
Int. J. Math. And Appl., 6(3)(2018), 307–314

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Stability of Finite Difference Formula of Implicit Type for

IBVP of Heat Equation

Dhruti B. Joshi1,∗ and A. K. Desai1

1 Department of Mathematics, Government Polytechnic, Himmatnagar, Gujarat, India.

2 Former Head of the Department of Mathematics, School of Sciences, Gujarat University, Ahmedabad, India.

Abstract: In the paper entitled “A Finite Difference Formula of Implicit Type for IBVP of Heat Equation” [2] we have derived a

Finite Difference Formula to get numerical solutions of Initial-Boundary Value Problem of Heat Equation. As, we all

know that only stable Formulas can give Numerical Solutions which are almost close to the Exact Solution. Here in this
paper the stability of the Finite Difference Formula is checked with the help of Eigen Values and using the concept of

Diagonalization of matrix.
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1. Introduction

In our paper entitled “A Finite Difference Formula of Implicit Type for IBVP of Heat Equation” [2], A Finite Difference

Formula of Implicit Type for the numerical solution of Initial-Boundary Value Problem of Heat Equation is derived. In

Numerical Methods for Differential Equations, the growth of round-off errors or small change in initial data which may

cause a large change in final answer from the exact solution becomes responsible for the instability of the formula. In this

paper, in section 2, a brief introduction about the stability of A Finite Difference Formula is carried out. And also an

Initial-Boundary Value Problem of Heat Equation is stated [1, 3]. Moreover, in this section a Finite Difference Formula

is given to calculate the round-off error at each mesh point. In section 3 with the help of Eigen Values and applying the

concept of Diagonalization of a matrix, stability of The Finite Difference Formula derived in [2] is checked and the criteria

for the same is derived. In section 4 an IBVP of Heat Equation is Ilustrated. Also its Numerical Solutions for different

values of r obtained from the Finite Difference Formula developed in [2] are compared with Mathematica Exact values of

its Analytical Solution.

2. Stability

When we solve any finite difference formula and carry out each calculation to a finite number of decimal places, the solution

we actually obtain is not the exact solution but the numerical solution. For example, let us denote the exact solution by

∗ E-mail: dkpatel1888@gmail.com
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u and the numerical solution by N , where u = {ui,j} is exactly as given by the Finite Difference Formula which we are

considering and ui,j is the value of u at the mesh point Pi,j . Moreover, N = {Ni,j} is the truncated series obtained from the

Finite Difference Formula and Ni,j is the value of N at the mesh point Pi,j . Generally a round-off error is calculated at each

mesh point. That is, the round-off error at a point Pi,j is ei,j = ui,j −Ni,j . More specifically, if errors e1,1, e1,2, ..., ei,j , ...

are introduced at the mesh points P1,1, P1,2, ..., Pi,j , ... respectively, and |e1,1|, |e1,2|, ..., |ei,j |, ... are each less than δ,

then the finite difference formula is stable when the maximum value of u−N tends to zero as δ tends to zero [3]. Here, we

consider the Initial-Boundary Value Problem,

∂u

∂t
=
∂2u

∂x2
, 0 ≤ x ≤ l, 0 ≤ t ≤ T (1)

with initial condition,

u(x, 0) = f(x), 0 ≤ x ≤ l

and boundary conditions,

u(0, t) = g0(t), 0 ≤ t ≤ T

u(l, t) = gl(t), 0 ≤ t ≤ T

Here, to get finite difference formula, Taylor Series Expansion is used and the scheme forward in time and centred in space

[1, 3] is considered. Also we use the notations as in [2],

u(x, t) = u(ih, jk)

= ui,j

u(x+ h, t) = u((i+ 1)h, jk)

= ui+1,j

u(x, t+ k) = u(ih, (j + 1)k)

= ui,j+1.

