

International Journal of Mathematics And its Applications

On 3-absorbing Hyperideals of Multiplicative Hyperring

Ghulam Murtaza^{1,*}

1 Department of Mathematics, The University of Lahore, Pakpattan Campus, Pakistan.

Abstract: Let *R* be a multiplicative hyperring. In this research, we learn 3-absorbing hyperideal which is an extension of prime hyperideal. A non zero hyperideal *J* of a multiplicative hyperring *R* is called a 3-absorbing hyperideal of *R* if whenever $x, y, z, w \in Q$ and $x \cdot y \cdot z \cdot w \in J$, then either $x \cdot y \cdot z \in J$ or $y \cdot z \cdot w \in J$ or $x \cdot z \cdot w \in J$ or $x \cdot y \cdot w \in J$. A number of results concerning 3-absorbing hyperideals and examples of 3-absorbing primary ideals are given.

MSC: 16Y19, 20N20.

Keywords: Hyperideal, 2-absorbing Hyperideals 3-absorbing Hyperideal.

© JS Publication.

1. Introduction

Marty was the first researcher, how gave the idea of hyperstructure theory. In 1934, he started to study hypergroups [7]. Hyperstructure theory is still developing area of mathematics and many mathematicians have research in this field, See [3, 7, 9]. Hyperstructures have various applications in applied and pure sciences such as Latices, Geometry, Cryptography, Automata and Artificial Intelligence. In the sence of Marty, a hypergroup is a nonempty set H endowed by a hyperstructure $* = H \times H \rightarrow P^*(H)$, where $P^*(H)$ is the set of all nonempty subsets of H, which satisfy the associative law and product axiom.

The hyperrings were introduced by Krasner [5]. Krasner hyperrings are a generalization of classical rings in which the multiplication is a binary operation while the addition is a hyperoperation. The another type of hyperrings called Multiplicative hyperring was introduced and studied by Rota in 1982 [9], which was subsequently investigated by many authors [4, 5, 9, 10]. A multiplicative hyperring is a hyperstructure $(R, +, \cdot)$, where (R, +) is an additive abelian group, (R, \cdot) is a semihypergroup and \cdot is distributive over +. For nonempty subsets $H, K \subset R$ and $s \in R$, we define $H \cdot K = \cup (h \cdot k)$, where $h \in H, k \in K$ and $K \cdot s = K \cdot \{s\}$.

Dasgupta investigated and studied the prime hyperideal and primary hyperideal of multiplicative hyperring and discussed some basic properties and useful results of primary and prime hyperideal of multiplicative hyperring [4]. In 2014, Ghiasvand generalized the idea of prime hyperideal to 2-absorbing hyperideal in a conference on algebra and its applications [6]. Latter in 2017, a researcher Anborloei extend this idea to 2-absorbing prime and 2-absorbing primary hypperideals of a multiplicative hyperring [2]. This work is the extension of 2-absorbing hyperideals to 3-absorbing hyperideals. In this research, we proved some useful results on 3-absorbing prime hyperideals.

^{*} E-mail: ghulam.murtaza@math.uol.edu.pk

1.1. Preliminaries

Throughout this paper $(R, +, \cdot)$ denotes the multiplicative hyperring.

Definition 1.1 (Hyperring [9]). $(R, +, \cdot)$ is called multiplicative hyperring if

(1). (Q, +) is an abelian hypergroup.

- (2). (R, \cdot) is semihypergroup.
- (3). $\forall x, y, z \in R$, we have $x \cdot (y+z) \subseteq x \cdot y + x \cdot z$.
- (4). $\forall x, y, z \in R$, we have $(y + z) \cdot x \subseteq y \cdot x + z \cdot x$.
- (5). $\forall x, y \in R$, we have $x \cdot (-y) = (-x) \cdot y = -(x \cdot y)$.

Definition 1.2 (Hyperideal [5]). A nonempty subset J of a hyperring R is a hyperideal

- (1). If $x, y \in J$, then $x y \in J$.
- (2). If $z \in J$ and $s \in R$ then $z \cdot s \in J$.

Definition 1.3 (Prime Hyperideal [5]). A hyperideal P of a hyperring R is called a prime hyperideal if whenever $x \cdot y \in P$ then either $a \in P$ or $b \in P$.

