Submanifolds of Generalized Sasakian-space-forms with Respect to Certain Connections

Shyamal Kumar Hui ${ }^{1}$, Pradip Mandal ${ }^{1}$ and Shyam Kishor ${ }^{2, *}$
1 Department of Mathematics, The University of Burdwan, Burdwan, West Bengal, India.
2 Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.

Abstract

The present paper deals with some results of submanifolds of generalized Sasakian-space-forms in [3] with respect to semisymmetric metric connection, semisymmetric non-metric connection, Schouten-van Kampen connection and Tanakawebster connection.

MSC: $\quad 53 \mathrm{C} 15,53 \mathrm{C} 40$. Keywords: Generalized Sasakian-space-forms, Semisymmetric metric connection, Semisymmetric non-metric connection, Schoutenvan Kampen Connection, Tanaka-Webster connection. (c) JS Publication.

Accepted on: 01.05.2018

1. Introduction

As a generalization of Sasakian-space-form, Alegre [2] introduced the notion of generalized Sasakian-space-form as that an almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$ whose curvature tensor \bar{R} of \bar{M} satisfies

$$
\begin{align*}
\bar{R}(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \tag{1}\\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

for all vector fields X, Y, Z on \bar{M} and f_{1}, f_{2}, f_{3} are certain smooth functions on \bar{M}. Such a manifold of dimension (2n+1), $n>1$ (the condition $n>1$ is assumed throughout the paper), is denoted by $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ [2]. Many authors studied this space form with different aspects. For this, we may refer ([11-15, 17, 18, 23]). It reduces to Sasakian-space-form if $f_{1}=\frac{c+3}{4}$, $f_{2}=f_{3}=\frac{c-1}{4}$ [2]. After introducing the semisymmetric linear connection by Friedman and Schouten [7], Hayden [9] gave the idea of metric connection with torsion on a Riemannian manifold. Later, Yano [29] and many others (see, [21, 22, 24] and references therein) studied semisymmetric metric connection in different context. The idea of semisymmetric non-metric connection was introduced by Agashe and Chafle [1]. The Schouten-van Kampen connection introduced for the study of non-holomorphic manifolds ([20, 27]). In 2006, Bejancu [6] studied Schouten-van Kampen connection on foliated manifolds. Recently Olszak [19] studied Schouten-van Kampen connection on almost(para) contact metric structure. The TanakaWebster connection [25, 28] is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-manifold. Tanno [26] defined the Tanaka-Webster connection for contact metric manifolds. The submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ are

[^0]studied in [3, 10, 16]. In [3], Alegre and Carriazo studied submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to Levi-Civita connection $\bar{\nabla}$. The present paper deals with study of such submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to semisymmetric metric connection, semisymmetric non-metric connection, Schouten-van Kampen connection and Tanaka-webster connection respectively.

2. Preliminaries

In an almost contact metric manifold $\bar{M}(\phi, \xi, \eta, g)$, we have [4]

$$
\begin{align*}
\phi^{2}(X) & =-X+\eta(X) \xi, \quad \phi \xi=0 \tag{2}\\
\eta(\xi) & =1, \quad g(X, \xi)=\eta(X), \quad \eta(\phi X)=0 \tag{3}\\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{4}\\
g(\phi X, Y) & =-g(X, \phi Y) \tag{5}
\end{align*}
$$

In $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$, we have [2]

$$
\begin{align*}
\left(\bar{\nabla}_{X} \phi\right)(Y) & =\left(f_{1}-f_{3}\right)[g(X, Y) \xi-\eta(Y) X], \tag{6}\\
\bar{\nabla}_{X} \xi & =-\left(f_{1}-f_{3}\right) \phi X, \tag{7}
\end{align*}
$$

where $\bar{\nabla}$ is the Levi-Civita connection of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$. Let M be a submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$. If ∇ and ∇^{\perp} are the induced connections on the tangent bundle $T M$ and the normal bundle $T^{\perp} M$ of M, respectively then the Gauss and Weingarten formulae are given by [30]

