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1. Introduction

As a generalization of Sasakian-space-form, Alegre [2] introduced the notion of generalized Sasakian-space-form as that an

almost contact metric manifold M (¢, €, n, g) whose curvature tensor R of M satisfies

R(X,Y)Z = fi{g(Y,2)X — g(X, 2)Y } + f2{9(X,0Z)pY — g(Y,0Z)$X + 29(X, oY) Z} (1)

+ f3{n(Xn(2)Y —n(Y)n(2)X + g(X, Z)n(Y)¢ — g(Y, Z)n(X)¢}

for all vector fields X, Y, Z on M and f1, f2, f3 are certain smooth functions on M. Such a manifold of dimension (2n + 1),

n > 1 (the condition n > 1 is assumed throughout the paper), is denoted by M2"*(f1, f2, f3) [2]. Many authors studied this

space form with different aspects. For this, we may refer ([11-15, 17, 18, 23]). It reduces to Sasakian-space-form if f, = Cf,

f2 = fa = <% [2]. After introducing the semisymmetric linear connection by Friedman and Schouten [7], Hayden [9] gave

the idea of metric connection with torsion on a Riemannian manifold. Later, Yano [29] and many others (see, [21, 22, 24]
and references therein) studied semisymmetric metric connection in different context. The idea of semisymmetric non-metric
connection was introduced by Agashe and Chafle [1]. The Schouten-van Kampen connection introduced for the study of
non-holomorphic manifolds ([20, 27]). In 2006, Bejancu [6] studied Schouten-van Kampen connection on foliated manifolds.
Recently Olszak [19] studied Schouten-van Kampen connection on almost(para) contact metric structure. The Tanaka-
Webster connection [25, 28] is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-manifold.

Tanno [26] defined the Tanaka-Webster connection for contact metric manifolds. The submanifolds of M2 (fy, fo, f3) are
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studied in [3, 10, 16]. In [3], Alegre and Carriazo studied submanifolds of M>"V(f1, fo, f3) with respect to Levi-Civita
connection V. The present paper deals with study of such submanifolds of M>"T1(f1, fz, f3) with respect to semisymmetric
metric connection, semisymmetric non-metric connection, Schouten-van Kampen connection and Tanaka-webster connection

respectively.

2. Preliminaries

In an almost contact metric manifold M (¢, &, 7, g), we have [4]

¢*(X) = =X +n(X)E, ¢€ =0, (2)
77(5) =1, g(X7 6) = 77(X): 77(¢X) =0, (3)
9(¢X,0Y) = g(X,Y) — n(X)n(Y), (4)
g(¢X7 Y) = _g(X7 ¢Y) (5)
In M2" VL (f1, f2, f3), we have [2]
(Vxo)(Y) = (fi = f5)lg(X,Y)E = n(Y)X], (6)
Vx¢&=—(f1 — f3)9X, (7)

where V is the Levi-Civita connection of M>"'(f1, fa, f3). Let M be a submanifold of M>"T!(fy, fa, f3). If V and V* are
the induced connections on the tangent bundle TM and the normal bundle T+ M of M, respectively then the Gauss and

Weingarten formulae are given by [30]
VxY =VxY +h(X,Y), VxV = —Ay X + VxV (8)

for all X,Y € I'(T'M) and V € T'(T* M), where h and Ay are second fundamental form and shape operator (corresponding
to the normal vector field V), respectively and they are related by g(h(X,Y),V) = g(AvX,Y). For any X € I'(T M), we
may write

¢X =TX + FX, )

where T'X is the tangential component and F'X is the normal component of $X. In particular, if F' = 0 then M is invariant
[5] and here (T M) C TM. Also if T = 0 then M is anti-invariant [5] and here ¢(T'M) C TM. Also here we assume that
€ is tangent to M. The semisymmetric metric connection V and the Riemannian connection ¥V on M IFtL(f1 fa, f3) are

related by [29]

VxY = VxY +9(Y)X — g(X,Y)E. (10)

