

International Journal of *Mathematics And its Applications*

$\alpha g \delta$ -Continuous and Irresolute Functions

B. Meera Devi^{1,*}, R. Vinitha^{1,†} and D. K. Nathan¹

1 PG and Research Department of Mathematics, Sri S.R.N.M.College, Sattur, Tamil Nadu, India.

Abstract: The purpose of this paper is to define a new class of functions called $\alpha g \delta$ -continuous functions. We obtain several characterizations and some their properties. Also we investigate its relationship with other types of generalized continuous functions. Further we introduce and study a new class of function namely $\alpha g \delta$ -irresolute.

Keywords: $\alpha g \delta$ -closed sets, $\alpha g \delta$ -continuous and $\alpha g \delta$ -irresolute. © JS Publication.

Accepted on: 27.07.2018

1. Introduction

Levine [9], Noiri [12], Balachandran [4], Dontchev J and Ganster [5] introduced generalized closed sets, δ -continuity, generalized continuous function and δ -generalized continuous (briefly δ g-continuous) and δ -irresolute functions respectively. Sundaram [13] and Veerakumar [14] introduced semi-generalized continuity and \hat{g} -continuity in topogical spaces. Lellis Thivagar M and Meera Devi B [8] introduced $\delta \hat{g}$ -continuity in topological spaces. The aim of this paper is to define a new class of generalized continuous functions called $\alpha g \delta$ -continuous function and investigate their relationships to other generalized continuous functions. We further introduce and study a new class of functions namely $\alpha g \delta$ -irresolute.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the compliment of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X, τ) is called a

- (1). semi-open [9] if $A \subseteq cl(int(A))$.
- (2). pre-open [10] if $A \subseteq int(cl(A))$.
- (3). α -open [4] if $A \subseteq int(cl(int(A)))$.
- (4). regular open [9] if A = int(cl(A)).

^{*} E-mail: abmeeradevi@gmail.com

[†] Research Scholar

The complement of a semi-open (respectively pre-open, α -open, regular open) set is called semi-closed (respectively pre-closed, α -closed, regular closed).

Definition 2.2. The δ -interior [15] of a subset A of X is the union of all regular open set of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open [15] if $A = Int_{\delta}(A)$. The complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ -closed [15] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X : int(cl(U)) \cap A \neq \emptyset, U \in \tau \text{ and } x \in U\}$.

Definition 2.3. A subset A of (X, τ) is called

- (1). semi-generalized closed (briefly sg-closed) set [3] $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open set in (X, τ) .
- (2). generalized semi-closed (briefly gs-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (3). α -generalized closed (briefly α g-closed) set [4] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (4). generalized α -closed (briefly g α -closed) set [4] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in (X, τ) .
- (5). δ -generalized closed (briefly δ g-closed) set [5] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (6). \hat{g} -closed set [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open set in (X, τ) .
- (7). α - \hat{g} -closed (briefly $\alpha \hat{g}$ -closed) set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open set in (X, τ) .
- (8). $\delta \hat{g}$ -closed set [7] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open set in (X, τ) .
- (9). $\alpha g \delta$ -closed set [11] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open set in (X, τ) .

The complement of a sg-closed (respectively gs-closed, αg -closed, $g\alpha$ -closed, δg -closed, \hat{g} -closed, $\alpha \hat{g}$ -closed, $\delta \hat{g}$ -closed and $\alpha g\delta$ -closed) set is called sg-open (respectively gs-open, αg -open, βg -open, δg -open, $\alpha \hat{g}$ -open, $\delta \hat{g}$ -open and $\alpha g\delta$ -open).

Definition 2.4. Recall that a function $f : (X, \tau) \to (Y, \sigma)$ is called

- (1). semi-continuous [9] if $f^{-1}(V)$ is semi-closed in (X, τ) for every closed set V of (Y, σ) .
- (2). pre-continuous [10] if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) .
- (3). g-continuous [4] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .
- (4). sg-continuous [13] if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V of (Y, σ) .
- (5). gs-continuous [4] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) .
- (6). $g\alpha$ -continuous [4] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) .
- (7). super-continuous [12] if $f^{-1}(V)$ is δ -open in (X, τ) for every open set V of (Y, σ) .
- (8). \hat{g} -continuous [14] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every closed set V of (Y, σ) .
- (9). δ -continuous [12] if $f^{-1}(V)$ is δ -open in (X, τ) for every δ -open set V of (Y, σ) .
- (10). open map [6] if f(V) is open in (Y, σ) for every open set V in (X, τ)
- (11). δ -closed [12] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ) .
- (12). δg -continuous [5] if $f^{-1}(V)$ is δg -closed in (X, τ) for every closed set V of (Y, σ) .
- (13). $\delta \hat{g}$ -continuous [8] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (X, τ) for every closed set V of (Y, σ) .