Where, x = ih and t = jk, i = 0, 1, 2, . . . ,m, j = 0, 1, 2, . . . , n. Here, we must note that h is the difference between two

consecutive values of x and k is the difference between two consecutive values of t. So, we must fix the values of h and k

before starting the calculations to get numerical solutions. Therefore, for fixed h and 0 ≤ x ≤ l,

l = mh ⇒ m =
l

h
.

Similarly, for fixed k and 0 ≤ t ≤ T ,

T = nk ⇒ n =
T

k
.

A Finite Difference Formula of Implicit Type for above IBVP of Heat equation, which is derived in [2] is,

[2I + r(M1 +M2)][ui,j+1] = [2I − r(M1 +M2)][ui,j ] + (b1 + b2)

Here, for each i, ui,0 is known from the initial condition and in above Finite Difference Formula taking j = 0, ui,1 is

calculated for each i. In Similar way, once ui,1’s are known, using the Finite Difference Formula we may calculate ui,2 for
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each i by taking j = 1 and simultaneously ui,j are obtained for other values of j. Moreover, in above Finite Difference

Formula for simplicity, we use the notations, ui,j = uj and ui,j+1 = uj+1. Therefore, the above Finite Difference Formula

is rewritten as,

[2I + r(M1 +M2)][uj+1] = [2I − r(M1 +M2)][uj ] + (b1 + b2) (2)

In the above formula (2), I is the Identity Matrix, r = k
h2 , M1 = [M1

ij ] and M2 = [M2
ij ]. Where,

M1
ij =


1 if i = j

−1 if i = 2q, j = 2q − 1

−1 if i = 2q − 1, j = 2q

M2
ij =


1 if i = j

−1 if i = 2q + 1, j = 2q

−1 if i = 2q, j = 2q + 1

q = 1, 2, . . . , m−2
2

; b1 = r[b1ij ], where,

b1ij =


u0,j if i = 1, j = 1

um,j+1 if i = m− 1, j = 1

0 otherwise.

and b2 = r[b2ij ], where,

b2ij =


u0,j+1 if i = 1, j = 1

um,j if i = m− 1, j = 1

0 otherwise

Remark 2.1. Here we must note that the terms containing higher orders of h and k are ignored while deriving (2). Hence

(2) represents the truncated series and therefore gives the numerical solution N .

Now by writing ei,j = ui,j −Ni,j , we can see that ei,j satisfies the Finite Difference Formula,

[2I + r(M1 +M2)][ej+1] = [2I − r(M1 +M2)][ej ]

which is same as (2), but the term b1 + b2 is dropped. The above formula is rewritten as,

[ej+1] =
[2I − r(M1 +M2)]

[2I + r(M1 +M2)]
[ej ]. (3)

which gives the round-off error at each mesh point. In the next section we will use above formula (3) to obtain the criteria

for the stability of the Finite Difference Formula (2).
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3. Stability of the Finite Difference Formula

In (3) let us take

A =
P

Q

where,

P = [2I − r(M1 +M2)]

and

Q = [2I + r(M1 +M2)].

Then,

λA =
λP
λQ

where λA, λP and λQ are eigen values of A, P and Q respectively. Now, if we diagonalize A then the diagonal values in

the diagonal matrix of A are the eigen values. Hence, we can see from (3), [ej+1] = [DA][ej ], where, DA is diagonal matrix

of order m − 1, whose diagonal elements are eigen values of A. Hence, it is observed that round-off error decreases if each

eigen value of A is small. Also according to [3], if max|λA| ≤ 1, then the truncation error decreases and (2) gets stable.

