)2

, n ≥ N

It follows that
m∑

n=N

[
n−1∏
k=N

(
1 +

Fm,k
ρk+1

−Bk
)](

Kρnqn −
1

4An

(
Fm,n
ρn+1

)2
)
≤ wN .

Hence

lim sup
m→∞

m∑
n=N

[
n−1∏
k=N

(
1 +

Fm,k
ρk+1

−Bk
)](

Kρnqn −
1

4An

(
Fm,n
ρn+1

)2
)
≤ wN ,

Which contradict (22). If ∆xn < 0 for n ≥ N , then by Lemma 2.4 we have lim
n→∞

xn = 0. The proof is complete.
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Example 3.13. Consider the third order difference equation

∆2

(
1

n5
∆xn

)
+

1

4n3
xn (β + exn) = 0, n ≥ 1, (24)

where β > 1 and f (u) = u (β + eu) with K = β. Taking µn = n2, ρn = n, g∗n = n− 1, and Fm,n = n2, we have

lim sup
m→∞

m∑
n=1

[
n−1∏
k=1

(
1 +

Fm,k
ρk+1

−Bk
)](

Kρnqn −
1

4An

(
Fm,n
ρn+1

)2
)

=
β − 1

4
lim sup
m→∞

∞∑
n=1

(n− 1)!

n2
=∞

Thus, condition (22) is satisfied. The other conditions of Theorem 3.6 are also satisfied. Hence every solution {xn} of

Equation (24) is either oscillatory or satisfies xn → 0 as n→∞.

In the proof of following theorem we use a generalized Riccati transformation technique.

Theorem 3.14. Assume that (h1)-(h8) holds. Let {ρn}∞n=n0
be a positive sequence. Furthermore, we assume that there

exists a double sequence −{Hm,n : m ≥ n ≥ n0} such that (i)-(iii). If

lim sup
m→∞

1

Hm,m0

m−1∑
n=m0

[
Hm,nψ −

h2
m,n

4An

]
=∞ for every m0 ≥ n0 (25)

where

ψn = ρn

(
Kqn −

p2
ndn−σR2

4d2
n+1

−∆ (cn−σαn−1)

)
, αn = − (∆ρndn+1 − pnρnR2) dn−σ

2dn+1ρnR2cn−σ+1
.

Then every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.

Proof. We proceed as in Theorem 3.1, take xn−σ > 0 for all n ≥ N for some N sufficiently large. Define

wn = ρn

[
cn∆ (dn∆xn)

xn−σ
+ cn−σαn−1

]
, n ≥ N.

Then follows the proof of Theorem 3.1, we obtain

∆wn ≤ −Kρnqn +
wn+1

ρn+1

(
∆ρn −

pnρnR2

dn+1

)
−
(
ρnR2

dn−σ

)[
wn+1

ρn+1
− cn−q+1αn

]2

+ ρn∆ (cn−σαn−1) +
pnρnR2

dn+1
(cn−σ−1αn)

= −ψn −Anw2
n+1, n ≥ N

The remainder of proof is similar to that of the Theorem 3.2 and hence is omitted. If ∆xn < 0 for n ≥ N, then by Lemma

2.4, we have lim
n→∞

xn = 0. The proof is complete.

Example 3.15. Consider the third order difference equation

∆3xn + 2c1−
1/2n

(√
c− 1

)3
xn (4− cosxn) = 0, c > 1, n ≥ 1. (26)

Taking µn = ρn = c
1/2n , g∗n = n− 1 and Hm,n = m− n, we have

lim sup
m→∞

1

Hm,m0

m−1∑
n=m0

[
Hm,nψn −

h2
m,n

4An

]
= lim sup

m→∞

1

m−m0

m−1∑
n=m0

[
6c
(√
c− 1

)3
(m− n)− 1

4 (m− n)

]
=∞.

Thus, condition (25) is satisfied. The other conditions of Theorem 3.6 are also satisfied. Hence every solution {xn} of

Equation (26) is either oscillatory or lim
n→∞

xn = 0.

Corollary 3.16. Assume that all the assumptions of Theorem 3.5 hold, except that the condition (25) is replaced

(1). lim sup
m→∞

1
Hm,m0

m−1∑
n=m0

Hm,nρn

(
Kqn − p2nρndn−σR2

4d2n+1
−∆ (cn − σαn−1)

)
=∞ for every m0 ≥ n0,

(2). lim
m→∞

1
Hm,m0

m−1∑
n=m0

h2
m,n

An
<∞ for every m0 ≥ n0.

Then, every solution {xn} of Equation (1) is either oscillatory or lim
n→∞

xn = 0.
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