

International Journal of Mathematics And its Applications

Interval Valued Fuzzy I deals and Anti Fuzzy I deals of $\ensuremath{\mathbb{\Gamma}}\xspace$ -Near-ring

T. L. Dewangan^{1,*} and M. M. Singh²

1 Department of Mathematics, Government Polytechnic, Ramanujganj, Chhattisgarh, India.

2 Department of Mathematics, Shri Shankaracharya Technical Campus, Bhilai, India.

Abstract:	The aim of this paper is to study the notion of an interval valued fuzzy ideal of a near ring and interval valued anti fuzzy																		
	ideal of a near-ring and to discuss some of their properties.																		
					-		0		-		. .				,	<i>c</i>		. .	

Keywords: Near-ring, Near-subring, Fuzzy Ideals of near-ring, Fuzzy subring, Interval Valued Fuzzy ideals of near-ring, Interval Valued Anti fuzzy ideals of near-ring.

© JS Publication.

```
Accepted on: 21.04.2018
```

1. Introduction

A near-ring satisfying all axioms of an associative ring excepts commutativity of addition of one of the two distributive laws. After the introduction of fuzzy sets by Zadeh [18], there have been a number of generalizations of this fundamental concept. Salah Abou-Zaid [1] introduced the theory of a fuzzy subnear-ring and fuzzy ideals of a near-ring. Fuzzy ideals of a ring and a characterization of a regular ring studied by Lui. The notion of fuzzy ideals of near rings with interval valued membership functions introduced by B. Davvaz [4] in 2001. In [3], R. Biswas defined interval-valued fuzzy subgroups of the same nature of Rosenfelds's fuzzy subgroups. A comprehensive review of theory of fuzzy ideals of near-rings and anti fuzzy ideal of near-rings can be found in [5, 6, 8]. K. Murugalingam and K. Arjunan [9] introduced interval valued fuzzy subsemirings of semi-rings. Y. B. Jun and K. H. Kim [7] discussed interval-valued R-subgroups in terms of near-rings. N. Thillaigovindan [15, 16] have studied interval valued fuzzy ideals and anti fuzzy ideals of near-rings. Abou-Zaid [1] proposed the concept of fuzzy sub near-rings and ideals. T. Srinivas [13, 14] studied the notion of anti fuzzy ideals of Γ-near-rings. The aim of this paper is to study the notion of a interval valued fuzzy ideals of a near ring and interval valued anti fuzzy ideals of near-ring and to discuss some of their properties.

2. Preliminaries

For the sake of continuity we recall some basic definition.

^{*} E-mail: dtoman15390@gmail.com

Definition 2.1. A set N together with two binary operations + (called addition) and \cdot (called multiplication) is called a (right) near-ring if:

A1: N is a group (not necessarily abelian) under addition;

A2: multiplication is associative (so N is a semigroup under multiplication); and

A3: multiplication distributes over addition on the right: for any x, y, z in N, it holds that $(x + y) \cdot z = (x \cdot z) + (y \cdot z)$.

This near-ring will be termed as right near-ring. If $x \cdot (y + z) = x \cdot y + x \cdot z$ instead of condition A3 the set N satisfies, then we call N a left near-ring. Near-rings are generalised rings: addition needs not be commutative and (more important) only

one distributive law is postulated.

Definition 2.2. A Γ -near-ring is a triple $(M, +, \Gamma)$ where

- (1). (M, +) is a group.
- (2). Γ is a nonempty set of binary operations on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring.
- (3). $x\alpha (y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.3. A subset A of a Γ -near-ring M is called a left (respectively right) ideal of M if

(1). (A, +) is a normal divisor of (M, +).

(2). $u\alpha(x+v) - u\alpha v \in A$ (respectively $x\alpha u \in A$) for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

A fuzzy set in a set M is a function $\mu : M \to [0,1]$. We shall use the notation μ_t , called a level subset of μ , for $\{x \in M | \mu(x) \ge t\}$, where $t \in [0,1]$.

Definition 2.4. Let R be a near-ring and μ be a fuzzy subset of R. We say a fuzzy subnear-ring of R if

- (1). $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},\$
- (2). $\mu(xy) \ge \min \{\mu(x), \mu(y)\}, \text{ for all } x, y \in R.$

Definition 2.5. Let R be a near-ring and μ be a fuzzy subset of R. μ is called a fuzzy left ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R$.