Definition 1.4 (Radical [5]). Let J be a hyperideal of the R. Then the radical of J is denoted by \sqrt{J} , defined as $\sqrt{J} = \{a; a^n \in J \text{ for some } n \in \mathbb{N}\}.$

Definition 1.5 (2-absorbing Hyperideal [6]). A non zero hyperideal of a multiplicative hyperring R is called 2-absorbing if for all $x, y, z \in R \ x \cdot y \cdot z \subseteq J$, then $x \cdot y \subseteq J$ or $y \cdot z \subseteq J$ or $x \cdot z \subseteq J$.

2. On 3-absorbing Hyperideal of Multiplicative Hyperring

Definition 2.1. A non zero hyperideal J of a multiplicative hyperring R is called a 3-absorbing hyperideal of R if for any $x, y, z, w \in R$ and $x \cdot y \cdot z \cdot w \in J$, then either $x \cdot y \cdot z \in J$ or $y \cdot z \cdot w \in J$ or $x \cdot z \cdot w \in J$ or $x \cdot y \cdot w \in J$.

Remark 2.2. Every 3-absorbing hyperideal need not to be 2-absorbing hyperideal.

Theorem 2.3. Let J be a 3-absorbing hyperideal of hyperring R, then Rad(J) is a 3-absorbing hyperideal of R and $x^3 \in J$ for every $x \in Rad(J)$.

Proof. Since J is 3-absorbing ideal of R this implies that $x^3 \in J$ for every $x \in Rad(J)$. Now, let $x_1, x_2, x_3, x_4 \in R$ such that $x_1x_2x_3x_4 \in Rad(J)$, then $(x_1x_2x_3x_4)^3 = x_1^3x_2^3x_3^3x_4^3 \in J$ for $x_1, x_2, x_3, x_4 \in Rad(J)$. As J is 3-absorbing, so we can conclude that $x_1^3x_2^3x_3^3 = (x_1x_2x_3)^3, x_1^3x_2^3x_4^3 = (x_1x_2x_4)^3, x_1^3x_3^3x_4^3 = (x_1x_3x_4)^3, x_2^3x_3^3x_4^3 = (x_2x_3x_4)^3 \in J$ this implies that either $x_1x_2x_3 \in Rad(J)$ or $x_1x_2x_4 \in Rad(J)$ or $x_1x_3x_4 \in Rad(J)$ or $x_2x_3x_4 \in Rad(J)$. Hence Rad(J) is a 3-absorbing hyperideal of R.

Lemma 2.4. Let K a prime hyperideal of hyperring R and J is a hyperideal of hyperring R where $J \subseteq K$. Then the following points are equivalent.

(1). K is a minimal prime ideal of J.

(2). For every $x \in K$, there is a $y \in R \setminus K$ and a positive integer n such that $yx^n \in J$.

Theorem 2.5. Let J be a 3-absorbing hyperideal of a hyperring R, then there are at most 3 prime hyperideal of R minimal over J.

Proof. Suppose on contrary, there are 4 prime hyperideals J_1, J_2, J_3, J_4 of R, which are minimal over over J. Let $x_1 \in J_1 \setminus J_2 \cup J_3 \cup J_4, x_2 \in J_2 \setminus J_1 \cup J_3 \cup J_4, x_3 \in J_3 \setminus J_2 \cup J_1 \cup J_4$ and $x_4 \in J_4 \setminus J_2 \cup J_3 \cup J_1$. By lemma there exist $a_1 \in R \setminus J_1, a_2 \in R \setminus J_2$, $a_3 \in R \setminus J_3$ and $a_4 \in R \setminus J_4$ such that $a_1 x_1^{n_1} \in J$, $a_2 x_2^{n_2} \in J$, $a_3 x_3^{n_3} \in J$ and $a_4 x_4^{n_4} \in J$. Since J is 3-absorbing hyperideal of a hyperring $R, J \subseteq J_4, x_1, x_2, x_3 \notin J_4$ and $a_1 x_1^2, a_2 x_2^2, a_3 x_3^2 \in J$, hence $(a_1 + a_2 + a_3) x_1^2 x_2^2 x_3^2 \in J$. Since $x_1 \in J_1 \setminus J_2 \cup J_3 \cup J_4$, $x_2 \in J_2 \setminus J_1 \cup J_3 \cup J_4, x_3 \in J_3 \setminus J_2 \cup J_1 \cup J_4$ and $x_4 \in J_4 \setminus J_2 \cup J_3 \cup J_1$ and $b_1 x_1^2, b_2 x_2^2, b_3 x_3^2 \in J \subseteq J_1 \cap J_2 \cap J_3$ this implies that $a_1 \in (J_2 \cap J_3) \setminus J_1, a_2 \in (J_1 \cap J_3) \setminus J_2, a_3 \in (J_1 \cap J_2) \setminus J_3$, thus $a_1 + a_2 + a_3 \notin J_1, J_2, J_3$. Hence $(a_1 + a_2 + a_3) x_1^2 x_3^2 \notin J_2$, $(a_1 + a_2 + a_3) x_1^2 x_2^2 \notin J_3$, so $(a_1 + a_2 + a_3) x_1^2 x_2^2, (a_1 + a_2 + a_3) x_1^2 x_3^2 \notin J_4$, it means $x_1^2 x_2^2 x_3^2 \in J \subseteq J_4$. Since J is a 3-absorbing hyperideal of R, but then $x_1 x_2 x_3 \subseteq J_4$, which is a contradiction, Hence there are at most 3 prime ideals of R over J.