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{8}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, where h and A_{V} are second fundamental form and shape operator (corresponding to the normal vector field V), respectively and they are related by $g(h(X, Y), V)=g\left(A_{V} X, Y\right)$. For any $X \in \Gamma(T M)$, we may write

$$
\begin{equation*}
\phi X=T X+F X \tag{9}
\end{equation*}
$$

where $T X$ is the tangential component and $F X$ is the normal component of ϕX. In particular, if $F=0$ then M is invariant [5] and here $\phi(T M) \subset T M$. Also if $T=0$ then M is anti-invariant [5] and here $\phi(T M) \subset T^{\perp} M$. Also here we assume that ξ is tangent to M. The semisymmetric metric connection $\tilde{\bar{\nabla}}$ and the Riemannian connection $\bar{\nabla}$ on $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ are related by [29]

$$
\begin{equation*}
\tilde{\bar{\nabla}}_{X} Y=\bar{\nabla}_{X} Y+\eta(Y) X-g(X, Y) \xi \tag{10}
\end{equation*}
$$

The Riemannian curvature tensor $\widetilde{\widetilde{R}}$ of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\widetilde{\bar{\nabla}}$ is

$$
\begin{align*}
\widetilde{\widetilde{R}}(X, Y) Z & =\left(f_{1}-1\right)\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X \tag{11}\\
& +2 g(X, \phi Y) \phi Z\}+\left(f_{3}-1\right)\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi\}+\left(f_{1}-f_{3}\right)\{g(X, \phi Z) Y-g(Y, \phi Z) X+g(Y, Z) \phi X-g(X, Z) \phi Y\} .
\end{align*}
$$

The semisymmetric non-metric connection $\bar{\nabla}^{\prime}$ and the Riemannian connection $\bar{\nabla}$ on $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ are related by [1]

$$
\begin{equation*}
\bar{\nabla}_{X}^{\prime} Y=\bar{\nabla}_{X} Y+\eta(Y) X \tag{12}
\end{equation*}
$$

The Riemannian curvature tensor \bar{R}^{\prime} of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$ is

$$
\begin{aligned}
\bar{R}^{\prime}(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+f_{3}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}+\left(f_{1}-f_{3}\right)[g(X, \phi Z) Y-g(Y, \phi Z) X] \\
& +\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y .
\end{aligned}
$$

The Schouten-van Kampen connection $\hat{\bar{\nabla}}$ and the Riemannian connection $\bar{\nabla}$ of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ are related by [19]

$$
\begin{equation*}
\hat{\bar{\nabla}}_{X} Y=\bar{\nabla}_{X} Y+\left(f_{1}-f_{3}\right) \eta(Y) \phi X-\left(f_{1}-f_{3}\right) g(\phi X, Y) \xi . \tag{14}
\end{equation*}
$$

The Riemannian curvature tensor $\hat{\bar{R}}$ of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\bar{\nabla}}$ is

$$
\begin{align*}
\hat{\bar{R}}(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y \tag{15}\\
& -g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}+\left(f_{1}-f_{3}\right)^{2}[g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X]
\end{align*}
$$

where $\left(f_{1}-f_{3}\right)$ is constant function. The Tanaka-Webster connection $\stackrel{*}{\nabla}$ and the Riemannian connection $\bar{\nabla}$ of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ are related by [8]

$$
\begin{equation*}
\stackrel{*}{\nabla}_{X} Y=\bar{\nabla}_{X} Y+\eta(X) \phi Y+\left(f_{1}-f_{3}\right) \eta(Y) \phi X-\left(f_{1}-f_{3}\right) g(\phi X, Y) \xi . \tag{16}
\end{equation*}
$$

The Riemannian curvature tensor $\stackrel{*}{\bar{R}}$ of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$ is

$$
\begin{align*}
\stackrel{*}{\bar{R}}(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \tag{17}\\
& +\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \\
& +\left(f_{1}-f_{3}\right)^{2}[g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X]+2\left(f_{1}-f_{3}\right) g(X, \phi Y) \phi Z,
\end{align*}
$$

where $\left(f_{1}-f_{3}\right)$ is constant function.

3. Submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with $\widetilde{\bar{\nabla}}$

Lemma 3.1. If M is invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$, then $\tilde{\widetilde{R}}(X, Y) Z$ is tangent to M, for any $X, Y, Z \in \Gamma(T M)$.