The Riemannian curvature tensor R of M>"T!(f1, fa, f3) with respect to V is

RX,Y)Z = (fi—D{g(V,2)X — g(X, 2)Y} + fo{g(X,62)8Y — g(Y,62)$X (11)
+29(X, Y )0 Z} + (fs — D{n(Xn(2)Y —n(Y)n(2)X + g(X, Z)n(Y )¢

—9(Y, Z)n(X)&} + (fr = fs){9(X,02)Y — g(Y, 62)X + g(Y, Z)¢X — g(X, Z)¢Y }.
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The semisymmetric non-metric connection V' and the Riemannian connection ¥ on ]\742"“(]‘17 f2, f3) are related by [1]
(12)

VY = VxY +n(Y)X.

The Riemannian curvature tensor R of M*"FY(f1, fa, f3) with respect to Vs
(13)

—/

R(X,Y)Z = fi{g(Y,2)X = g(X, 2)Y } + fo{9(X,02)Y — g(Y,dZ)$X + 29(X,¢Y)¢Z} + fs{n(X)n(Z)Y

—n(Y)n(2)X + g(X, Z2)n(Y)E = (Y, Z)n(X)E} + (fr = fs)[9(X, 0Z)Y — g(Y, $2)X]

+n(Y)n(2)X —n(X)n(Z)Y.

The Schouten-van Kampen connection V and the Riemannian connection V of M*"FY(f1, fa, f3) are related by [19]

VxY = VxY + (fi = fa)n(Y)$X — (fi = f2)g(6X, V)&, (14)
The Riemannian curvature tensor R of M"Y f1, fa, f3) with respect to vV is
R(X,Y)Z = f{a(V. 2)X = g(X, 2)Y } + f2{9(X, 6Z)¢Y (15)
—9(Y,02)0X +29(X, ¢Y)9Z} + {fs + (fr = fs)"Hn(X)n(2)Y
= (Y )(Z2)X +g(X, Z)n(Y)E = g(Y, Z)n(X)E} + (fi — f3)*[9(X, 62)9Y — g(Y, 9Z)$X],
where (fi — fs3) is constant function. The Tanaka-Webster connection % and the Riemannian connection V of
M FY(f1, fa, f3) are related by [8]
(16)

Vx ¥ = VxY + n(X)eY + (f1 = fs)n(Y)pX — (f1 — f3)9(¢ X, Y)E.

The Riemannian curvature tensor R of M?"V1(f1, f2, f3) with respect to V is
(17)

R (X,YV)Z = fi{g(Y, 2)X — g(X, 2)Y } + f2{9(X,02)¢Y — g(Y,$Z)pX + 29(X,¢Y)pZ}
+{fs + (A = £ Hn(XM(2)Y —n(YIn(2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)&}

+(f1 = )’ [9(X, 02)9Y — g(Y, ¢2)¢X] +2(f1 — f3)9(X,$Y)$Z,

where (fi1 — f3) is constant function.

. r2n+1 PRI
3. Submanifolds of M (f1, f2, f3) with V
Lemma 3.1. If M is invariant submanifold of M>"V'(f1, fo, f3) with respect to %, then E(X, Y)Z is tangent to M, for
any X,Y,Z € T(TM).

Proof.

This proves the lemma.

[\

If M is invariant then from (11) we say that ]N?(X, Y)Z is tangent to M because ¢X and ¢Y are tangent to M.

O
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Lemma 3.2. If M is anti-invariant submanifold of M>" V' (f1, f2, f3) with respect to %, then

tan(R(X,Y)Z) = (f1 - D{g(Y,2)X — g(X, Z)Y } + (fs — D) {n(X)n(2)Y
—n(Y)n(2)X + g(X, Z)n(Y)¢ — g(Y, Z)n(X)E}, (18)

nor(R(X,Y)Z) = (fi = fs){g(Y, 2)¢X — g(X, Z)¢Y'} (19)

for any X,Y,Z € T(TM).

