ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

Submanifolds of Generalized Sasakian-space-forms with Respect to Certain Connections

Shyamal Kumar Hui¹, Pradip Mandal¹ and Shyam Kishor^{2,*}

- 1 Department of Mathematics, The University of Burdwan, Burdwan, West Bengal, India.
- 2 Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.

Abstract: The present paper deals with some results of submanifolds of generalized Sasakian-space-forms in [3] with respect to

semisymmetric metric connection, semisymmetric non-metric connection, Schouten-van Kampen connection and Tanaka-

webster connection.

MSC: 53C15, 53C40.

Keywords: Generalized Sasakian-space-forms, Semisymmetric metric connection, Semisymmetric non-metric connection, Schouten-

van Kampen Connection, Tanaka-Webster connection.

© JS Publication. Accepted on: 01.05.2018

1. Introduction

As a generalization of Sasakian-space-form, Alegre [2] introduced the notion of generalized Sasakian-space-form as that an almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$ whose curvature tensor \bar{R} of \bar{M} satisfies

$$\bar{R}(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$
(1)

for all vector fields X, Y, Z on \bar{M} and f_1, f_2, f_3 are certain smooth functions on \bar{M} . Such a manifold of dimension (2n+1), n>1 (the condition n>1 is assumed throughout the paper), is denoted by $\bar{M}^{2n+1}(f_1, f_2, f_3)$ [2]. Many authors studied this space form with different aspects. For this, we may refer ([11–15, 17, 18, 23]). It reduces to Sasakian-space-form if $f_1 = \frac{c+3}{4}$, $f_2 = f_3 = \frac{c-1}{4}$ [2]. After introducing the semisymmetric linear connection by Friedman and Schouten [7], Hayden [9] gave the idea of metric connection with torsion on a Riemannian manifold. Later, Yano [29] and many others (see, [21, 22, 24] and references therein) studied semisymmetric metric connection in different context. The idea of semisymmetric non-metric connection was introduced by Agashe and Chafle [1]. The Schouten-van Kampen connection introduced for the study of non-holomorphic manifolds ([20, 27]). In 2006, Bejancu [6] studied Schouten-van Kampen connection on foliated manifolds. Recently Olszak [19] studied Schouten-van Kampen connection on almost(para) contact metric structure. The Tanaka-Webster connection [25, 28] is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-manifold. Tanno [26] defined the Tanaka-Webster connection for contact metric manifolds. The submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ are

 $^{^*}$ E-mail: skishormath@gmail.com

studied in [3, 10, 16]. In [3], Alegre and Carriazo studied submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to Levi-Civita connection $\bar{\nabla}$. The present paper deals with study of such submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to semisymmetric metric connection, semisymmetric non-metric connection, Schouten-van Kampen connection and Tanaka-webster connection respectively.

2. Preliminaries

In an almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$, we have [4]

$$\phi^{2}(X) = -X + \eta(X)\xi, \ \phi\xi = 0, \tag{2}$$

$$\eta(\xi) = 1, \quad g(X,\xi) = \eta(X), \quad \eta(\phi X) = 0,$$
(3)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{4}$$

$$g(\phi X, Y) = -g(X, \phi Y). \tag{5}$$

In $\bar{M}^{2n+1}(f_1, f_2, f_3)$, we have [2]

$$(\bar{\nabla}_X \phi)(Y) = (f_1 - f_3)[g(X, Y)\xi - \eta(Y)X], \tag{6}$$

$$\bar{\nabla}_X \xi = -(f_1 - f_3)\phi X,\tag{7}$$

where $\bar{\nabla}$ is the Levi-Civita connection of $\bar{M}^{2n+1}(f_1, f_2, f_3)$. Let M be a submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$. If ∇ and ∇^{\perp} are the induced connections on the tangent bundle TM and the normal bundle $T^{\perp}M$ of M, respectively then the Gauss and Weingarten formulae are given by [30]