3. $\alpha g \delta$ -continuous and $\alpha g \delta$ -irresolute Functions

We introduce the following definition.

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called $\alpha g \delta$ -continuous if $f^{-1}(V)$ is $\alpha g \delta$ -closed in (X, τ) for every closed set V of (Y, σ) .

Example 3.2. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a and f(c) = b. Clearly f is $\alpha g \delta$ -continuous.

Definition 3.3. A function $f: (X, \tau) \to (Y, \sigma)$ is called $\alpha g \delta$ -irreasolute if $f^{-1}(V)$ is $\alpha g \delta$ -closed in (X, τ) for every $\alpha g \delta$ -closed set V of (Y, σ) .

Example 3.4. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Clearly f is $\alpha g \delta$ -irresolute.

Theorem 3.5. Every $\alpha g\delta$ -continuous function is δg -continuous.

Proof. It is true that every $\alpha g \delta$ -closed set is δg -closed.

Remark 3.6. The converse of the above theorem is not true in general as shown in the following example.

Example 3.7. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, c\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is not $\alpha g \delta$ -continuous function because $\{b\}$ is closed in (Y, σ) but $f^{-1}(\{b\}) = \{b\}$ is not $\alpha g \delta$ -closed in (X, τ) . However f is δg -continuous.

Theorem 3.8. Every $\alpha g\delta$ -continuous function is gs-continuous.

Proof. It is true that every αg -closed set is gs-closed.

Remark 3.9. The converse of the above theorem need not be true as shown in the following example shows.

Example 3.10. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = b and f(c) = a. Then f is gs-continuous. But f is not $\alpha g\delta$ -continuous function. Since $\{b\}$ is closed in (Y, σ) , $f^{-1}(\{b\}) = \{b\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Theorem 3.11. Every $\alpha g\delta$ -continuous function is sg-continuous.

Proof. It is true that every $\alpha g \delta$ -closed set is sg-closed.

Remark 3.12. The converse of the above theorem need not be true as shown in the following example.

Example 3.13. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{c\}, \{b, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a and f(c) = b. Then f is sg-continuous. But f is not $\alpha g\delta$ -continuous function. Since $\{a\}$ is closed in (Y, σ) , $f^{-1}(\{a\}) = \{b\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Theorem 3.14. Every $\alpha g \delta$ -continuous function is g-continuous.

Proof. It is true that every $\alpha g \delta$ -closed set is g-closed.

Remark 3.15. The converse of the above theorem need not be true as shown in the following example.

Example 3.16. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Then f is g-continuous. But f is not $\alpha g\delta$ -continuous function. Since $\{c\}$ is closed in (Y, σ) , $f^{-1}(\{c\}) = \{c\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Theorem 3.17. Every $\alpha g \delta$ -continuous function is $g \alpha$ -continuous.

Proof. It is true that every $\alpha g \delta$ -closed set is $g \alpha$ -closed.

Remark 3.18. The converse of the above theorem need not be true as shown in the following example.

Example 3.19. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is not $\alpha g\delta$ -continuous function because $\{c\}$ is closed in (Y, σ) but $f^{-1}(\{c\}) = \{b\}$ is not $\alpha g\delta$ -closed in (X, τ) . However f is $g\alpha$ -continuous.

Theorem 3.20. Every $\alpha g \delta$ -continuous function is \hat{g} -continuous.

Proof. It is true that every $\alpha g \delta$ -closed set is \hat{g} -closed.

Remark 3.21. The converse of the above theorem is not true in general as shown in the following example.

Example 3.22. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{c\}, \{a, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b. Then f is not $\alpha g\delta$ -continuous function because $\{b\}$ is closed in (Y, σ) but $f^{-1}(\{b\}) = \{c\}$ is not $\alpha g\delta$ -closed in (X, τ) . However f is \hat{g} -continuous.

Theorem 3.23. Every super continuous function is $\alpha g\delta$ -continuous.

Proof. It is true that every δ -closed set is $\alpha g \delta$ -closed.

Remark 3.24. The converse of the above theorem need not be true as shown in the following example.

Example 3.25. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is not super continuous function because $\{b\}$ is open in (Y, σ) but $f^{-1}(\{b\}) = \{b\}$ is not δ -open in (X, τ) . However f is $\alpha g \delta$ -continuous.