Proof. Since M is anti-invariant, we have ¢.X,¢Y € I'(T* M). Then equating tangent and normal component of (11) we

get the result. O

Lemma 3.3. If fi(p) = f3(p) and M is either invariant or anti-invariant submanifold of M>"'(f1, fa, f3) with respect to
%, then }:?(X7 Y)Z is tangent to M for any X,Y,Z € T'(TM).

Proof. Using Lemma 3.1 and Lemma 3.2 we get the result. O

Lemma 3.4. If M is invariant or anti-invariant submanifold of M*" T (f1, fo, f3) with respect to %, then f%(X7 Y)V is

normal to M, for any X,Y,€ T(TM) and V € T'(T*+M).

Proof. If M is invariant from (11) we have IE(X, Y)V normal to M, and if M is anti-invariant then ]N?(X7 Y)V =0 ie.

R(X,Y)V normal to M for any X,Y,€ I'(TM) and V € I'(T+M). O

Lemma 3.5. let M be a connected submanifold of M*" T (f1, fa, f3) with respect to V. If f2(p) #0, fi(p) = fs(p) and TM

is invariant under the action of ]E(X7 Y), X, Y e I(TM), then M is either invariant or anti-invariant.

Proof. For X,Y € T(TM), we have from (11) that

RX,Y)X = (fi — {9V, X)X — g(X, X)Y} + fa{9(X,0X)pY — g(Y,$X)pX + 29(X, Y )X }
+ (fs = D{n(X)n(X)Y —n(Y)n(X)X + g(X, X)n(Y)E — g(Y, X)n(X)¢}

+ (f1 = f3){9(¢Y, X)X — g(6X, X)Y + g(Y, X)¢X — g(X, X)¢Y'}. (20)

Note that I?Z(X, Y)X should be tangent if [-3f29(Y, $X)pX +(f1— f3){g(Y, X)pX —g(X, X)pY }] is tangent. Since f2(p) # 0,
fi(p) = f3(p) at any point p then by similar way of proof of Lemma 3.2 of [3], we can prove that either M is invariant or

anti-invariant. This proves the Lemma. O

Remark 3.6. let M be a connected submanifold of M*" 1 (f1, f2, f3) with respect to V. If f1(p) # f3(p) and T M is invariant
under the action of E(X, Y), X, Y e (TM), then M is invariant.

Theorem 3.7. Let M be a connected submanifold of M*" 1 (f1, fa, f3) with respect to V. If f2(p) #0, f1(p) = f3(p) then

M s either invariant or anti-invariant if and only if TM is invariant under the action of ]N?(X, Y) for all X, Y € T'(TM).
Proof. 1t follows from Lemma 3.3 and Lemma 3.5. O

Proposition 3.8. Let M be a submanifold of M*" 1 (f1, fa, f3) with respect to % If M is invariant, then T M is invariant

under the action of I??(U7 V) for any U,V € D(T+M).
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Proof. Replacing X,Y,Z by U,V, X in (11), we get

RUWV)X = (fi — D){g(V. X)U = g(U, X))V} + fo{g(U,¢X)pV — g(V,$X)pU + 29(U, pV )X } (21)
+ (fs = D{nU)n(X)V = n(V)n(X)U + g(U, X)n(V)§ — g(V, X)n(U)&}

+ (f1 = £3){g(¢V, X)U — g(oU, X)V + g(V, X)oU — g(U, X)¢V'}.

As M is invariant, U,V € I'(T* M), we have

9(X,9U) = —g(¢X,U) = g(¢V, X) =0 (22)

for any X € I'(T'M). Using (22) in (21), we have

R(U, V)X =2f2g(U, ¢V)$X, (23)

which is tangent as ¢ X is tangent. This proves the proposition. O

Proposition 3.9. Let M be a connected submanifold of M*" V' (f1, fa, f3) with respect to V. If fa(p) # 0, fi(p) = fs(p)
for each p € M and T+M is invariant under the action of E(U, V), UV € F(TLM), then M 1is either invariant or

anti-invariant.