Proof. If M is invariant then from (11) we say that $\widetilde{\widetilde{R}}(X, Y) Z$ is tangent to M because ϕX and ϕY are tangent to M. This proves the lemma.

Lemma 3.2. If M is anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$, then

$$
\begin{align*}
\tan (\widetilde{\bar{R}}(X, Y) Z) & =\left(f_{1}-1\right)\{g(Y, Z) X-g(X, Z) Y\}+\left(f_{3}-1\right)\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{18}\\
\operatorname{nor}(\widetilde{\bar{R}}(X, Y) Z) & =\left(f_{1}-f_{3}\right)\{g(Y, Z) \phi X-g(X, Z) \phi Y\} \tag{19}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$.
Proof. Since M is anti-invariant, we have $\phi X, \phi Y \in \Gamma\left(T^{\perp} M\right)$. Then equating tangent and normal component of (11) we get the result.

Lemma 3.3. If $f_{1}(p)=f_{3}(p)$ and M is either invariant or anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$, then $\tilde{\widetilde{R}}(X, Y) Z$ is tangent to M for any $X, Y, Z \in \Gamma(T M)$.

Proof. Using Lemma 3.1 and Lemma 3.2 we get the result.
Lemma 3.4. If M is invariant or anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\widetilde{\bar{\nabla}}$, then $\tilde{\bar{R}}(X, Y) V$ is normal to M, for any $X, Y, \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Proof. If M is invariant from (11) we have $\widetilde{\widetilde{R}}(X, Y) V$ normal to M, and if M is anti-invariant then $\widetilde{\bar{R}}(X, Y) V=0$ i.e. $\widetilde{\bar{R}}(X, Y) V$ normal to M for any $X, Y, \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Lemma 3.5. let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\widetilde{\bar{\nabla}}$. If $f_{2}(p) \neq 0, f_{1}(p)=f_{3}(p)$ and TM is invariant under the action of $\widetilde{\bar{R}}(X, Y), X, Y \in \Gamma(T M)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(T M)$, we have from (11) that

$$
\begin{align*}
\widetilde{\widetilde{R}}(X, Y) X & =\left(f_{1}-1\right)\{g(Y, X) X-g(X, X) Y\}+f_{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X+2 g(X, \phi Y) \phi X\} \\
& +\left(f_{3}-1\right)\{\eta(X) \eta(X) Y-\eta(Y) \eta(X) X+g(X, X) \eta(Y) \xi-g(Y, X) \eta(X) \xi\} \\
& +\left(f_{1}-f_{3}\right)\{g(\phi Y, X) X-g(\phi X, X) Y+g(Y, X) \phi X-g(X, X) \phi Y\} . \tag{20}
\end{align*}
$$

Note that $\widetilde{R}(X, Y) X$ should be tangent if $\left[-3 f_{2} g(Y, \phi X) \phi X+\left(f_{1}-f_{3}\right)\{g(Y, X) \phi X-g(X, X) \phi Y\}\right]$ is tangent. Since $f_{2}(p) \neq 0$, $f_{1}(p)=f_{3}(p)$ at any point p then by similar way of proof of Lemma 3.2 of [3], we can prove that either M is invariant or anti-invariant. This proves the Lemma.

Remark 3.6. let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$. If $f_{1}(p) \neq f_{3}(p)$ and TM is invariant under the action of $\widetilde{\bar{R}}(X, Y), X, Y \in \Gamma(T M)$, then M is invariant.

Theorem 3.7. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\widetilde{\bar{\nabla}}$. If $f_{2}(p) \neq 0, f_{1}(p)=f_{3}(p)$ then M is either invariant or anti-invariant if and only if $T M$ is invariant under the action of $\widetilde{\bar{R}}(X, Y)$ for all $X, Y \in \Gamma(T M)$.