Remark 3.26. The following diagram shows that the relationships of $\alpha g \delta$ -continuous function with other known existing continuous functions. $A \rightarrow B$ represents A implies B but not conversely.

1. $\alpha g \delta$ -continuous 2. δg -continuous 3. gs-continuous 4. sg-continuous 5. g-continuous 6. $g\alpha$ -continuous 7. \hat{g} -continuous 8. super continuous.

Remark 3.27. The following examples shows that $\alpha g \delta$ -continuity is independent of semi-continuity, pre-continuity, α -continuity and $\delta \hat{g}$ -continuity.

Example 3.28. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = c, f(b) = b and f(c) = a. Then f is semi-continuous function. But f is not $\alpha g\delta$ -continuous. Since for the closed set $\{c\}$ of (Y, σ) , $f^{-1}(\{c\}) = \{a\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Example 3.29. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c and f(c) = b. Then f is pre-continuous function. But f is not $\alpha g\delta$ -continuous. Since for the closed set $\{c\}$ of (Y, σ) , $f^{-1}(\{c\}) = \{b\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Example 3.30. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = a, f(b) = c and f(c) = b. Then f is $\delta \hat{g}$ -continuous function. But f is not $\alpha g\delta$ -continuous. Since $\{a, c\}$ is closed in (Y, σ) , $f^{-1}(\{a, c\}) = \{a, b\}$ is not $\alpha g\delta$ -closed in (X, τ) .

Example 3.31. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a. Then f is α -continuous. But f is not $\alpha g\delta$ -continuous. Since $\{a\}$ is closed in (Y, σ) , $f^{-1}(\{a\}) = \{c\}$ is not $\alpha g\delta$ -closed set in (X, τ) .

Example 3.32. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Define the function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Then f is neither semi-continuous nor α -continuous function. Moreover, it is not $\delta \hat{g}$ -continuous. However f is $\alpha g \delta$ -continuous.

Example 3.33. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b\}, Y\}$. Define the function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Then f is not pre-continuous because $\{a, c\}$ is closed in (Y, σ) but $f^{-1}(\{a, c\}) = \{b, c\}$ is not pre-closed in (X, τ) . However f is $\alpha g \delta$ -continuous.

4. Properties

Theorem 4.1. A function $f : (X, \tau) \to (Y, \sigma)$ is $\alpha g \delta$ -continuous if and only if $f^{-1}(U)$ is $\alpha g \delta$ -open in (X, τ) for every open set U in (Y, σ) .

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be an $\alpha g \delta$ -continuous function and U be an open set in (Y, σ) . Then $f^{-1}(U^c)$ is $\alpha g \delta$ closed set in (X, τ) . But $f^{-1}(U^c) = [f^{-1}(U)]^c$ and hence $f^{-1}(U)$ is $\alpha g \delta$ -open in (X, τ) . Conversely, U^c is closed in (Y, σ) . Then U is open in (Y, σ) . By hypothesis, $f^{-1}(U)$ is $\alpha g \delta$ -open in (X, τ) . Hence $[f^{-1}(U)]^c$ is $\alpha g \delta$ -closed in (X, τ) . But $[f^{-1}(U)]^c = f^{-1}(U^c)$. Therefore $f^{-1}(U^c)$ is $\alpha g \delta$ -closed in (X, τ) . Thus f is $\alpha g \delta$ -continuous.

Remark 4.2. The composition of two $\alpha g \delta$ -continuous functions need not be $\alpha g \delta$ -continuous as the following example shows.

Example 4.3. 0 Let $X = \{a, b, c\} = Y = Z$ with topologies $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}, \sigma = \{\emptyset, \{b\}, Y\}$ and $\eta = \{\emptyset, \{a\}, Z\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a and let $g : (Y, \sigma) \to (Z, \eta)$ be the identity function. Clearly f and g are $\alpha g\delta$ -continuous functions. But $g \circ f : (X, \tau) \to (Z, \eta)$ is not an $\alpha g\delta$ -continuous function because $(g \circ f)^{-1}(\{b, c\}) = f^{-1}(g^{-1}(\{b, c\})) = f^{-1}(\{b, c\}) = \{a, b\}$ is not an $\alpha g\delta$ -closed set of (X, τ) , where $\{b, c\}$ is a closed set of (Z, η) .

Theorem 4.4. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two functions. Then

(1). $g \circ f : (X, \tau) \to (Z, \eta)$ is $\alpha g \delta$ -continuous, if g is continuous and f is $\alpha g \delta$ -continuous.