Proof.  The proof is similar as it is an Lemma 3.4, just assuming that E(U, V)U is normal for any U,V € T(T+M). O

4. Submanifolds of M*"tL(fi, fo, f3) with V'

Lemma 4.1. If M is either invariant or anti-invariant submanifold of M>" 1 (f1, fa, f3) with respect to V', then R (X, )z

is tangent to M and R’ (X,Y)V normal to M for any X,Y,Z € T(TM) and V € T(T*+M).

Proof. 1f M is invariant then from (13) we say that R/(X7 Y)Z is tangent to M because ¢X and ¢Y are tangent to M.

If M is anti-invariant then

9(X,02) =g(Y,9Z) = g(¢X, Z) = g(¢Y, Z) = 0. (24)
From (13) and (24) we have

—/

R(X,Y)Z = fi{g(Y,2)X — g(X, 2)Y } + fs{n(X)n(Z)Y = n(Y)n(Z)X + g(X, Z)n(Y)€ — g(Y, Z)n(X)e}  (25)

+ In(Y)n(2)X = n(X)n(2)Y],
which is tangent. If M is invariant then from (13), it follows that R’(X, Y)V is normal to M, and if M is anti-invariant
then B (X,Y)V =0ie. R (X,Y)V is normal to M for any X,Y € T(TM) and V € T(TM). This proves the Lemma. [

Lemma 4.2. Let M be a connected submanifold of M*"T(f1, fa, f3) with respect to v If f2(p) # 0 for each p € M and

TM is invariant under the action of R’ (X,)Y), X,Y € I(TM), then M is either invariant or anti-invariant.

Proof. For X,Y € I'(TM), we have from (13) that

—7

R(X,Y)X = fi{g(V, X)X — g(X, X)Y} + fo{g(X, pX)dY — g(V, pX)$X + 29(X, Y )X } (26)
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+ f{n(X)In(X)Y —n(Y)n(X)X + g(X, X)n(Y)¢E — g(Y, X)n(X)E}
= (f1 = f3)9(eX, V)X + {n(Y)n(Z)X — n(X)n(Z)Y}.

Note that R’ (X,Y)X should be tangent if 3 f2(p)g(Y, $X)$X is tangent. Since f2(p) # 0 for each p € M, as similar as proof

of Lemma 3.2 of [3], we may conclude that either M is invariant or anti-invariant. This proves the Lemma. O

Theorem 4.3. Let M be a connected submanifold of M*™ T (f1, f2, fa) with respect to v If fo(p) # 0 for eachp € M, then

M is either invariant or anti-invariant if and only if TM is invariant under the action of R (X,Y) for all X, Y € T(TM).

Proof. 1t is obvious from Lemma 4.1 and Lemma 4.2. O

Proposition 4.4. Let M be a submanifold of M*" T (f1, f2, f3) with respect to v. If M is invariant, then T M is invariant

under the action of R’ (U, V) for any U,V € T(T*+M).
Proof. Replacing X,Y, Z by U,V, X in (13), we get

—/

R (U V)X = fi{g(V,X)U — g(U, X)V} + f2{g(U,sX)pV — g(V, X )pU + 29(U, V)X } (27)
+ f3{n(U)n(X)V = n(V)n(X)U + g(U, X)n(V)¢ — g(V, X)n(U)&}

+ (f1 = fs){g(U, ¢ X)V — g(V, 6 X)U} + {n(V)n(X)U — n(U)n(X)V}.

As M is invariant, U € T(T*M), we have

9(X,9U) = —g(¢X,U) = g(¢V, X) =0 (28)

for any X € I'(T'M). Using (28) in (27), we have

—/

R (U, V)X =2f29(U,¢V)dX, (29)
which is tangent as ¢X is tangent. This proves the proposition. O

Proposition 4.5. Let M be a connected submanifold of M>" V1 (f1, fa, f3) with respect to v If f2(p) # 0 for each p € M

and T+ M is invariant under the action of R(U,V), U,V € I(TM), then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 4.2, just imposing that R (U,V)U is normal for any U,V € I'(TM). O

5. Submanifolds of M2 (fy, fo, f3) with V

Lemma 5.1. If M is either invariant or anti-invariant submanifold of M>"T'(f1, fa, f3) with respect to %, then é(X, Y)Z

is tangent to M and é(X, Y)V is normal to M for any X,Y,Z € T(TM) and V € T(T+M).