Proof. It follows from Lemma 3.3 and Lemma 3.5.
Proposition 3.8. Let M be a submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\tilde{\bar{\nabla}}$. If M is invariant, then $T M$ is invariant under the action of $\widetilde{\widetilde{R}}(U, V)$ for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

Proof. Replacing X, Y, Z by U, V, X in (11), we get

$$
\begin{align*}
\widetilde{R}(U, V) X & =\left(f_{1}-1\right)\{g(V, X) U-g(U, X) V\}+f_{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U+2 g(U, \phi V) \phi X\} \tag{21}\\
& +\left(f_{3}-1\right)\{\eta(U) \eta(X) V-\eta(V) \eta(X) U+g(U, X) \eta(V) \xi-g(V, X) \eta(U) \xi\} \\
& +\left(f_{1}-f_{3}\right)\{g(\phi V, X) U-g(\phi U, X) V+g(V, X) \phi U-g(U, X) \phi V\} .
\end{align*}
$$

As M is invariant, $U, V \in \Gamma\left(T^{\perp} M\right)$, we have

$$
\begin{equation*}
g(X, \phi U)=-g(\phi X, U)=g(\phi V, X)=0 \tag{22}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. Using (22) in (21), we have

$$
\begin{equation*}
\widetilde{\widetilde{R}}(U, V) X=2 f_{2} g(U, \phi V) \phi X, \tag{23}
\end{equation*}
$$

which is tangent as ϕX is tangent. This proves the proposition.
Proposition 3.9. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\widetilde{\bar{\nabla}}$. If $f_{2}(p) \neq 0, f_{1}(p)=f_{3}(p)$ for each $p \in M$ and $T^{\perp} M$ is invariant under the action of $\widetilde{\bar{R}}(U, V), U, V \in \Gamma\left(T^{\perp} M\right)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as it is an Lemma 3.4, just assuming that $\widetilde{\bar{R}}(U, V) U$ is normal for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

4. Submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with $\bar{\nabla}^{\prime}$

Lemma 4.1. If M is either invariant or anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$, then $\bar{R}^{\prime}(X, Y) Z$ is tangent to M and $\bar{R}^{\prime}(X, Y) V$ normal to M for any $X, Y, Z \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Proof. If M is invariant then from (13) we say that $\bar{R}^{\prime}(X, Y) Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$
\begin{equation*}
g(X, \phi Z)=g(Y, \phi Z)=g(\phi X, Z)=g(\phi Y, Z)=0 . \tag{24}
\end{equation*}
$$

From (13) and (24) we have

$$
\begin{align*}
\bar{R}^{\prime}(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{25}\\
& +[\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y]
\end{align*}
$$

which is tangent. If M is invariant then from (13), it follows that $\bar{R}^{\prime}(X, Y) V$ is normal to M, and if M is anti-invariant then $\bar{R}^{\prime}(X, Y) V=0$ i.e. $\bar{R}^{\prime}(X, Y) V$ is normal to M for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$. This proves the Lemma.

Lemma 4.2. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$. If $f_{2}(p) \neq 0$ for each $p \in M$ and $T M$ is invariant under the action of $\bar{R}^{\prime}(X, Y), X, Y \in \Gamma(T M)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(T M)$, we have from (13) that

$$
\begin{equation*}
\bar{R}^{\prime}(X, Y) X=f_{1}\{g(Y, X) X-g(X, X) Y\}+f_{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X+2 g(X, \phi Y) \phi X\} \tag{26}
\end{equation*}
$$

$$
\begin{aligned}
& +f_{3}\{\eta(X) \eta(X) Y-\eta(Y) \eta(X) X+g(X, X) \eta(Y) \xi-g(Y, X) \eta(X) \xi\} \\
& -\left(f_{1}-f_{3}\right) g(\phi X, Y) X+\{\eta(Y) \eta(Z) X-\eta(X) \eta(Z) Y\}
\end{aligned}
$$

Note that $\bar{R}^{\prime}(X, Y) X$ should be tangent if $3 f_{2}(p) g(Y, \phi X) \phi X$ is tangent. Since $f_{2}(p) \neq 0$ for each $p \in M$, as similar as proof of Lemma 3.2 of [3], we may conclude that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 4.3. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$. If $f_{2}(p) \neq 0$ for each $p \in M$, then M is either invariant or anti-invariant if and only if $T M$ is invariant under the action of $\bar{R}^{\prime}(X, Y)$ for all $X, Y \in \Gamma(T M)$.