- (1). $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},\$
- (2). $\mu(y + x y) \ge \mu(x)$,
- (3). $\mu(xy) \ge \mu(y) \text{ or } \mu(xy) \ge \mu(x)$

Definition 2.6. Let R be a near-ring and μ be a fuzzy subset of R. μ is called a fuzzy right ideal of R if μ is a fuzzy subnear-ring of R and satisfies: for all $x, y \in R$.

- (1). $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},\$
- (2). $\mu(xy) \ge \min{\{\mu(x), \mu(y)\}},\$
- (3). $\mu(y + x y) \ge \mu(x)$,
- (4). $\mu((x+i)y xy) \ge \mu(i)$.

Definition 2.7. A fuzzy set μ in a \mathbb{F} -near-ring M is called a fuzzy left (respectively right) ideal of M if

(1). μ is a fuzzy normal divisor with respect to the addition.

(2). $\mu(ua(x+v)-uav) \ge \mu(x)$ (respectively $\mu(x\alpha u) \ge \mu(x)$) for all $x, u, v \in M$ and $\alpha \in \Gamma$.

The condition (1) of Definition 2.7 means that μ satisfies:

- (1). $\mu(x-y) \ge \min{\{\mu(x), \mu(y)\}},\$
- (2). $\mu(y + x y) \ge \mu(x)$.

Theorem 2.8. Let M be a Γ -near-ring and μ be a fuzzy left (respectively right) ideal of M. Then the set $M_{\mu} := \{x \in M | \mu(x) = \mu(0)\}$ is a left (respectively right) ideal of M.

Definition 2.9. Let I be an ideal of a Γ -near-ring N. For each x + I, y + I in the factor group $\frac{N}{I}$ and $\alpha \in \Gamma$, we define (x + I) + (y + I) = (x + y) + I and $(x + I) \alpha (y + I) = (x \alpha y) + I$. Then $\frac{N}{I}$ is a Γ -near-ring which we call the residue class Γ -near-ring of N with respect to I.

Definition 2.10. An interval-valued number \tilde{a} on [0,1] is a closed subinterval of [0,1], that is $\tilde{a} = [a^-, a^+]$ such that $0 \le a^- \le a^+ \le 1$, where a^- and a^+ are lower and upper limits of \tilde{a} respectively. The set of all closed sub intervals of [0,1] is denoted by D[0,1]. In this notation $\tilde{0} = [0^-, 0^+]$ and $\tilde{1} = [1^-, 1^+]$. We also identify the interval [a,a] by the number $a \in [0,1]$. For any two interval numbers $\tilde{a} = [a^-, a^+]$ and $\tilde{b} = [b^-, b^+]$ on [0,1], we define

- (1). $\tilde{a} \leq \tilde{b} \Leftrightarrow a^- \leq b^- \text{ and } a^+ \leq b^+.$
- (2). $\tilde{a} = \tilde{b} \Leftrightarrow a^- = b^- \text{ and } a^+ = b^+$.
- (3). $\tilde{a} < \tilde{b} \Leftrightarrow \tilde{a} \le \tilde{b}$ and $\tilde{a} \ne \tilde{b}$.
- (4). $k\tilde{a} = [ka^-, ka^+]$, for $0 \le k \le 1$.

Definition 2.11.

- (1). Min-Norm: A mapping minⁱ: $D[0,1] \times D[0,1] \to D[0,1]$ defined by minⁱ(\tilde{a}, \tilde{b}) = $[\min(a^-, b^-), \min(a^+, b^+)]$ for all $\tilde{a}, \tilde{b} \in D[0,1]$ is called an interval min-norm.
- (2). Max-Norm: A mapping $\max^{i} : D[0,1] \times D[0,1] \to D[0,1]$ defined by $\max^{i}(\tilde{a},\tilde{b}) = \left[\max\left(a^{-},b^{-}\right), \max\left(a^{+},b^{+}\right)\right]$ for all $\tilde{a}, \tilde{b} \in D[0,1]$ is called an interval max-norm.