Proof. If M is invariant then from (15) we say that é(X7 Y)Z is tangent to M because ¢X and ¢Y are tangent to M. If

M is anti-invariant then
9(X,902) = g(Y,902) = g(¢X,Z) = g(¢Y, Z) = 0. (30)

From (15) and (30) we have

R(X,Y)Z = fi{g(V, 2)X = g(X, 2)Y }+{fs+(fr— f3)" Hn(X)n(2)Y —=n(Y)n(Z2)X +g(X, Z)n(Y)e— (Y, Z)n(X)}, (31)

which is tangent. If M is invariant from (15) we have IQ%(X7 Y)V is normal to M, and if M is anti-invariant then }i{(X7 Y)V=0

ie. ]-%i(X7 Y)V is normal to M for any X,Y € T(TM) and V € I'(T*-M). This proves the Lemma. O
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Lemma 5.2. let M be a connected submanifold of M*" 1 (f1, f2, f3) with respect to V. If3fo # (fi — f3)* on M and TM

is invariant under the action of }f}(X, Y), X,Y e (TM), then M 1is either invariant or anti-invariant.

Proof. For X,Y € T'(TM), we have from (15) that

R(X,Y)X = fi{g(Y, X)X — g(X, X)Y '} + f2{g9(X, $X)pY — g(Y, X)X + 29(X,¢Y)pX } (32)
+{fs+ (f1 = f)*H{n(X)I(X)Y = n(Y)n(X)X + g(X, X)n(Y)E — g(Y, X)n(X)¢}

+ (f1 — f3)*{9(X, 6X)pY — g(V, X)X }.

Now, we see that é(X, Y)X should be tangent if {3f> + (f1 — f3)*}g(Y, $X)¢X is tangent. Since 3f2 # —(f1 — f3)? then
in similar way of proof of Lemma 3.2 of [3] we may conclude that either M is invariant or anti-invariant. This proves the

Lemma. O

Theorem 5.3. Let M be a connected submanifold of M*"VY(f1, f2, f3) with respect to V. If 3f2 # —(f1 — f3)?, then M is

either invariant or anti-invariant if and only if TM is invariant under the action of ]%(X, Y) for all X, Y € T(TM).
Proof. Using Lemma 5.1 and Lemma 5.2, we get the result. O

Proposition 5.4. Let M be a submanifold of M*" 1 (f1, fa, f3) with respect to v. If M is invariant, then T M is invariant

under the action of }Q?(U7 V) for any U,V € T(T*+M).
Proof. Replacing X,Y, Z by U,V, X in (15), we get

RU V)X = fi{g(V,X)U — g(U, X)V} + f2{g(U,pX)pV — g(V, X )pU + 29(U, $V)pX } (33)
+{fs+ (/1 — ) HnW)n(X)V = n(V)n(X)U + g(U, X)n(V)¢ — g(V, X)n(U)¢}

+ (fr — f3)*{9(U, X))oV — g(V, $X)oU }.

As M is invariant, U € T(T* M), we have

9(X,9U) = —g(¢X,U) = g(¢V, X) =0 (34)

for any X € I'(T'M). Using (34) in (33), we have

R(U,V)X =2f29(U, ¢V)9X, (35)

which is tangent as ¢X is tangent. This proves the proposition. O

Proposition 5.5. Let M be a connected submanifold of M*" T (f1, fa, f3) with respect to V. If3fs # —(f1 — f3)> on M

and T+ M is invariant under the action of ﬁi(U7 V), U,V € (T M), then M is either invariant or anti-invariant.

Proof.  The proof is similar as the proof of Lemma 5.2, just imposing that IfZ(U, V)U is normal for any U,V € T'(T*M). O
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*
6. Submanifolds of M?"*1(f,, fo, f3) with V
Lemma 6.1. If M is either invariant or anti-invariant submanifold of M*" 1 (f1, fa, f3) with respect to V, then R (X,Y)Z

is tangent to M and R (X,Y)V is normal to M for any X,Y,Z € T(TM) and V € T(T+M).