Proof. It is obvious from Lemma 4.1 and Lemma 4.2.
Proposition 4.4. Let M be a submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$. If M is invariant, then $T M$ is invariant under the action of $\bar{R}^{\prime}(U, V)$ for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

Proof. Replacing X, Y, Z by U, V, X in (13), we get

$$
\begin{align*}
\bar{R}^{\prime}(U, V) X & =f_{1}\{g(V, X) U-g(U, X) V\}+f_{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U+2 g(U, \phi V) \phi X\} \tag{27}\\
& +f_{3}\{\eta(U) \eta(X) V-\eta(V) \eta(X) U+g(U, X) \eta(V) \xi-g(V, X) \eta(U) \xi\} \\
& +\left(f_{1}-f_{3}\right)\{g(U, \phi X) V-g(V, \phi X) U\}+\{\eta(V) \eta(X) U-\eta(U) \eta(X) V\} .
\end{align*}
$$

As M is invariant, $U \in \Gamma\left(T^{\perp} M\right)$, we have

$$
\begin{equation*}
g(X, \phi U)=-g(\phi X, U)=g(\phi V, X)=0 \tag{28}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. Using (28) in (27), we have

$$
\begin{equation*}
\bar{R}^{\prime}(U, V) X=2 f_{2} g(U, \phi V) \phi X \tag{29}
\end{equation*}
$$

which is tangent as ϕX is tangent. This proves the proposition.
Proposition 4.5. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\bar{\nabla}^{\prime}$. If $f_{2}(p) \neq 0$ for each $p \in M$ and $T^{\perp} M$ is invariant under the action of $\bar{R}(U, V), U, V \in \Gamma(T M)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 4.2, just imposing that $\bar{R}^{\prime}(U, V) U$ is normal for any $U, V \in \Gamma(T M)$.

5. Submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with $\hat{\nabla}$

Lemma 5.1. If M is either invariant or anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\bar{\nabla}}$, then $\hat{\bar{R}}(X, Y) Z$ is tangent to M and $\hat{\bar{R}}(X, Y) V$ is normal to M for any $X, Y, Z \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Proof. If M is invariant then from (15) we say that $\hat{\bar{R}}(X, Y) Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$
\begin{equation*}
g(X, \phi Z)=g(Y, \phi Z)=g(\phi X, Z)=g(\phi Y, Z)=0 . \tag{30}
\end{equation*}
$$

From (15) and (30) we have

$$
\begin{equation*}
\hat{\bar{R}}(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{31}
\end{equation*}
$$

which is tangent. If M is invariant from (15) we have $\hat{\bar{R}}(X, Y) V$ is normal to M, and if M is anti-invariant then $\hat{\bar{R}}(X, Y) V=0$ i.e. $\hat{\bar{R}}(X, Y) V$ is normal to M for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$. This proves the Lemma.

Lemma 5.2. let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\nabla}$. If $3 f_{2} \neq\left(f_{1}-f_{3}\right)^{2}$ on M and $T M$ is invariant under the action of $\hat{\bar{R}}(X, Y), X, Y \in \Gamma(T M)$, then M is either invariant or anti-invariant.

Proof. For $X, Y \in \Gamma(T M)$, we have from (15) that

$$
\begin{align*}
\hat{\bar{R}}(X, Y) X & =f_{1}\{g(Y, X) X-g(X, X) Y\}+f_{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X+2 g(X, \phi Y) \phi X\} \tag{32}\\
& +\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(X) Y-\eta(Y) \eta(X) X+g(X, X) \eta(Y) \xi-g(Y, X) \eta(X) \xi\} \\
& +\left(f_{1}-f_{3}\right)^{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X\} .
\end{align*}
$$

Now, we see that $\hat{\bar{R}}(X, Y) X$ should be tangent if $\left\{3 f_{2}+\left(f_{1}-f_{3}\right)^{2}\right\} g(Y, \phi X) \phi X$ is tangent. Since $3 f_{2} \neq-\left(f_{1}-f_{3}\right)^{2}$ then in similar way of proof of Lemma 3.2 of [3] we may conclude that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 5.3. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\bar{\nabla}}$. If $3 f_{2} \neq-\left(f_{1}-f_{3}\right)^{2}$, then M is either invariant or anti-invariant if and only if $T M$ is invariant under the action of $\hat{\bar{R}}(X, Y)$ for all $X, Y \in \Gamma(T M)$.