Let \min^{i} and \max^{i} be the interval-valued min-norm and interval-valued max-norm on D[0,1] respectively. Then the following are true:

- (1). $\min^{i}(\tilde{a}, \tilde{a}) = \tilde{a} \text{ and } \max^{i}(\tilde{a}, \tilde{a}) = \tilde{a} \quad \forall \quad \tilde{a} \in D[0, 1].$
- (2). $\min^{i}(\tilde{a}, \tilde{b}) = \min^{i}(\tilde{b}, \tilde{a}) \text{ and } \max^{i}(\tilde{a}, \tilde{b}) = \max^{i}(\tilde{b}, \tilde{a}) \quad \forall \quad \tilde{a}, \tilde{b} \in D[0, 1].$
- (3). If $\forall \tilde{a}, \tilde{b}, \tilde{c} \in D[0, 1], \tilde{a} \ge \tilde{b}$, then $\min^i(\tilde{a}, \tilde{c}) \ge \min^i(\tilde{b}, \tilde{c})$ and $\max^i(\tilde{a}, \tilde{c}) \le \max^i(\tilde{b}, \tilde{c})$.

Definition 2.12. Let $\tilde{\mu}$ be an interval valued fuzzy subset of a set X and $[t_1, t_1] \in D[0, 1]$. Then the set $\tilde{U}(\tilde{\mu} : [t_1, t_1]) = \{x \in X | \tilde{\mu}(x) \ge [t_1, t_1]\}$, is called the upper level set of $\tilde{\mu}$. Note that

$$\begin{split} \tilde{U}(\tilde{\mu}:[t_1,t_1]) &= \{x \in X | \left[\mu^-(x),\mu^+(x)\right] \ge [t_1,t_1] \} \\ &= \{x \in X | \mu^-(x) \ge t_1\} \cap \{x \in X | \mu^+(x) \ge t_2\} \\ &= (U\left(\mu^-:t_1\right)) \cap (U\left(\mu^+:t_2\right)) \end{split}$$

195

3. Interval Valued Fuzzy Ideals of Γ-Near-Ring

Definition 3.1. An interval valued fuzzy subset $\tilde{\mu}$ of a Γ -near-ring N is called interval valued fuzzy sub Γ -near-ring of N if

- (1). $\tilde{\mu}(x-y) \ge \min^{i} \{ \tilde{\mu}(x), \tilde{\mu}(y) \}$
- (2). $\tilde{\mu}(xay) \ge \min^{i} \{\tilde{\mu}(x), \tilde{\mu}(y)\} \quad \forall \quad x, y \in N.$

Definition 3.2. An interval valued fuzzy subset $\tilde{\mu}$ of a Γ -near-ring N is called interval valued fuzzy ideal Γ -near-ring of N if $\tilde{\mu}$ is an interval valued fuzzy sub Γ -near-ring N and

- (1). $\tilde{\mu}(y+x-y) \geq \tilde{\mu}(x)$
- (2). $\tilde{\mu}(xay) \geq \tilde{\mu}(y)$
- $(3). \ \tilde{\mu}\left(\left(x+z\right)\alpha y-x\alpha y\right)\geq \tilde{\mu}\left(z\right) \ \ \forall \ \ x,y,z\in N, \alpha\in\Gamma.$

 \bigcap

Theorem 3.3. Let N be a Γ -near-ring and $\{\tilde{\mu}_i : i \in I\}$ a non-empty family of subsets of N. If $\{\tilde{\mu}_i : i \in I\}$ is an interval valued fuzzy ideal of N then $\bigcap_{i \in I} \tilde{\mu}_i$ is an interval valued fuzzy ideal of N.

Proof. Let $\{\tilde{\mu}_i : i \in I\}$ be an interval valued fuzzy ideal of N. Let $x, y, z \in N$ and $\alpha \in \Gamma$. Then we have $\forall i \in I$