Proof.  If M is invariant then from (17) we say that R (X,Y)Z is tangent to M because ¢X and ¢Y are tangent to M.

If M is anti-invariant then

9(X,02) =g(Y,0Z) = g(¢X,Z) = g(¢Y, Z) = 0. (36)

From (17) and (36) we have
R(X.Y)Z = fi{g(Y.2)X (X, DY Y+ {fs+(F1=F3)"Hn(Xm(2)Y —n(Y)n(Z2) X +9(X, Z)n(Y)E—g(Y, Z)n(X)E} (37)

which is tangent. If M is invariant from (17) we have R (X,Y)V normal to M and if M is anti-invariant then R (X,Y)V =0

ie. R(X,Y)V normal to M for any X,Y € T(TM) and V € I'(T*M). This proves the Lemma. O

Lemma 6.2. let M be a connected submanifold of M*" T (f1, f2, f3) with respect to V. If {3f24+2(f1—f3)+(f1—f3)>}(p) #0
for each p € M and TM is invariant under the action of R (X,Y), X,Y € I'(TM), then M is either invariant or anti-

nvariant.

Proof. For X,Y € T'(T'M), we have from (17) that

R(X,Y)X = A{g(V, X)X — g(X, X)Y} + f2{9(X,6X)oY — g(Y,pX )X + 29(X, Y )X } (38)
+{fs+ (fr — )" H{n(X)n(X)Y —n(Y)n(X)X + g(X, X)n(Y)E — g(Y, X)n(X)E}

+(fr — f3){9(X, 0X)pY — g(V,6X)dX } + 2(f1 — f3)g(X, 9Y )9 X.

Now we see that R (X,Y)X should be tangent if {3f> + 2(f1 — f3) + (f1 — f3)*}(p)g(Y, X)X is tangent. Since {3f> +
2(f1 — f3) + (f1 — f3)*}(») # O then by similar way of proof of Lemma 3.2 of [3] we can proved that either M is invariant

or anti-invariant. This proves the Lemma. O

Theorem 6.3. Let M be a connected submanifold of M*"V1(f1, fo, f3) with respect to V. If {3fa + 2(f1 — f3) + (f1 —
13)?}(p) # 0, then M is either invariant or anti-invariant if and only if TM is invariant under the action of R (X,Y) for
all X,Y € T(TM).

Proof. 1t follows from Lemma 6.1 and Lemma 6.2. O

Proposition 6.4. Let M be a submanifold of M>" V1 (f1, fa, f3) with respect to V. If M is invariant, then TM is invariant

under the action of R (U, V) for any U,V € T(T+M).

Proof. Replacing X,Y,Z by U,V, X in (17), we get

1*? (U)X = fi{g(V,X)U = g(U, X)V} + fo{g(U, X))V — g(V,$X)oU + 29(U, pV )X } (39)
+{fs+ (fr — ) HnW)n(X)V = n(VIn(X)U + g(U, X)n(V)§ — g(V, X )n(U)¢}

+(f1 = £:){9(U, 6X)9V — g(V,dX)oU } +2(f1 — f3)g(U, V) X.
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As M is invariant, U € T(T* M), we have
9(X,0U) = —g(¢X,U) = g(¢V, X) =0 (40)
for any X € T'(TM). Using (40) in (39), we have
R (U.V)X = {22 +2(f1 — f)}9(U. 6V )6X, (41)

which is tangent as ¢ X is tangent. This proves the proposition. O

Proposition 6.5. Let M be a connected submanifold of M*"T1(f1, fa, f3) with respect to V. If {3fo + 2(f1 — f3) + (f1 —
13)?}(p) # 0 for each p € M and T+M is invariant under the action of R (U, V), U,V € I(T*+M), then M is either

variant or anti-invariant.

Proof.  The proof is similar as the proof of Lemma 6.2, just considering that R (U, V)U is normal for any U,V € T(T*+M).

O
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