Proof. Using Lemma 5.1 and Lemma 5.2, we get the result.

Proposition 5.4. Let M be a submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\bar{\nabla}}$. If M is invariant, then $T M$ is invariant under the action of $\hat{\bar{R}}(U, V)$ for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

Proof. Replacing X, Y, Z by U, V, X in (15), we get

$$
\begin{align*}
\hat{\bar{R}}(U, V) X & =f_{1}\{g(V, X) U-g(U, X) V\}+f_{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U+2 g(U, \phi V) \phi X\} \tag{33}\\
& +\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(U) \eta(X) V-\eta(V) \eta(X) U+g(U, X) \eta(V) \xi-g(V, X) \eta(U) \xi\} \\
& +\left(f_{1}-f_{3}\right)^{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U\} .
\end{align*}
$$

As M is invariant, $U \in \Gamma\left(T^{\perp} M\right)$, we have

$$
\begin{equation*}
g(X, \phi U)=-g(\phi X, U)=g(\phi V, X)=0 \tag{34}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. Using (34) in (33), we have

$$
\begin{equation*}
\hat{\bar{R}}(U, V) X=2 f_{2} g(U, \phi V) \phi X \tag{35}
\end{equation*}
$$

which is tangent as ϕX is tangent. This proves the proposition.
Proposition 5.5. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\hat{\bar{\nabla}}$. If $3 f_{2} \neq-\left(f_{1}-f_{3}\right)^{2}$ on M and $T^{\perp} M$ is invariant under the action of $\hat{\bar{R}}(U, V), U, V \in \Gamma\left(T^{\perp} M\right)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 5.2, just imposing that $\hat{\bar{R}}(U, V) U$ is normal for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

6. Submanifolds of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with $\stackrel{*}{\nabla}$

Lemma 6.1. If M is either invariant or anti-invariant submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$, then $\stackrel{*}{\bar{R}}(X, Y) Z$ is tangent to M and $\stackrel{*}{\bar{R}}(X, Y) V$ is normal to M for any $X, Y, Z \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Proof. If M is invariant then from (17) we say that $\stackrel{*}{\bar{R}}(X, Y) Z$ is tangent to M because ϕX and ϕY are tangent to M. If M is anti-invariant then

$$
\begin{equation*}
g(X, \phi Z)=g(Y, \phi Z)=g(\phi X, Z)=g(\phi Y, Z)=0 \tag{36}
\end{equation*}
$$

From (17) and (36) we have

$$
\begin{equation*}
\stackrel{*}{\bar{R}}(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \tag{37}
\end{equation*}
$$

which is tangent. If M is invariant from (17) we have $\stackrel{*}{\bar{R}}(X, Y) V$ normal to M and if M is anti-invariant then $\stackrel{*}{\bar{R}}(X, Y) V=0$ i.e. $\stackrel{*}{\bar{R}}(X, Y) V$ normal to M for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$. This proves the Lemma.

Lemma 6.2. let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If $\left\{3 f_{2}+2\left(f_{1}-f_{3}\right)+\left(f_{1}-f_{3}\right)^{2}\right\}(p) \neq 0$ for each $p \in M$ and $T M$ is invariant under the action of $\stackrel{*}{\bar{R}}(X, Y), X, Y \in \Gamma(T M)$, then M is either invariant or antiinvariant.

Proof. For $X, Y \in \Gamma(T M)$, we have from (17) that

$$
\begin{align*}
\stackrel{*}{\bar{R}}(X, Y) X & =f_{1}\{g(Y, X) X-g(X, X) Y\}+f_{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X+2 g(X, \phi Y) \phi X\} \tag{38}\\
& +\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(X) \eta(X) Y-\eta(Y) \eta(X) X+g(X, X) \eta(Y) \xi-g(Y, X) \eta(X) \xi\} \\
& +\left(f_{1}-f_{3}\right)^{2}\{g(X, \phi X) \phi Y-g(Y, \phi X) \phi X\}+2\left(f_{1}-f_{3}\right) g(X, \phi Y) \phi X .
\end{align*}
$$

Now we see that $\stackrel{*}{\bar{R}}(X, Y) X$ should be tangent if $\left\{3 f_{2}+2\left(f_{1}-f_{3}\right)+\left(f_{1}-f_{3}\right)^{2}\right\}(p) g(Y, \phi X) \phi X$ is tangent. Since $\left\{3 f_{2}+\right.$ $\left.2\left(f_{1}-f_{3}\right)+\left(f_{1}-f_{3}\right)^{2}\right\}(p) \neq 0$ then by similar way of proof of Lemma 3.2 of [3] we can proved that either M is invariant or anti-invariant. This proves the Lemma.