$$\begin{split} \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (x - y) &= \inf^i \{ \tilde{\mu}_i (x - y) \}_{i \in I} \\ &\geq \inf^i \{ \min^i \{ \tilde{\mu}_i (x) , \tilde{\mu}_i (y) \} \}_{i \in I} \\ &= \min^i \{ \inf^i \{ \tilde{\mu}_i (x) ,), \inf^i (\tilde{\mu}_i (y)) \}_{i \in I} \\ &= \min^i \left\{ \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (x) , \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (y) \right\} \\ \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (xay) &= \inf^i \{ \tilde{\mu}_i (x\alpha y) \}_{i \in I} \\ &\geq \inf^i \{ \min^i \{ \tilde{\mu}_i (x) , \tilde{\mu}_i (y) \} \}_{i \in I} \\ &= \min^i \{ \inf^i \{ \tilde{\mu}_i (x) ,), \inf^i (\tilde{\mu}_i (y)) \}_{i \in I} \\ &= \min^i \left\{ \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (x) , \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (y) \right\} \\ \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (y + x - y) &= \inf^i \{ \tilde{\mu}_i (y + x - y) \}_{i \in I} \\ &\geq \inf^i \{ \tilde{\mu}_i (x) \}_{i \in I} \\ &= \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (y) \\ \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (x\alpha y) &= \inf^i \{ \tilde{\mu}_i (xay) \}_{i \in I} \\ &\geq \inf^i \{ \tilde{\mu}_i (y) \}_{i \in I} \\ &= \left(\bigcap_{i \in I} \tilde{\mu}_i \right) (y) \\ \tilde{\mu}_i \right) ((x + z) \alpha y - x\alpha y) &= \inf^i \{ \tilde{\mu}_i ((x + z) \alpha y - x\alpha y) \}_{i \in I} \\ &\geq \inf^i \{ \tilde{\mu}_i (z) \}_{i \in I} \end{split}$$

$$= \left(\bigcap_{i \in I} \tilde{\mu}_i\right)(z)$$

Therefore $\left(\bigcap_{i\in I}\tilde{\mu}_i\right)$ is an interval valued anti fuzzy ideal of a Γ -near-ring N

Theorem 3.4. Let $\tilde{\mu}$ be an interval valued fuzzy subset of Γ -near-ring N. $\tilde{\mu} = [\mu^-, \mu^+]$ is an interval valued fuzzy left (right) ideal of Γ -near-ring N if and only if μ^+, μ^- are fuzzy left (right) ideals of Γ -near-ring N.

Proof. (A) Assume that $\tilde{\mu}$ is an interval valued fuzzy left (right) ideal of Γ -near-ring N.. For any $x, y, z \in N$ and $\alpha \in \Gamma$, then we have

(1).
$$[\mu^{-}(x-y), \mu^{+}(x-y)] = \tilde{\mu}(x-y) \ge \min^{i} \{\tilde{\mu}(x), \tilde{\mu}(y)\}$$
$$= \min^{i} \{ [\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(y), \mu^{+}(y)] \}$$
$$= [\min \{ \mu^{-}(x), \mu^{-}(y) \}, \min \{ \mu^{+}(x), \mu^{+}(y)].$$
It follows that $\mu^{-}(x-y) \ge \min \{ \mu^{-}(x), \mu^{-}(y) \}$ and

It follows that $\mu^{-}(x-y) \ge \min\{\mu^{-}(x), \mu^{-}(y)\}$ and

$$\mu^{+}(x-y) \ge \min\{\mu^{+}(x), \mu^{+}(y)\}\$$

(2).
$$[\mu^{-}(xay), \mu^{+}(xay)] = \tilde{\mu}(x\alpha y) \ge \min^{i} \{\tilde{\mu}(x), \tilde{\mu}(y)\}$$
$$= \min^{i} \{ [\mu^{-}(x), \mu^{+}(x)], [\mu^{-}(y), \mu^{+}(y)] \}$$
$$= [\min \{ \mu^{-}(x), \mu^{-}(y) \}, \min \{ \mu^{+}(x), \mu^{+}(y)].$$

It follows that $\mu^{-}(xay) \geq \min\{\mu^{-}(x), \mu^{-}(y)\}$ and

$$\mu^{+}(xay) \ge \min\{\mu^{+}(x), \mu^{+}(y)\}\$$

(3).
$$\left[\mu^{-}(y+x-y), \mu^{+}(y+x-y)\right] = \tilde{\mu}(y+x-y)$$

 $\geq \tilde{\mu}(x)$

$$=\left[\mu ^{-}\left(x\right) ,\mu ^{+}\left(x\right) \right]$$

It follows that $\mu^{-}(y+x-y) \ge \mu^{-}(x)$ and

$$\mu^+ \left(y + x - y \right) \ge \mu^+ \left(x \right)$$

(4).
$$\left[\mu^{-} (x \alpha y), \mu^{+} (x \alpha y) \right] = \tilde{\mu}(x \alpha y)$$
$$\geq \tilde{\mu}(y)$$
$$= \left[\mu^{-} (x), \mu^{+} (x) \right]$$
It follows that $\mu^{-} (x \alpha y) \geq \mu^{-} (y)$ and $\mu^{+} (x \alpha y) \geq \mu^{+} (y)$