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \ \bar{\nabla}_X V = -A_V X + \nabla_X^{\perp} V \tag{8}$$

for all $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$, where h and A_V are second fundamental form and shape operator (corresponding to the normal vector field V), respectively and they are related by $g(h(X,Y),V) = g(A_VX,Y)$. For any $X \in \Gamma(TM)$, we may write

$$\phi X = TX + FX,\tag{9}$$

where TX is the tangential component and FX is the normal component of ϕX . In particular, if F=0 then M is invariant [5] and here $\phi(TM) \subset TM$. Also if T=0 then M is anti-invariant [5] and here $\phi(TM) \subset T^{\perp}M$. Also here we assume that ξ is tangent to M. The semisymmetric metric connection $\widetilde{\nabla}$ and the Riemannian connection $\overline{\nabla}$ on $\overline{M}^{2n+1}(f_1, f_2, f_3)$ are related by [29]

$$\widetilde{\nabla}_X Y = \overline{\nabla}_X Y + \eta(Y) X - g(X, Y) \xi. \tag{10}$$

The Riemannian curvature tensor \tilde{R} of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\tilde{\nabla}$ is

$$\widetilde{R}(X,Y)Z = (f_1 - 1)\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X
+2g(X,\phi Y)\phi Z\} + (f_3 - 1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi
-g(Y,Z)\eta(X)\xi\} + (f_1 - f_3)\{g(X,\phi Z)Y - g(Y,\phi Z)X + g(Y,Z)\phi X - g(X,Z)\phi Y\}.$$
(11)

The semisymmetric non-metric connection $\bar{\nabla}'$ and the Riemannian connection $\bar{\nabla}$ on $\bar{M}^{2n+1}(f_1, f_2, f_3)$ are related by [1]

$$\bar{\nabla}_X' Y = \bar{\nabla}_X Y + \eta(Y) X. \tag{12}$$

The Riemannian curvature tensor \bar{R}' of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\bar{\nabla}'$ is

$$\bar{R}'(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} + (f_1 - f_3)[g(X,\phi Z)Y - g(Y,\phi Z)X] + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y.$$
(13)

The Schouten-van Kampen connection $\hat{\nabla}$ and the Riemannian connection $\bar{\nabla}$ of $\bar{M}^{2n+1}(f_1,f_2,f_3)$ are related by [19]

$$\hat{\nabla}_X Y = \bar{\nabla}_X Y + (f_1 - f_3) \eta(Y) \phi X - (f_1 - f_3) g(\phi X, Y) \xi. \tag{14}$$

The Riemannian curvature tensor \hat{R} of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\hat{\nabla}$ is

$$\hat{R}(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y
- g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(Z)Y
- \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} + (f_1 - f_3)^2[g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X],$$
(15)

where $(f_1 - f_3)$ is constant function. The Tanaka-Webster connection $\overset{*}{\nabla}$ and the Riemannian connection $\bar{\nabla}$ of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ are related by [8]

$$\overset{*}{\nabla}_{X} Y = \bar{\nabla}_{X} Y + \eta(X)\phi Y + (f_{1} - f_{3})\eta(Y)\phi X - (f_{1} - f_{3})g(\phi X, Y)\xi. \tag{16}$$

The Riemannian curvature tensor $\stackrel{*}{\bar{R}}$ of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\stackrel{*}{\bar{\nabla}}$ is

$$\tilde{R}(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}
+ \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}
+ (f_1 - f_3)^2[g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X] + 2(f_1 - f_3)g(X,\phi Y)\phi Z,$$
(17)

where $(f_1 - f_3)$ is constant function.

3. Submanifolds of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with $\widetilde{\overline{\nabla}}$

Lemma 3.1. If M is invariant submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$, then $\widetilde{R}(X, Y)Z$ is tangent to M, for any $X, Y, Z \in \Gamma(TM)$.