Theorem 6.3. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If $\left\{3 f_{2}+2\left(f_{1}-f_{3}\right)+\left(f_{1}-\right.\right.$ $\left.\left.f_{3}\right)^{2}\right\}(p) \neq 0$, then M is either invariant or anti-invariant if and only if TM is invariant under the action of $\stackrel{*}{\bar{R}}(X, Y)$ for all $X, Y \in \Gamma(T M)$.

Proof. It follows from Lemma 6.1 and Lemma 6.2.
Proposition 6.4. Let M be a submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If M is invariant, then $T M$ is invariant under the action of $\stackrel{*}{\bar{R}}(U, V)$ for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

Proof. Replacing X, Y, Z by U, V, X in (17), we get

$$
\begin{align*}
\stackrel{*}{\bar{R}}(U, V) X & =f_{1}\{g(V, X) U-g(U, X) V\}+f_{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U+2 g(U, \phi V) \phi X\} \tag{39}\\
& +\left\{f_{3}+\left(f_{1}-f_{3}\right)^{2}\right\}\{\eta(U) \eta(X) V-\eta(V) \eta(X) U+g(U, X) \eta(V) \xi-g(V, X) \eta(U) \xi\} \\
& +\left(f_{1}-f_{3}\right)^{2}\{g(U, \phi X) \phi V-g(V, \phi X) \phi U\}+2\left(f_{1}-f_{3}\right) g(U, \phi V) \phi X .
\end{align*}
$$

As M is invariant, $U \in \Gamma\left(T^{\perp} M\right)$, we have

$$
\begin{equation*}
g(X, \phi U)=-g(\phi X, U)=g(\phi V, X)=0 \tag{40}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. Using (40) in (39), we have

$$
\begin{equation*}
\stackrel{*}{\bar{R}}(U, V) X=\left\{2 f_{2}+2\left(f_{1}-f_{3}\right)\right\} g(U, \phi V) \phi X, \tag{41}
\end{equation*}
$$

which is tangent as ϕX is tangent. This proves the proposition.
Proposition 6.5. Let M be a connected submanifold of $\bar{M}^{2 n+1}\left(f_{1}, f_{2}, f_{3}\right)$ with respect to $\stackrel{*}{\nabla}$. If $\left\{3 f_{2}+2\left(f_{1}-f_{3}\right)+\left(f_{1}-\right.\right.$ $\left.\left.f_{3}\right)^{2}\right\}(p) \neq 0$ for each $p \in M$ and $T^{\perp} M$ is invariant under the action of $\stackrel{*}{\bar{R}}(U, V), U, V \in \Gamma\left(T^{\perp} M\right)$, then M is either invariant or anti-invariant.

Proof. The proof is similar as the proof of Lemma 6.2, just considering that $\stackrel{*}{\bar{R}}(U, V) U$ is normal for any $U, V \in \Gamma\left(T^{\perp} M\right)$.

Acknowledgement

The second author (P. Mandal) gratefully acknowledges to the CSIR(File No.:09/025(0221)/2017-EMR-I), Govt. of India for financial assistance.