(5).
$$\left[\mu^{-}\left(\left(x+z\right)\alpha y-x\alpha y\right),\mu^{+}\left(\left(x+z\right)\alpha y-x\alpha y\right)\right]=\tilde{\mu}\left(\left(x+z\right)\alpha y-x\alpha y\right)$$

$$\geq \tilde{\mu}(z)$$

$$= \left[\mu^{-}(z), \mu^{+}(z)\right]$$
It follows that $\mu^{-}((x+z)\alpha y - x\alpha y) \geq \mu^{-}(z)$ and
 $\mu^{+}((x+z)\alpha y - x\alpha y) \geq \mu^{+}(z)$

Hence μ^+ , μ^- are fuzzy left (right) ideals of Γ -near-ring N.

(B). Conversely, assume that μ^- , μ^+ are fuzzy left (right) ideals of Γ -near-ring N. Let $x, y, z \in \mathbb{R}$. Then

197

$$(1). \quad \tilde{\mu} (x - y) = [\mu^{-} (x - y), \mu^{+} (x - y)] \\
\geq [\min \{\mu^{-} (x), \mu^{-} (y)\}, \min \{\mu^{+} (x), \mu^{+} (y)]. \\
= \min^{i} \{[\mu^{-} (x), \mu^{+} (x)], [\mu^{-} (y), \mu^{+} (y)]\} \\
= \min^{i} \{\tilde{\mu} (x), \tilde{\mu} (y)\} \\
(2). \quad \tilde{\mu} (x \alpha y) = [\mu^{-} (x \alpha y), \mu^{+} (x \alpha y)] \\
\geq [\min \{\mu^{-} (x), \mu^{-} (y)\}, \min \{\mu^{+} (x), \mu^{+} (y)]. \\
= \min^{i} \{[\mu^{-} (x), \mu^{+} (x)], [\mu^{-} (y), \mu^{+} (y)]\} \\
= \min^{i} \{\tilde{\mu} (x), \tilde{\mu} (y)\} \\
(3). \quad \tilde{\mu} (y + x - y) = [\mu^{-} (y + x - y), \mu^{+} (y + x - y)] \\
\geq [\mu^{-} (x), \mu^{+} (x)] \\
= \tilde{\mu} (x) \\
(4). \quad \tilde{\mu} (x \alpha y) = [\mu^{-} (x \alpha y), \mu^{+} (x \alpha y)] \\
\geq [\mu^{-} (x), \mu^{+} (x)] \\
= \tilde{\mu} (y) \\
(5). \quad \tilde{\mu} ((x + z) \alpha y - x \alpha y) = [\mu^{-} ((x + z) \alpha y - x \alpha y), \mu^{+} ((x + z) \alpha y - x \alpha y)] \\
\geq [\mu^{-} (z), \mu^{+} (z)] \\
= \tilde{\mu} (z) \\$$

Hence $\tilde{\mu}$ is an interval valued fuzzy left (right) ideal of a Γ -near-ring N.

Theorem 3.5 ([15]). Let $\tilde{\mu}$ be an interval valued fuzzy subset of R. $\tilde{\mu}$ is an interval valued fuzzy left (right) ideal of R if and only if $\tilde{U}(\tilde{\mu}:[t_1,t_1])$ is a left (right) ideal of R, for all $[t_1,t_1] \in D[0,1]$.

4. Interval Valued Anti Fuzzy Ideals of Γ-Near-Ring

Definition 4.1. An interval valued fuzzy subset $\tilde{\mu}$ of a Γ -near-ring N is called interval valued anti fuzzy sub Γ -near-ring of N if

(1). $\tilde{\mu}(x-y) \leq \max_i \{\tilde{\mu}(x), \tilde{\mu}(y)\},\$

(2). $\tilde{\mu}(xay) \leq \max_{i} \{ \tilde{\mu}(x), \tilde{\mu}(y) \} \quad \forall \quad x, y \in N.$

Definition 4.2. An interval valued fuzzy subset $\tilde{\mu}$ of a Γ -near-ring N is called interval valued anti fuzzy ideal Γ -near-ring of N if $\tilde{\mu}$ is an interval valued anti fuzzy sub Γ -near-ring N and