Proof. If M is invariant then from (11) we say that $\tilde{R}(X,Y)Z$ is tangent to M because ϕX and ϕY are tangent to M. This proves the lemma.

Lemma 3.2. If M is anti-invariant submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\tilde{\nabla}$, then

$$tan(\tilde{R}(X,Y)Z) = (f_1 - 1)\{g(Y,Z)X - g(X,Z)Y\} + (f_3 - 1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\},$$
(18)

$$nor(\widetilde{\overline{R}}(X,Y)Z) = (f_1 - f_3)\{g(Y,Z)\phi X - g(X,Z)\phi Y\}$$

$$(19)$$

for any $X, Y, Z \in \Gamma(TM)$.

Proof. Since M is anti-invariant, we have $\phi X, \phi Y \in \Gamma(T^{\perp}M)$. Then equating tangent and normal component of (11) we get the result.

Lemma 3.3. If $f_1(p) = f_3(p)$ and M is either invariant or anti-invariant submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$, then $\widetilde{R}(X, Y)Z$ is tangent to M for any $X, Y, Z \in \Gamma(TM)$.

Proof. Using Lemma 3.1 and Lemma 3.2 we get the result.

Lemma 3.4. If M is invariant or anti-invariant submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$, then $\widetilde{R}(X, Y)V$ is normal to M, for any $X, Y, \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Proof. If M is invariant from (11) we have $\tilde{R}(X,Y)V$ normal to M, and if M is anti-invariant then $\tilde{R}(X,Y)V=0$ i.e. $\tilde{R}(X,Y)V$ normal to M for any $X,Y,\in\Gamma(TM)$ and $V\in\Gamma(T^\perp M)$.

Lemma 3.5. let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$. If $f_2(p) \neq 0$, $f_1(p) = f_3(p)$ and TM is invariant under the action of $\widetilde{R}(X,Y)$, $X,Y \in \Gamma(TM)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(TM)$, we have from (11) that

$$\widetilde{R}(X,Y)X = (f_1 - 1)\{g(Y,X)X - g(X,X)Y\} + f_2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X + 2g(X,\phi Y)\phi X\}
+ (f_3 - 1)\{\eta(X)\eta(X)Y - \eta(Y)\eta(X)X + g(X,X)\eta(Y)\xi - g(Y,X)\eta(X)\xi\}
+ (f_1 - f_3)\{g(\phi Y,X)X - g(\phi X,X)Y + g(Y,X)\phi X - g(X,X)\phi Y\}.$$
(20)

Note that $\widetilde{R}(X,Y)X$ should be tangent if $[-3f_2g(Y,\phi X)\phi X + (f_1-f_3)\{g(Y,X)\phi X - g(X,X)\phi Y\}]$ is tangent. Since $f_2(p) \neq 0$, $f_1(p) = f_3(p)$ at any point p then by similar way of proof of Lemma 3.2 of [3], we can prove that either M is invariant or anti-invariant. This proves the Lemma.

Remark 3.6. let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$. If $f_1(p) \neq f_3(p)$ and TM is invariant under the action of $\widetilde{R}(X,Y)$, $X,Y \in \Gamma(TM)$, then M is invariant.

Theorem 3.7. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$. If $f_2(p) \neq 0$, $f_1(p) = f_3(p)$ then M is either invariant or anti-invariant if and only if TM is invariant under the action of $\widetilde{R}(X, Y)$ for all $X, Y \in \Gamma(TM)$.

Proof. It follows from Lemma 3.3 and Lemma 3.5.

Proposition 3.8. Let M be a submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$. If M is invariant, then TM is invariant under the action of $\widetilde{R}(U, V)$ for any $U, V \in \Gamma(T^{\perp}M)$.