(2). $g \circ f : (X, \tau) \to (Z, \eta)$ is $\alpha g \delta$ -irresolute, if g is $\alpha g \delta$ -irresolute and f is $\alpha g \delta$ -irresolute.

(3). $g \circ f : (X, \tau) \to (Z, \eta)$ is $\alpha g \delta$ -continuous, if g is $\alpha g \delta$ -continuous and f is $\alpha g \delta$ -irresolute.

Proof.

- (1). Let F be closed set in (Z, η) . Then $g^{-1}(F)$ is closed in (Y, σ) . Since f is $\alpha g \delta$ -continuous, $f^{-1}(g^{-1}(F))$ is $\alpha g \delta$ -closed in (X, τ) . But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$. Hence $(g \circ f)^{-1}(F)$ is $\alpha g \delta$ -closed of (X, τ) . Thus $g \circ f$ is $\alpha g \delta$ -continuous function.
- (2). Follows from the definition.
- (3). Let F be any closed set in (Z, η) . Then $g^{-1}(F)$ is $\alpha g\delta$ -closed in (Y, σ) . Since f is $\alpha g\delta$ -irresolute, $f^{-1}(g^{-1}(F))$ is $\alpha g\delta$ -closed set of (X, τ) . But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$. Then $(g \circ f)^{-1}(F)$ is $\alpha g\delta$ -closed in (X, τ) . Hence $g \circ f$ is $\alpha g\delta$ -continuous function.

Theorem 4.5. Let $f : (X, \tau) \to (Y, \sigma)$ be continuous and δ -closed. Then for every $\alpha g \delta$ -closed subset A of (X, τ) , f(A) is $\alpha g \delta$ -closed in (Y, σ) .

Proof. Let A be $\alpha g \delta$ -closed in (X, τ) . Let $f(A) \subseteq O$ where O is open in (Y, σ) . Since $A \subseteq f^{-1}(O)$ is open in (X, τ) , $f^{-1}(O)$ is α -open in (X, τ) . Since A is $\alpha g \delta$ -closed and since $f^{-1}(O)$ is α -open in (X, τ) , $cl_{\delta}(A) \subseteq f^{-1}(O)$. Thus $f(cl_{\delta}(A)) \subseteq O$. Hence $cl_{\delta}(f(A)) \subseteq cl_{\delta}(f(cl_{\delta}(A))) = f(cl_{\delta}(A)) \subseteq O$, since f is δ -closed. Hence f(A) is $\alpha g \delta$ -closed in (Y, σ) .

Remark 4.6. $\alpha g \delta$ -continuity and $\alpha g \delta$ -irresoluteness are independent notions as seen in the following examples.

Example 4.7. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a. Then f is $\alpha g\delta$ -continuous but it is not $\alpha g\delta$ -irresolute function because $f^{-1}(\{c\}) = \{b\}$ is not $\alpha g\delta$ -closed in (X, τ) , where $\{c\}$ is $\alpha g\delta$ -closed in (Y, σ) .

Example 4.8. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Then f is $\alpha g \delta$ -irresolute but it is not $\alpha g \delta$ -continuity because $f^{-1}(\{c\}) = \{c\}$ is not $\alpha g \delta$ -closed in (X, τ) , where $\{c\}$ is closed in (Y, σ) .

5. Application

Definition 5.1. A space (X, τ) is called $T_{\alpha g \delta}$ -space if every $\alpha g \delta$ -closed set in it is δ -closed.

Theorem 5.2. Let $f: (X, \tau) \to (Y, \sigma)$ be $\alpha g \delta$ -irresolute. Then f is δ -continuous if (X, τ) is $T_{\alpha g \delta}$ -space.

Proof. Let V be a δ -closed subset of (Y, σ) . Every δ -closed set is $\alpha g \delta$ -closed and hence V is $\alpha g \delta$ -closed in (Y, σ) . Since f is $\alpha g \delta$ -irresolute, $f^{-1}(V)$ is $\alpha g \delta$ -closed in (X, τ) . Since X is $T_{\alpha g \delta}$, $f^{-1}(V)$ is δ -closed in (X, τ) . Thus f is δ -continuous.