- (1). $\tilde{\mu}(y+x-y) \leq \tilde{\mu}(x)$,
- (2). $\tilde{\mu}(xay) \leq \tilde{\mu}(y)$,
- $(3). \ \tilde{\mu}\left(\left(x+z\right)\alpha y-x\alpha y\right)\leq \tilde{\mu}\left(z\right) \ \ \forall \ \ x,y,z\in N, \ \alpha\in\Gamma.$

Theorem 4.3. Let N be a Γ -near-ring and $\{\tilde{\mu}_i : i \in I\}$ a non-empty family of subsets of N. If $\{\tilde{\mu}_i : i \in I\}$ is an interval valued anti fuzzy ideal of N then $\bigcup_{i \in I} \tilde{\mu}_i$ is an interval valued anti fuzzy ideal of N.

Proof. Let $\{\tilde{\mu}_i : i \in I\}$ be an interval valued anti fuzzy ideal of N. Let $x, y, z \in N$ and $\alpha \in \Gamma$. Then we have $\forall i \in I$

$$\begin{split} \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (x-y) &= \sup_{i=1}^{i} \{\tilde{\mu}_i(x-y)\}_{i\in I} \\ &\leq \sup_{i=1}^{i} \{\max_i \{\tilde{\mu}_i(x), \tilde{\mu}_i(y)\}\}_{i\in I} \\ &= \max_i \{\sup_i (\tilde{\mu}_i(x)), \sup_{i=1}^{i} (\tilde{\mu}_i(y))\}_{i\in I} \\ &= \max_i \{\left(\bigcup_{i\in I} \tilde{\mu}_i\right) (x), \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (y) \\ \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (x\alpha y) &= \sup_{i=1}^{i} \{\tilde{\mu}_i(x\alpha y)\}_{i\in I} \\ &\leq \sup_i \{\max_i \{\tilde{\mu}_i(x), \tilde{\mu}_i(y)\}\}_{i\in I} \\ &= \max_i \{\sup_i (\tilde{\mu}_i(x)), \sup_i (\tilde{\mu}_i(y))\}_{i\in I} \\ &= \max_i \{\left(\bigcup_{i\in I} \tilde{\mu}_i\right) (x), \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (y) \\ \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (y+x-y) &= \sup_i \{\tilde{\mu}_i(y+x-y)\}_{i\in I} \\ &\leq \sup_i \{\tilde{\mu}_i(x)\}_{i\in I} \\ &= \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (y) \\ \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (x\alpha y) &= \sup_i \{\tilde{\mu}_i(x\alpha y)\}_{i\in I} \\ &\leq \sup_i \{\tilde{\mu}_i(y)\}_{i\in I} \\ &= \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (y) \\ \left((x+z)\alpha y - x\alpha y) &= \sup_i \{\tilde{\mu}_i((x+z)\alpha y - x\alpha y)\}_{i\in I} \\ &\leq \sup_i \{\tilde{\mu}_i(z)\}_{i\in I} \\ &= \left(\bigcup_{i\in I} \tilde{\mu}_i\right) (z) \end{split}$$

Therefore $\bigcup_{i\in I}\tilde{\mu}_i$ is an interval valued anti fuzzy ideal of a $\Gamma\text{-near-ring }N.$

 $\left(\left\lfloor \right. \right)$

Theorem 4.4. Let $\tilde{\mu}$ be an interval valued fuzzy subset of Γ -near-ring N. $\tilde{\mu} = [\mu^-, \mu^+]$ is an interval valued anti fuzzy left (right) ideal of Γ -near-ring N if and only if μ^+, μ^- are anti fuzzy left (right) ideals of Γ -near-ring N.

Proof. (A). Assume that $\tilde{\mu}$ is an interval valued anti fuzzy left (right) ideal of Γ -near-ring N.. For any $x, y, z \in N$ and $\alpha \in \Gamma$, then we have

(1).
$$\left[\mu^{-} (x - y), \mu^{+} (x - y) \right] = \tilde{\mu} (x - y) \leq \max^{i} \{ \tilde{\mu} (x), \tilde{\mu} (y) \}$$
$$= \max^{i} \{ \left[\mu^{-} (x), \mu^{+} (x) \right], \left[\mu^{-} (y), \mu^{+} (y) \right] \}$$
$$= \left[\max \left\{ \mu^{-} (x), \mu^{-} (y) \right\}, \max \left\{ \mu^{+} (x), \mu^{+} (y) \right\} \right].$$
It follows that $\mu^{-} (x - y) \leq \max \{ \mu^{-} (x), \mu^{-} (y) \}$ and