Proof. Replacing X, Y, Z by U, V, X in (11), we get

$$\widetilde{R}(U,V)X = (f_1 - 1)\{g(V,X)U - g(U,X)V\} + f_2\{g(U,\phi X)\phi V - g(V,\phi X)\phi U + 2g(U,\phi V)\phi X\}
+ (f_3 - 1)\{\eta(U)\eta(X)V - \eta(V)\eta(X)U + g(U,X)\eta(V)\xi - g(V,X)\eta(U)\xi\}
+ (f_1 - f_3)\{g(\phi V,X)U - g(\phi U,X)V + g(V,X)\phi U - g(U,X)\phi V\}.$$
(21)

As M is invariant, $U, V \in \Gamma(T^{\perp}M)$, we have

$$g(X, \phi U) = -g(\phi X, U) = g(\phi V, X) = 0$$
 (22)

for any $X \in \Gamma(TM)$. Using (22) in (21), we have

$$\widetilde{\overline{R}}(U,V)X = 2f_2g(U,\phi V)\phi X,\tag{23}$$

which is tangent as ϕX is tangent. This proves the proposition.

Proposition 3.9. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widetilde{\nabla}$. If $f_2(p) \neq 0$, $f_1(p) = f_3(p)$ for each $p \in M$ and $T^{\perp}M$ is invariant under the action of $\widetilde{R}(U, V)$, $U, V \in \Gamma(T^{\perp}M)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as it is an Lemma 3.4, just assuming that $\tilde{R}(U,V)U$ is normal for any $U,V\in\Gamma(T^{\perp}M)$.

4. Submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with $\bar{\nabla}'$

Lemma 4.1. If M is either invariant or anti-invariant submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}'$, then $\overline{R}'(X, Y)Z$ is tangent to M and $\overline{R}'(X, Y)V$ normal to M for any $X, Y, Z \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Proof. If M is invariant then from (13) we say that $\bar{R}'(X,Y)Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$g(X, \phi Z) = g(Y, \phi Z) = g(\phi X, Z) = g(\phi Y, Z) = 0.$$
 (24)

From (13) and (24) we have

$$\bar{R}'(X,Y)Z = f_1 \{ g(Y,Z)X - g(X,Z)Y \} + f_3 \{ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi \}$$

$$+ [\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y],$$
(25)

which is tangent. If M is invariant then from (13), it follows that $\bar{R}'(X,Y)V$ is normal to M, and if M is anti-invariant then $\bar{R}'(X,Y)V=0$ i.e. $\bar{R}'(X,Y)V$ is normal to M for any $X,Y\in\Gamma(TM)$ and $V\in\Gamma(T^{\perp}M)$. This proves the Lemma. \square

Lemma 4.2. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}'$. If $f_2(p) \neq 0$ for each $p \in M$ and TM is invariant under the action of $\overline{R}'(X, Y)$, $X, Y \in \Gamma(TM)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(TM)$, we have from (13) that

$$\bar{R}'(X,Y)X = f_1\{g(Y,X)X - g(X,X)Y\} + f_2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X + 2g(X,\phi Y)\phi X\}$$
(26)

+
$$f_3\{\eta(X)\eta(X)Y - \eta(Y)\eta(X)X + g(X,X)\eta(Y)\xi - g(Y,X)\eta(X)\xi\}$$

- $(f_1 - f_3)g(\phi X, Y)X + \{\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\}.$

Note that $\overline{R}'(X,Y)X$ should be tangent if $3f_2(p)g(Y,\phi X)\phi X$ is tangent. Since $f_2(p) \neq 0$ for each $p \in M$, as similar as proof of Lemma 3.2 of [3], we may conclude that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 4.3. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}'$. If $f_2(p) \neq 0$ for each $p \in M$, then M is either invariant or anti-invariant if and only if TM is invariant under the action of $\overline{R}'(X,Y)$ for all $X,Y \in \Gamma(TM)$.