In P and Q, I is identity matrix of order m − 1 and M1 and M2 are square matrices of order m − 1. Here, if we take

M = M1 +M2 = [Mij ] then,

Mij =


2 if i = j

−1 if i = q & j = q + 1

−1 if i = q + 1 & j = q

q = 1, 2, . . . ,m− 1. Which is a Tridiagonal Matrix. According to [3] the eigen values of Tridiagonal Matrix whose elements

in principle diagonal are ‘a’ and elements in the upper and lower diagonal are ‘b’ and ‘c’ respectively are given by,

λk = a + 2
√

bccos

(
kπ

n+ 1

)

k = 1, 2, . . . , n. Hence, eigen values of M are,

λsM = 2 + 2 cos
(πs
m

)
= 4 cos2

( πs
2m

)

s = 1, 2, . . . ,m− 1. This implies,

λsP = 2− 4r cos2
( πs

2m

)
and,

λsQ = 2 + 4r cos2
( πs

2m

)
s = 1, 2, . . . ,m− 1

⇒ λsA =
2− 4r cos2

(
πs
2m

)
2 + 4r cos2

(
πs
2m

)
⇒ λsA =

1− 2r cos2
(
πs
2m

)
1 + 2r cos2

(
πs
2m

)
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s = 1, 2, . . . ,m− 1. Now, as r = k
h2

, r is always positive i.e., r > 0. Multiplying both the sides by 4 cos2
(
πs
2m

)
, we get,

0 < 4r cos2
( πs

2m

)
Also, as −2 < 0, we may write,

−2 < 0 < 4r cos2
( πs

2m

)
Moreover, on adding 1− 2r cos2

(
πs
2m

)
to all the terms, we get,

−
(

1 + 2r cos2
( πs

2m

))
< 1− 2r cos2

( πs
2m

)
< 1 + 2r cos2

( πs
2m

)
And on dividing all the terms by

(
1 + 2r cos2

(
πs
2m

))
, we get,

−1 <
1− 2r cos2

(
πs
2m

)
1 + 2r cos2

(
πs
2m

) < 1

s = 1, 2, . . . ,m− 1. Hence,

−1 < λsA < 1

Therefore we may write,

−1 < max[λsA] < 1.

Hence we may write,

−1 ≤ max[λsA] ≤ 1.

i.e.

max |λsA| ≤ 1

Now, as we have discussed in the beginning of this section, the Finite Difference Formula is stable if max |λsA| is less than or

equal to 1. Hence, according to above discussions, the Finite Difference Formula (2) is stable for all positive values of r.

4. Comparison of Solutions for Different Values of r

Let us take an example of IBVP of Heat Equation and solve it for different values of r using the Finite Difference Formula

(2.2). and we also compare it with Mathematica Exact Values of Analytical Solution.

Solve the heat equation [2]

∂u

∂t
=
∂2u

∂x2

with initial condition

u(x, 0) = 4x(1− x), 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = u(1, t) = 0, t ≥ 0

Solution. First of all we note that the analytical solution of this IBVP of Heat Equation is,

u(x, t) =
32

π3

∞∑
p=0

1

(2p+ 1)3
e−(2p+1)2π2tsin((2p+ 1)πx). (4)

which is derived using known methods [4].

Note: In following tables,
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• For The Analytical Solution (4.1),

u(1− x, t) =
32

π3

∞∑
p=0

1

(2p+ 1)3
e−(2p+1)2π2tsin((2p+ 1)π(1− x))

Also,

sin((2p+ 1)π(1− x)) = sin((2p+ 1)π − (2p+ 1)πx))

= sin((2p+ 1)πx), p = 0, 1, 2, . . . ,∞.

Therefore,

u(1− x, t) =
32

π3

∞∑
p=0

1

(2p+ 1)3
e−(2p+1)2π2tsin((2p+ 1)π(1− x))

=
32

π3

∞∑
p=0

1

(2p+ 1)3
e−(2p+1)2π2tsin((2p+ 1)πx)

= u(x, t)

Hence,

u(0.1, t) = u(0.9, t)

u(0.2, t) = u(0.8, t)

u(0.3, t) = u(0.7, t)

u(0.4, t) = u(0.6, t)

• We shall calculate the time row j + 1 from the values in time row j. That is, The first time row j = 1 is calculated

from the values in j = 0 which is obtained from the Initial Condition. Consequently j = 2 is obtained from j = 1,

j = 3 is obtained from j = 3 and this process continues for all the values of j.