It follows that $\mu^{-}(x-y) \leq \max\{\mu^{-}(x), \mu^{-}(y)\}$ and

$$\mu^{+}(x-y) \le \max\{\mu^{+}(x), \mu^{+}(y)\}$$

 $= \tilde{\mu}(x)$

(4). $\tilde{\mu}(x\alpha y) = [\mu^{-}(x\alpha y), \mu^{+}(x\alpha y)]$ $\leq [\mu^{-}(x), \mu^{+}(x)]$ $= \tilde{\mu}(y)$ (5). $\tilde{\mu}((x+z)\alpha y - x\alpha y) = [\mu^{-}((x+z)\alpha y - x\alpha y), \mu^{+}((x+z)\alpha y - x\alpha y)]$ $\leq [\mu^{-}(z), \mu^{+}(z)]$ $= \tilde{\mu}(z)$

Hence $\tilde{\mu}$ is an interval valued anti fuzzy left (right) ideal of a Γ -near-ring N.

References

- [1] S. Abou-Zaid, On fuzzy subnear-rings and ideals, Fuzzy sets and Systems, 44(1991), 139-146.
- [2] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems, 44(1990), 121-124.
- [3] R. Biswas, Rosenfeld's fuzzy subgroups with interval valued membership functions, Fuzzy sets and systems, 63(1994), 87-90.
- [4] B. Davvaz, Fuzzy ideals of near-rings with interval valued membership functions, Journal of Sciences, Islamic republic of Iran, 12(2)(2001), 171-175.
- [5] T. K. Dutta and B. K. Biswas, Fuzzy ideals of near-rings, Bull. Calcutta Math. Soc., 89(1997), 447-456.
- [6] S.M. Hong, Y.B. Jun and H.S. Kim, Fuzzy ideals in near-rings, Bulletin of Korean Mathematical Society, 35(3)(1998), 455-464.
- [7] Y.B. Jun and K.H. Kim, Interval valued fuzzy R-subgroups of near-rings, Indian. J. Pure appl. Math., 33(2002), 71-80.
- [8] K. H. Kim and Y.B. Jun, Anti fuzzy ideals in near rings, Iranian Journal of Fuzzy Systems, 2(2005), 71-80.
- K. Murugalingam and K. Arjunan, A study on interval valued fuzzy subsemirings of semirings, International Journal of Applied Mathematics and Modeling, 1(2013), 1-6.
- [10] T. Nagaiah, K. Vijay kumar, A. Iampan and T. Srinivas, A study of fuzzy ideals of PO-Gamma semigroups, Palestina Journal of Mathematics, 5(1)(2016), 1-7.
- [11] T.L. Dewangan and M.M. Singh, Fuzzy ideals and anti fuzzy ideals of near-rings, International Journal for Research in Applied Science & Engineering Technology.
- [12] T. Nagaiah, K. Vijay kumar, P. Narasimha Swamy and T. Srinivas, Interval valued fuzzy ideals of Γ -near-rings, Bulletin of Culcutta Mathematical Society.
- [13] T. Srinivas, T. Nagaiah and P. Narasimha Swamy, Anti fuzzy ideals of Γ-near-rings, Annals of Fuzzy Mathematics and Informatics, 3(2)(2012), 255-266.
- [14] T. Srinivas, P. Narasimha Swamy and T. Nagaiah, Anti fuzzy near-algebras over anti fields, Annals of Fuzzy Mathematics and Informatics, 4(2)(2012), 243-252.
- [15] N. Thillaigovindan, V. Chinnadurai and K. Kadalarasi, Interval valued fuzzy ideals of near-rings, The Journal of fuzzy Mathematics, 23(2015), 471-484.
- [16] N. Thillaigovindan, V. Chinnadurai and K. Lenin Muthu Kumaran, Some remarks on interval valued anti fuzzy ideals of near-rings, Annals of Fuzzy Mathematics and Informatics, 11(3)(2011), 461-474.
- [17] L. A. Zadeh, The concepts of a linguistic variable and its application to approximate reasoning-I, Information and Sciences, 8(1975), 199-249.
- [18] L.A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.