Proof. It is obvious from Lemma 4.1 and Lemma 4.2.
$$\Box$$

Proposition 4.4. Let M be a submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}'$. If M is invariant, then TM is invariant under the action of $\overline{R}'(U, V)$ for any $U, V \in \Gamma(T^{\perp}M)$.

Proof. Replacing X, Y, Z by U, V, X in (13), we get

$$\bar{R}'(U,V)X = f_1 \{ g(V,X)U - g(U,X)V \} + f_2 \{ g(U,\phi X)\phi V - g(V,\phi X)\phi U + 2g(U,\phi V)\phi X \}$$

$$+ f_3 \{ \eta(U)\eta(X)V - \eta(V)\eta(X)U + g(U,X)\eta(V)\xi - g(V,X)\eta(U)\xi \}$$

$$+ (f_1 - f_3)\{ g(U,\phi X)V - g(V,\phi X)U \} + \{ \eta(V)\eta(X)U - \eta(U)\eta(X)V \}.$$
(27)

As M is invariant, $U \in \Gamma(T^{\perp}M)$, we have

$$g(X, \phi U) = -g(\phi X, U) = g(\phi V, X) = 0$$
 (28)

for any $X \in \Gamma(TM)$. Using (28) in (27), we have

$$\bar{R}'(U,V)X = 2f_2q(U,\phi V)\phi X,\tag{29}$$

which is tangent as ϕX is tangent. This proves the proposition.

Proposition 4.5. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}'$. If $f_2(p) \neq 0$ for each $p \in M$ and $T^{\perp}M$ is invariant under the action of $\overline{R}(U, V)$, $U, V \in \Gamma(TM)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 4.2, just imposing that $\bar{R}'(U,V)U$ is normal for any $U,V\in\Gamma(TM)$. \Box

5. Submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with $\hat{\nabla}$

Lemma 5.1. If M is either invariant or anti-invariant submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\hat{\nabla}$, then $\hat{R}(X, Y)Z$ is tangent to M and $\hat{R}(X, Y)V$ is normal to M for any $X, Y, Z \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Proof. If M is invariant then from (15) we say that $\hat{R}(X,Y)Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$g(X, \phi Z) = g(Y, \phi Z) = g(\phi X, Z) = g(\phi Y, Z) = 0.$$
 (30)

From (15) and (30) we have

$$\hat{R}(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}, (31)\}$$

which is tangent. If M is invariant from (15) we have $\hat{R}(X,Y)V$ is normal to M, and if M is anti-invariant then $\hat{R}(X,Y)V=0$ i.e. $\hat{R}(X,Y)V$ is normal to M for any $X,Y\in\Gamma(TM)$ and $V\in\Gamma(T^{\perp}M)$. This proves the Lemma.

Lemma 5.2. let M be a connected submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\hat{\nabla}$. If $3f_2 \neq (f_1 - f_3)^2$ on M and TM is invariant under the action of $\hat{R}(X,Y)$, $X,Y \in \Gamma(TM)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(TM)$, we have from (15) that

$$\hat{R}(X,Y)X = f_1\{g(Y,X)X - g(X,X)Y\} + f_2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X + 2g(X,\phi Y)\phi X\}$$

$$+ \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(X)Y - \eta(Y)\eta(X)X + g(X,X)\eta(Y)\xi - g(Y,X)\eta(X)\xi\}$$

$$+ (f_1 - f_3)^2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X\}.$$
(32)

Now, we see that $\hat{R}(X,Y)X$ should be tangent if $\{3f_2 + (f_1 - f_3)^2\}g(Y,\phi X)\phi X$ is tangent. Since $3f_2 \neq -(f_1 - f_3)^2$ then in similar way of proof of Lemma 3.2 of [3] we may conclude that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 5.3. Let M be a connected submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\hat{\nabla}$. If $3f_2 \neq -(f_1 - f_3)^2$, then M is either invariant or anti-invariant if and only if TM is invariant under the action of $\hat{R}(X,Y)$ for all $X,Y \in \Gamma(TM)$.