References

[1] N. S. Agashe and M. R. Chafle, A semisymmetric non-metric connection on Riemannian manifolds, Indian J. Pure Appl., 23(1992), 399-409.
[2] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14(2004), 157-183.
[3] P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian-space-forms, Taiwanese J. Math., 13(2009), 923-941.
[4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer-Verlag, 509(1976).
[5] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ. Co., Dordrecht, Holland, (1986).
[6] A. Bejancu, Schouten-van Kampen and Vranceanu connections on Foliated manifolds, Anale Stintifice Ale Universitati. "AL. I. CUZA" IASI, LII(2006), 37-60.
[7] A. Friedmann and J. A. Schouten, Über die geometric derhalbsymmetrischen Übertragung, Math. Zeitscr., 21(1924), 211-223.
[8] J. T. Cho, Symmetries in contact geometry, Proc. of the twelfth Int. Workshop on Diff. Geom., 12(2008), 143-159.
[9] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc., 34(1932), 27-50.
[10] S. K. Hui, M. Atçeken and P. Mandal, Non-existence of contact CR-warped product semi-slant submanifolds in generalized sasakian-space-forms, Bull. Cal. Math. Soc., 109(4)(2017), 249-262.
[11] S. K. Hui and D. Chakraborty, Generalized Sasakian-space-forms and Ricci almost solitons with a conformal Killing vector field, New Trends in Math. Sci., 4(2016), 263-269.
[12] S. K. Hui, R. S. Lemence and D. Chakraborty, Ricci solitons on three dimensional generalized Sasakian-space-forms, Tensor N. S., 76(2015), 75-83.
[13] S. K. Hui and D. G. Prakasha, On the C-Bochner curvature tensor of generalized Sasakian-space-forms, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, Springer, 85(3)(2015), 401-405.
[14] S. K. Hui, D. G. Prakasha and V. Chavan, On generalized ϕ-recurrent generalized Sasakian-space-forms, Thai J. Math., 15(2017), 323-332.
[15] S. K. Hui and A. Sarkar, On the W_{2}-curvature tensor of generalized Sasakian-space-forms, Math. Pannonica, 23(1)(2012), 113-124.
[16] S. K. Hui, S. Uddin, A. H. Alkhaldi and P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, Int. J. of Geom. Methods in Modern Phys., 15(2018), 1850149 (21 pages), DOI: 10.1142/S0219887818501499.
[17] S. K. Hui, S. Uddin and D. Chakraborty, Generalized Sasakian-space-forms whose metric is η-Ricci almost solitons, Diff. Geom. and Dynamical Systems, 19(2017), 45-55.
[18] S. Kishor, P. Verma and P. K. Gupt, On W_{9}-curvature tensor of generalized Sasakian-space-forms, Int. J. of Math. Appl., 5(2017), 103-112.
[19] Z. Olszak, The Schouten-van Kampen affine connection adapted to an almost(para) contact metric structure, Publ. De'L Ins. Math., 94(108)(2013), 31-42.
[20] J. A. Schouten and E. R. Van Kampen, Zur Einbettungs-und Krümmungstheorie nichtholonomer Gebilde, Math. Ann., 103(1930), 752-783.
[21] A. A. Shaikh and S. K. Hui, On pseudo cyclic Ricci symmetric manifolds admitting semisymmetric connection, Scientia, series A : Math. Sciences, 20(2010), 73-80.
[22] A. A. Shaikh and S. K. Hui, On ϕ-symmetric generalized Sasakian-space-form admitting semisymmetric metric connection, Tensor N. S., 74(2013), 265-274.
[23] A. A. Shaikh, S. K. Hui and D. Chakraborty, A note on Ricci solitons on generalized Sasakian-space-forms, Tensor N. S., 76(2015), 135-143.
[24] S. Sular and C. Özgur, Generalized Sasakian space forms with semisymmetric non-metric connections, Proc. of the Estonian Academy of Sci., 60(4)(2011), 251257.
[25] N. Tanaka, On non-degenerate real hypersurfaces graded Lie Algebras and Cartan connections, Japan J. Math., 2(1976), 131-190.
[26] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc., 314(1989), 349-379.
[27] G. Vrănceanu, Sur quelques points de la theorie des espaces non holonomes, Bull. Fac. St. Cernauti, 5(1931), 177-205.
[28] S. M. Webster, Pseudo Hermitian structures on a real hypersurface, J. Diff. Geom., 13(1978), 25-41.
[29] K. Yano, On semisymmetric metric connections, Resv. Roumaine Math. Press Apple., 15(1970), 1579-1586.
[30] K. Yano and M. Kon, Structures on manifolds, World Sci. Publ. Co., (1984).

[^0]: * E-mail: skishormath@gmail.com