Theorem 5.3. If (Y, σ) is $T_{\alpha g \delta}$ -space, then the composition of two $\alpha g \delta$ -continuous functions is also $\alpha g \delta$ -continuous function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two $\alpha g\delta$ -continuous functions. Let G be any closed set in (Z, η) . Then $g^{-1}(G)$ is $\alpha g\delta$ -closed in (Y, σ) . Since (Y, σ) is $T_{\alpha g\delta}$, $g^{-1}(G)$ is closed in (Y, σ) . Since f is $\alpha g\delta$ -continuous, $f^{-1}(g^{-1}(G))$ is $\alpha g\delta$ -closed in (X, τ) . But $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$. Then $(g \circ f)^{-1}(G)$ is $\alpha g\delta$ -closed set of (X, τ) . Hence is $\alpha g\delta$ -continuous function.

Theorem 5.4. Let $f: (X, \tau) \to (Y, \sigma)$ be onto, $\alpha g \delta$ -irresolute and δ -closed. If (X, τ) is a $T_{\alpha g \delta}$ -space, then (Y, σ) is also a $T_{\alpha g \delta}$ -space.

Proof. Let V be a $\alpha g \delta$ -closed subset of (Y, σ) . Since f is $\alpha g \delta$ -irresolute, $f^{-1}(V)$ is $\alpha g \delta$ -closed set in (X, τ) . Since is $T_{\alpha g \delta}$, $f^{-1}(V)$ is δ -closed in (X, τ) . Since f is surjective, V is δ -closed in (Y, σ) . Hence is $T_{\alpha g \delta}$ -space.

Theorem 5.5. If $f:(X,\tau) \to (Y,\sigma)$ is bijection, open and $\alpha g\delta$ -continuous, then f is $\alpha g\delta$ -irresolute.

Proof. Let V be $\alpha g\delta$ -closed in (Y, σ) and let $f^{-1}(V) \subseteq U$ where U is open in (X, τ) . Since f is open, f(U) is open in (Y, σ) . Every open set is α -open and hence f(U) is α -open. Clearly $V \subseteq f(U)$. Then $cl_{\delta}(V) \subseteq f(U)$ and thus $f^{-1}(cl_{\delta}(V)) \subseteq U$. Since f is $\alpha g\delta$ -continuous and since $cl_{\delta}(V)$ is a closed subset of (Y, σ) , $cl_{\delta}(f^{-1}(V)) \subseteq cl_{\delta}(f^{-1}(cl_{\delta}(V))) = f^{-1}(cl_{\delta}(V)) \subseteq U$. U is open and hence α -open in (X, τ) . Thus we have $cl_{\delta}(f^{-1}(V)) \subseteq U$ whenever $f^{-1}(V) \subseteq U$ and U is α -open set in (X, τ) . This shows that $f^{-1}(V)$ is $\alpha g\delta$ -closed in (X, τ) . Hence f is $\alpha g\delta$ -irresolute.

References

- M. E. Abd El-Monsef, S. Rose Mary and M. Lellis Thivagar, On αĝ-closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, 36(1)(2007), 43-51.
- [2] S. P. Arya and T. Nour, Characterizations of S-normal spaces, Indian J. Pure. Appl. Math., 29(8)(1990), 717-719.
- [3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29(1987), 375-382.
- [4] R. Devi, K. Balachandran and H. Maki, On generalized α-continuous functions and α-generalized continuous functions, Far East J. Math. Sci., Special Volume, Part I(1997), 1-15.
- [5] J. Dontchev and M. Ganster, On δ-generalized closed sets and T_{3/4}-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 17(1996), 15-31.
- [6] Lee and M. John, Introduction to Smooth Manifolds, Graduate Texts in Math-ematics. 218. Springer Science and Business Media, (2003).
- [7] M. Lellis Thivagar, B. Meeradevi and E. Hatir, $\delta \hat{g}$ -closed sets in topological spaces, Gen. Math. Notes, 1(2)(2010), 17-25.
- [8] M. Lellis Thivagar and B. Meera Devi, Some New Class of Generalized Continuous Functions, General Mathematics Notes, 1(2)(2010), 17-25.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Debb, On pre-continuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc., 55(1982), 47-53.
- [11] B. Meera Devi and R. Vinitha, $\alpha g \delta$ -closed sets in topological spaces, Global Journal For Research Analysis, 6(7)(2017), 345-347.
- [12] T. Noiri, Super continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15(3)(1984), 241-250.
- [13] P. Sundaram, H. Maki and K. Balachandran, Semi-generalized continuous maps and semi-T_{1/2}-spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.
- [14] M.K.R.S. Veerakumar, *ĝ-closed sets in topological spaces*, Bull. Allah. Math. Soc, 18(2003), 99-112.
- [15] N. V. Velicko, *H-closed topological spaces*, Amer. Math. Soc. Transl., 78(1968), 103-118.