Proof. Using Lemma 5.1 and Lemma 5.2, we get the result.

Proposition 5.4. Let M be a submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\widehat{\nabla}$. If M is invariant, then TM is invariant under the action of $\widehat{R}(U, V)$ for any $U, V \in \Gamma(T^{\perp}M)$.

Proof. Replacing X, Y, Z by U, V, X in (15), we get

$$\hat{R}(U,V)X = f_1\{g(V,X)U - g(U,X)V\} + f_2\{g(U,\phi X)\phi V - g(V,\phi X)\phi U + 2g(U,\phi V)\phi X\}$$

$$+ \{f_3 + (f_1 - f_3)^2\}\{\eta(U)\eta(X)V - \eta(V)\eta(X)U + g(U,X)\eta(V)\xi - g(V,X)\eta(U)\xi\}$$

$$+ (f_1 - f_3)^2\{g(U,\phi X)\phi V - g(V,\phi X)\phi U\}.$$
(33)

As M is invariant, $U \in \Gamma(T^{\perp}M)$, we have

$$g(X, \phi U) = -g(\phi X, U) = g(\phi V, X) = 0$$
 (34)

for any $X \in \Gamma(TM)$. Using (34) in (33), we have

$$\hat{\bar{R}}(U,V)X = 2f_2g(U,\phi V)\phi X,\tag{35}$$

which is tangent as ϕX is tangent. This proves the proposition.

Proposition 5.5. Let M be a connected submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\hat{\nabla}$. If $3f_2 \neq -(f_1 - f_3)^2$ on M and $T^{\perp}M$ is invariant under the action of $\hat{R}(U, V)$, $U, V \in \Gamma(T^{\perp}M)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 5.2, just imposing that $\hat{R}(U, V)U$ is normal for any $U, V \in \Gamma(T^{\perp}M)$.

6. Submanifolds of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with $\overset{*}{\nabla}$

Lemma 6.1. If M is either invariant or anti-invariant submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\stackrel{*}{\bar{\nabla}}$, then $\stackrel{*}{\bar{R}}(X, Y)Z$ is tangent to M and $\stackrel{*}{\bar{R}}(X, Y)V$ is normal to M for any $X, Y, Z \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Proof. If M is invariant then from (17) we say that $\stackrel{*}{\bar{R}}(X,Y)Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$g(X, \phi Z) = g(Y, \phi Z) = g(\phi X, Z) = g(\phi Y, Z) = 0.$$
 (36)

From (17) and (36) we have

$$\overset{*}{\bar{R}}(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\} (37)$$

which is tangent. If M is invariant from (17) we have $\stackrel{*}{\bar{R}}(X,Y)V$ normal to M and if M is anti-invariant then $\stackrel{*}{\bar{R}}(X,Y)V=0$ i.e. $\stackrel{*}{\bar{R}}(X,Y)V$ normal to M for any $X,Y\in\Gamma(TM)$ and $V\in\Gamma(T^\perp M)$. This proves the Lemma.

Lemma 6.2. let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overset{*}{\nabla}$. If $\{3f_2+2(f_1-f_3)+(f_1-f_3)^2\}(p) \neq 0$ for each $p \in M$ and TM is invariant under the action of $\overset{*}{R}(X,Y), X,Y \in \Gamma(TM)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(TM)$, we have from (17) that

$$\tilde{R}(X,Y)X = f_1\{g(Y,X)X - g(X,X)Y\} + f_2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X + 2g(X,\phi Y)\phi X\}
+ \{f_3 + (f_1 - f_3)^2\}\{\eta(X)\eta(X)Y - \eta(Y)\eta(X)X + g(X,X)\eta(Y)\xi - g(Y,X)\eta(X)\xi\}
+ (f_1 - f_3)^2\{g(X,\phi X)\phi Y - g(Y,\phi X)\phi X\} + 2(f_1 - f_3)g(X,\phi Y)\phi X.$$
(38)