• Here, as 0 ≤ x ≤ 1, smaller values of h gives system with larger number of linear equations. Hence, in such cases we

are comparing the solutions only at few mesh points.

• Numerical Solutions obtained by (2) implementing on Mathematica are denoted by NS.

• Mathematica Exact Values of The Analytical Solution are denoted by AS.

• Absolute Difference between numerical solution and mathematica exact value of analytical solution is denoted by AD.

(1). We consider r = 1, with h = 0.01 and k = 0.0001. Hence for t = 0.01, j = 100 (i.e. the 100th time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0309673 0.0618895 0.0927217 0.123419 0.1539390

AS 0.0309654 0.0618858 0.0927162 0.123412 0.1539303

AD 0.0000019 0.0000037 0.0000155 0.000007 0.0000900

Table 1. u[x, 0.01] and r = 1

(2). We consider r = 1, with h = 0.01 and k = 0.0001. Hence for t = 0.02, j = 200 (i.e. the 200th time row).
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x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0272299 0.0544278 0.081562 0.108601 0.135513

AS 0.0272285 0.0544252 0.0815581 0.108596 0.135506

AD 0.0000014 0.0000026 0.0.0000049 0.000005 0.000007

Table 2. u[x, 0.02] and r = 1

(3). We consider r = 20, with h = 0.01 and k = 1
500

. Hence for t = 0.01, j = 5 (i.e. the 5th time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0307990 0.0617761 0.0926787 0.1234100 0.1539295

AS 0.0309654 0.0618858 0.0927162 0.1234123 0.1539303

AD 0.0001664 0.0001097 0.0000305 0.0000023 0.0000008

Table 3. u[x,0.01] and r = 20

(4). We consider r = 20, with h = 0.01 and k = 1
500

. Hence for t = 0.02, j = 10 (i.e. the 10th time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0272921 0.0544321 0.0815343 0.1085693 0.1354870

AS 0.0272285 0.0544251 0.0815580 0.1085956 0.1355064

AD 0.0000636 0.0000070 0.0000237 0.0000263 0.0000194

Table 4. u[x, 0.02] and r = 20

(5). We consider r = 50, with h = 0.01 and k = 1
200

. Hence for t = 0.01, j = 2 (i.e. the 2nd time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0316397 0.0627401 0.0934678 0.1239202 0.1541456

AS 0.0309654 0.0618858 0.0927162 0.1234123 0.1539303

AD 0.0006742 0.0008543 0.0007515 0.0005078 0.0002153

Table 5. u[x, 0.01] and r = 50

(6). We consider r = 50, with h = 0.01 and k = 1
200

. Hence for t = 0.02, j = 4 (i.e. the 4th time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0276592 0.0548839 0.0818736 0.1087232 0.1354632

AS 0.0272285 0.0544251 0.0815580 0.1085956 0.1355064

AD 0.0004307 0.0004558 0.0003156 0.0001276 0.0000432

Table 6. u[x, 0.02] and r = 50

(7). We consider r = 200, with h = 0.01 and k = 1
50

. Hence for t = 0.02, j = 1 (i.e. the 1st time row).

x = 0.01 x = 0.02 x = 0.03 x = 0.04 x = 0.05

NS 0.0243814 0.0494107 0.0749501 0.1008750 0.1270727

AS 0.0272285 0.0544251 0.0815580 0.1085956 0.1355064

AD 0.0028471 0.0050144 0.0066079 0.0077206 0.0084337

Table 7. u[x, 0.02] and r = 200
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5. Conclusion

We have given brief explanation of truncation error in section 2 and in section 3 stability criteria for A Finite Difference

Formula of Implicit Type for IBVP of Heat Equation is derived. In section 4 we have taken an example of IBVP of Heat

equation and its numerical solutions are compared with the Mathematica Exact Values of its Analytical solution. From the

discussions in sections 3 & 4 it is observed that the Finite Difference Formula is stable for all positive values of r.
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