Theorem 2.6. Suppose that J is a 3-absorbing hyperideal of hyperring R, then following statements hold.

- (1). Rad(J) = K is a prime hyperideal of R such that $K^3 \subseteq J$.
- (2). $Rad(J) = K_1 \cap K_2 \cap K_3$, $Rad(J)^3 \subseteq J$ and $K_1K_2K_3 \subseteq J$, where K_1 , K_2 and K_3 are prime hyperideals of hyperring R which are distinct and minimal over J.

Proof.

- (1). Let Rad(J) = K be a prime hyperideal of R and $x_1, x_2, x_3 \in K$ then by theorem 1, we have $x_1^3, x_2^3, x_3^3 \in J$. Let $x_1x_2x_3(x_1+x_2+x_3) \in J$, since J is 3-absorbing hyperideal, then either $x_1x_2(x_1+x_2+x_3) \in J$ or $x_1x_3(x_1+x_2+x_3) \in J$ or $x_1x_2x_3 \in J$. Hence $x_1x_2x_3 \in J$ this implies $K^3 \subseteq J$.
- (2). Suppose that Rad(J) = K₁ ∩ K₂ ∩ K₃, where K₁, K₂, K₃ are distinct prime hyperideals which are minimal over J. Let x₁, x₂, x₃ ∈ Rad(J), then x₁x₂x₃ ∈ J by the same argument given above, hence Rad(J) ⊆ J.
 Now, we show that K₁K₂K₃ ⊆ J. For each m ∈ Rad(J), m³ ∈ J then by theorem 1. Let y ∈ Rad(J) and x₁ ∈ K₁ \ K₂ ∪ K₃, x₂ ∈ K₂ \ K₁ ∪ K₃, x₃ ∈ K₃ \ K₁ ∪ K₂ then by theorem 3 x₁x₂x₃ ∈ J and x₁ + y ∈ K₁ \ K₂ ∪ K₃. Thus x₂(x₁ + y)x₃ = x₁x₂x₃ + yx₂x₃ ∈ J, hence x₁x₂x₃ ∈ J and K₁K₂K₃ ⊆ J.

Theorem 2.7. Let J be a 3-absorbing ideal and Rad(J) = K is a prime ideal of R such that $J \neq K$, then $J_x = \{y \in R | yx \in J\}$ is a 2-absorbing hyperideal of R containing K for each $x \in K \setminus J$.

Proof. Let $x \in K \setminus J$, since $K^3 \subseteq J$ (by theorem 4) this implies that $K \subseteq J_x$. Suppose that $K \neq J_x$ and $x_1x_2x_3 \in J_x$ for some $x_1, x_2, x_3 \in R$. Since $K \subseteq J_x$, let $x_1, x_2, x_3 \nsubseteq K$ this implies $x_1x_2x_3 \nsubseteq J$. Since $x_1x_2x_3 \in J_x$, so we have $yx_1x_2x_3 \in J$. As J is 3-absorbing hyperideal of R and $x_1x_2x_3 \nsubseteq J$ this implies that either $yx_1x_2 \in J$ or $yx_2x_3 \in J$ or $yx_1x_3 \in J$ and $x_1x_2 \in J_x$ or $x_2x_3 \in J_x$ or $x_1x_3 \in J_x$. Hence J_x is 2-absorbing hyperideal of R containing V.