Now we see that $\stackrel{*}{\bar{R}}(X,Y)X$ should be tangent if $\{3f_2 + 2(f_1 - f_3) + (f_1 - f_3)^2\}(p)g(Y,\phi X)\phi X$ is tangent. Since $\{3f_2 + 2(f_1 - f_3) + (f_1 - f_3)^2\}(p) \neq 0$ then by similar way of proof of Lemma 3.2 of [3] we can proved that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 6.3. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overline{\nabla}$. If $\{3f_2 + 2(f_1 - f_3) + (f_1 - f_3)^2\}(p) \neq 0$, then M is either invariant or anti-invariant if and only if TM is invariant under the action of $\overline{R}(X, Y)$ for all $X, Y \in \Gamma(TM)$.

Proof. It follows from Lemma 6.1 and Lemma 6.2.

Proposition 6.4. Let M be a submanifold of $\bar{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\stackrel{*}{\bar{\nabla}}$. If M is invariant, then TM is invariant under the action of $\stackrel{*}{\bar{R}}(U, V)$ for any $U, V \in \Gamma(T^{\perp}M)$.

Proof. Replacing X, Y, Z by U, V, X in (17), we get

$$\tilde{R}(U,V)X = f_1\{g(V,X)U - g(U,X)V\} + f_2\{g(U,\phi X)\phi V - g(V,\phi X)\phi U + 2g(U,\phi V)\phi X\}
+ \{f_3 + (f_1 - f_3)^2\}\{\eta(U)\eta(X)V - \eta(V)\eta(X)U + g(U,X)\eta(V)\xi - g(V,X)\eta(U)\xi\}
+ (f_1 - f_3)^2\{g(U,\phi X)\phi V - g(V,\phi X)\phi U\} + 2(f_1 - f_3)g(U,\phi V)\phi X.$$
(39)

As M is invariant, $U \in \Gamma(T^{\perp}M)$, we have

$$g(X, \phi U) = -g(\phi X, U) = g(\phi V, X) = 0$$
 (40)

for any $X \in \Gamma(TM)$. Using (40) in (39), we have

$$\stackrel{*}{\bar{R}}(U,V)X = \{2f_2 + 2(f_1 - f_3)\}g(U,\phi V)\phi X, \tag{41}$$

which is tangent as ϕX is tangent. This proves the proposition.

Proposition 6.5. Let M be a connected submanifold of $\overline{M}^{2n+1}(f_1, f_2, f_3)$ with respect to $\overset{*}{\nabla}$. If $\{3f_2 + 2(f_1 - f_3) + (f_1 - f_3)^2\}(p) \neq 0$ for each $p \in M$ and $T^{\perp}M$ is invariant under the action of $\overset{*}{\overline{R}}(U, V)$, $U, V \in \Gamma(T^{\perp}M)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 6.2, just considering that $\stackrel{*}{\bar{R}}(U,V)U$ is normal for any $U,V\in\Gamma(T^{\perp}M)$.

Acknowledgement

The second author (P. Mandal) gratefully acknowledges to the CSIR(File No.:09/025(0221)/2017-EMR-I), Govt. of India for financial assistance.

References

- N. S. Agashe and M. R. Chafle, A semisymmetric non-metric connection on Riemannian manifolds, Indian J. Pure Appl., 23(1992), 399-409.
- [2] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14(2004), 157-183.
- [3] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian-space-forms, Taiwanese J. Math., 13(2009), 923-941.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer-Verlag, 509(1976).
- [5] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ. Co., Dordrecht, Holland, (1986).
- [6] A. Bejancu, Schouten-van Kampen and Vranceanu connections on Foliated manifolds, Anale Stintifice Ale Universitati. "AL. I. CUZA" IASI, LII(2006), 37-60.
- [7] A. Friedmann and J. A. Schouten, Über die geometric derhalbsymmetrischen Übertragung, Math. Zeitscr., 21(1924), 211-223.
- [8] J. T. Cho, Symmetries in contact geometry, Proc. of the twelfth Int. Workshop on Diff. Geom., 12(2008), 143-159.
- [9] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
- [10] S. K. Hui, M. Atçeken and P. Mandal, Non-existence of contact CR-warped product semi-slant submanifolds in generalized sasakian-space-forms, Bull. Cal. Math. Soc., 109(4)(2017), 249-262.
- [11] S. K. Hui and D. Chakraborty, Generalized Sasakian-space-forms and Ricci almost solitons with a conformal Killing vector field, New Trends in Math. Sci., 4(2016), 263-269.
- [12] S. K. Hui, R. S. Lemence and D. Chakraborty, Ricci solitons on three dimensional generalized Sasakian-space-forms, Tensor N. S., 76(2015), 75-83.
- [13] S. K. Hui and D. G. Prakasha, On the C-Bochner curvature tensor of generalized Sasakian-space-forms, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, Springer, 85(3)(2015), 401-405.

- [14] S. K. Hui, D. G. Prakasha and V. Chavan, On generalized ϕ -recurrent generalized Sasakian-space-forms, Thai J. Math., 15(2017), 323-332.
- [15] S. K. Hui and A. Sarkar, On the W2-curvature tensor of generalized Sasakian-space-forms, Math. Pannonica, 23(1)(2012), 113-124.
- [16] S. K. Hui, S. Uddin, A. H. Alkhaldi and P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, Int. J. of Geom. Methods in Modern Phys., 15(2018), 1850149 (21 pages), DOI: 10.1142/S0219887818501499.
- [17] S. K. Hui, S. Uddin and D. Chakraborty, Generalized Sasakian-space-forms whose metric is η -Ricci almost solitons, Diff. Geom. and Dynamical Systems, 19(2017), 45-55.
- [18] S. Kishor, P. Verma and P. K. Gupt, On W₉-curvature tensor of generalized Sasakian-space-forms, Int. J. of Math. Appl., 5(2017), 103-112.
- [19] Z. Olszak, The Schouten-van Kampen affine connection adapted to an almost(para) contact metric structure, Publ. De'L Ins. Math., 94(108)(2013), 31-42.
- [20] J. A. Schouten and E. R. Van Kampen, Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde, Math. Ann., 103(1930), 752-783.
- [21] A. A. Shaikh and S. K. Hui, On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric connection, Scientia, series A: Math. Sciences, 20(2010), 73-80.
- [22] A. A. Shaikh and S. K. Hui, On φ-symmetric generalized Sasakian-space-form admitting semisymmetric metric connection, Tensor N. S., 74(2013), 265-274.
- [23] A. A. Shaikh, S. K. Hui and D. Chakraborty, A note on Ricci solitons on generalized Sasakian-space-forms, Tensor N. S., 76(2015), 135-143.
- [24] S. Sular and C. Özgur, Generalized Sasakian space forms with semisymmetric non-metric connections, Proc. of the Estonian Academy of Sci., 60(4)(2011), 251257.
- [25] N. Tanaka, On non-degenerate real hypersurfaces graded Lie Algebras and Cartan connections, Japan J. Math., 2(1976), 131-190.
- [26] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314(1989), 349-379.
- [27] G. Vrănceanu, Sur quelques points de la theorie des espaces non holonomes, Bull. Fac. St. Cernauti, 5(1931), 177-205.
- [28] S. M. Webster, Pseudo Hermitian structures on a real hypersurface, J. Diff. Geom., 13(1978), 25-41.
- [29] K. Yano, On semisymmetric metric connections, Resv. Roumaine Math. Press Apple., 15(1970), 1579-1586.
- [30] K. Yano and M. Kon, Structures on manifolds, World Sci. Publ. Co., (1984).