Theorem 2.8. Let J be a 3-absorbing ideal of R such that $J \neq Rad(J) = K_1 \cap K_2 \cap K_3$, where K_1, K_2, K_3 are non zero prime hyperideals of hyperring R which are distinct and minimal over J, then $J_x = \{y \in R \mid xy \in J\}$ is 2-absorbing hyperideal of R containing K_1, K_2, K_3 for each $x \in Rad(J) \setminus J$.

Proof. Let $x \in Rad(J) \setminus J$ and $K_1K_2K_3 \subseteq J$ (Theorem 4). We can conclude that $xJ_1 \subseteq J$, $xJ_2 \subseteq J$ and $xJ_3 \subseteq J$. Thus $K_1, K_2, K_3 \subseteq J_x$. Suppose $x_1x_2x_3 \in J_x$ for some $x_1, x_2, x_3 \in R$. Since $K_1, K_2, K_3 \subseteq J_x$, we may assume that $x_1x_2x_3 \notin J$. As $x_1x_2x_3 \in J_x$ this implies that $x_1x_2x_3x \in J$, J is 3-absorbing hyperideal and $x_1x_2x_3 \notin J$. We come to an end that $x_1x_2x \in J$ or $x_1x_3x \in J$ or $x_2x_3x \in J$ from this we conclude that either $x_1x_2 \in J_x$ or $x_1x_3 \in J_x$ or $x_2x_3 \in J_x$. Hence J_x is 2-absorbing hyperideal of R.

Theorem 2.9. Suppose that J is a hyperideal of hyperring R such that $J \neq Rad(J) = K_1 \cap K_2 \cap K_3$ where K_1, K_2, K_3 are non zero prime hyperideals of hyperring R which are distinct and minimal over J, if $J_x = \{y \in R \mid yx \in J\}$ is 2-absorbing hyperideal of R for $x \in (K_1 \cup K_2 \cup K_3 \setminus J)$, then J is 3-absorbing hyperideal of R.

Proof. Let $xx_1x_2x_3 \in J$. Assume that $x \in (K_1 \cup K_2 \cup K_3) \setminus J$, thus $x_1x_2x_3 \in J_x$, since J_x is 2-absorbing hyperideal of hyperring R (by theorem 5), we come to an end that either $xx_1x_2 \in J$ or $xx_2x_3 \in J$ or $xx_1x_3 \in J$. Hence J is a 3-absorbing hyperideal of hyperring R.

Theorem 2.10. Let J be a 3-absorbing hyperideal of R then $J_x = \{y \in R | yx \in J\}$, where $x \in R \setminus J$ is 3-absorbing hyperideal of R containing J.

Proof. $x_1x_2x_3x_4 \in J_x$ for $x_1, x_2, x_3, x_4 \in R$, then $(xx_1)x_2x_3x_4 \in J$, so either $(xx_1)x_2x_3 \in J$ or $(xx_1)x_2x_4 \in J$ or $x_2x_3x_4 \in J$. Hence J_x is 3-absorbing hyperideal of R containing J.

References

- Ameri, Reza, and Morteza Norouzi, On Commutative Hyperrings, International Journal of Algebraic Hyperstructures and its Applications 1(1)(2014), 45-58.
- M. Anbarloei, On 2-absorbing and 2-absorbing primary hyperideals of a multiplicative hyperring, Cogent Mathematics, 4(1)(2017), 1354-1447.
- [3] Corsini, Piergiulio, and Violeta Leoreanu, Applications of hyperstructure theory, Vol. 5, Springer Science & Business Media, (2013).
- [4] Dasgupta and Utpal, On prime and primary hyperideals of a multiplicative hyperring, (2012), 19-36.
- [5] B. Davvaz and V. Leoreanu, Hyperring Theory and Applications, Interna, (2007).
- [6] P. Ghiasvand, On 2-absorbing hyperideals of multiplicative hyperrings, Second Seminar on Algebra and its Applications, (2014).
- [7] Marty and Frederic, Sur une generalization de la notion de groupe, 8th congress Math. Scandinaves, (1934).
- [8] Procesi, Rita, and Rosaria Rota, On some classes of hyperstructures, Discrete Mathematics, 208(1999), 485-497.
- [9] R. Rota, Sugli iperanelli moltiplicativi, Rend. Di Mat., Series, 7(4)(1982).
- [10] Rota and Rosaria, Strongly distributive multiplicative hyperrings, Journal of Geometry, 39(1-2)(1990), 130-138.