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Abstract: In this paper, algorithm for effective numerical method (finite difference method) is designed for the solution of one
dimensional systems (Laplace equation). Finite Difference method with Dirichlet boundary conditions is used to obtain

the solutions of differential equations. We have solved one dimensional Laplace equation with analytical and numerical
approach. These approaches are developed in MATLAB and their solutions are compared and verified for different step

size.
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1. Introduction

Differential equations are used to model different physical quantities, widely used in many aspects of engineering disciplines

such as electric fields, pressure, stress, displacement, etc. They become the heart and soul of every numerical in applied

mathematics as numerous problems’ solutions is calculated by it. Additionally, the usage of PDEs has been exponentially

increased fields of electronics engineering, computer science, chemistry, economics, etc. The formulation of problems having

functions of more than one independent variables are done by Partial differential equations (PDEs). The order of the highest

derivative defines the order of the equation. The three-dimensional Laplace equation for a function V (x, y, z), describing

steady-state temperature distribution in the absence of heat sources and sinks in heat and mass transfer theory or describing

the electrostatic potential when unpaired electric charge is absent is given as [1, 3],

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 or ∇2V = 0 (1)

where x, y and z are the independent variables, V is the unknown function, and ∇2 is the Laplacian operator. The solution of

equation to be found is supplemented by initial and/or boundary conditions. The Poisson equation is the non-homogeneous

form of the Laplace equation given by,

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= F (x, y, z) = − ρ

ε0
or ∇2V = − ρ

ε0
(2)

where ε0 is the vacuum permittivity, ρ is the charge density [6]. The analytical solution of partial differential equation is

complex and difficult. For problem involving complex shapes, boundary conditions, material properties, etc. we adhere to
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the numerical methods that provide approximate but acceptable values of unknown quantities only at discrete number of

points in the structure. Instead of solving the problem for entire structure in one operation, the solutions are formulated on

each constituent unit and thereby combined to obtain the solution for the original structure. In this paper, focus on solution

of one dimensional differential equation to understand the concept of finite difference method in engineering field is done.

2. Finite Difference Solution to One Dimensional Differential Equa-
tion

Consider the variation of potential in one of the three independent variables. The Laplace’s equation becomes an ordinary

derivative and reduces to one dimensional as,

d2V

dx2
= 0, or

d2V

dy2
= 0, or

d2V

dz2
= 0 (3)

with initial and final points as boundary conditions [4]. The solution for one dimensional differential equations can be

obtained using analytical methods, but it becomes more cumbersome as the dimensions increases with different boundary

conditions and complex shapes. So, to ease the process of solving complicated numerical, different numerical approaches

are used. In this paper, the basic concept of FDM is studied so that we can apply it to the higher dimensions with different

boundary conditions. This basic concept is applied to one dimensional differential equations along with the algorithm

developed in MATLAB [2, 7]. The finite difference method is one of the powerful numerical method for solving partial

differential equations. While applying this method, the problem is defined by partial differential equation, a solution region

or boundary conditions. In FDM, the solution is divided into finite discrete points and the PDEs are replaced with a set

of difference equations. Thus, the solutions obtained are approximate and not the exact solution. However, the error in

the solution can be reduced to a tolerable level if very fine discretization is made. In FDM, the derivatives in differential

equation are replaced with difference expression modifying the differential equation into finite difference equations [9, 10].

Using the central difference method, the representation for one dimensional system is given as [5, 8],

d2V

dx2
=
V1 − 2V0 + V−1

h2
(4)

The flowchart for FDM is shown in Figure 1.

Figure 1. Flowchart of FDM
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3. Finite Difference Solution To Electrostatic Problem Having Bound-
ary Conditions

Here, two problem statements with different boundary conditions are evaluated using analytical approach, numerical ap-

proach (FDM) and FDM algorithm implemented in MATLAB.

Problem Statement 3.1. Find the potential distribution between two surfaces if V (x = 0) = 0 and V (x = 1) = 5. There

is no charge distribution in the space 0 ≤ x ≤ 1.

Solution.

(A). Using Analytical Approach: As the variation of potential is in one dimension, the Laplace’s equation becomes an

ordinary derivative and reduces to one dimensional as

d2V

dx2
= 0 (5)

On integrating Equation (5),

dV

dx
= c1 (6)

Again, on integrating Equation (6), we get

V = c1x+ c0 (7)

where c1 and c0 are the constants to be determined from the given boundary conditions. On substituting the given

boundary conditions, i.e., x = 0, V = 0 and x = 1, V = 5, the values of constants are,

c0 = 0, c1 = 5 (8)

Hence, the analytical solution of the Equation (7) becomes,

V = 5x (9)

The values of V can be obtained by substituting different values of x (step size).

(B). Finite Difference Method: Using the central difference method, the Laplace equation for the given boundary conditions

and different step sizes h = 0.5, 0.25, 0.125 are solved. The differential equation for h = 0.5 becomes,

d2V

dx2

∣∣∣∣
x1=0.5

=
V2 − 2V1 + V0

(0.5)2
= 0 (10)

V1 = 0.5(V0 + V2) (11)

where, V0 = 0 and V2 = 5 (boundary condition). Therefore V1 = 2.5. The second iteration with decreasing step size of

h = 0.25, is applied to five points in the same interval, the boundary conditions are V0 = 0 and V4 = 5.

V1 = 0.5 (V0 + V2) ,

V2 = 0.5 (V1 + V3) ,

V3 = 0.5(V2 + V4)

On solving these equations, the solutions are shown in Table 1.
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x 0 0.25 0.5 0.75 1

v 0 1.25 2.5 3.75 5

Table 1. Solution for step size h = 0.25

The third iteration with step size, h = 0.125 gives nine points in same interval having boundary conditions V0 = 0 and

V9 = 5.

V1 = 0.5 (V0 + V2), V5 = 0.5 (V4 + V6),

V2 = 0.5 (V1 + V3), V6 = 0.5 (V5 + V7),

V3 = 0.5(V2 + V4), V7 = 0.5(V6 + V8),

V4 = 0.5(V3 + V5), V8 = 0.5(V7 + V9),

On solving these equations, the values of V are shown in Table 2.

x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

v 0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5

Table 2. Solution for step size h = 0.125

(C). FDM Algorithm in MATLAB: The FDM algorithm explained below is implemented in MATLAB and the results

obtained are shown in Table III and graphically plotted in Figure 2.

FDM Algorithm

Step 1: Specify array size and boundary conditions

Step 2: Calculate step size and specify charge density, if needed.

Step 3: Specify boundary conditions.

Step 4: Use central difference method to calculate potential distribution and iterate it until all the values are achieved.

Step 5: Plot the results.

x 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

v 0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5

Table 3. Results FDM algorithm

Figure 2. Results FDM algorithm
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By decreasing the step size (h = 0.0625), the FDM approach results and the analytical solution of the given problem

statement are compared and shown in Table IV and graphically plotted in Figure 3.

Sr. No. Step Size Numerical Approach Analytical Approach

1 0 0 0

2 0.0625 0.3125 0.3125

3 0.125 0.625 0.625

4 0.1875 0.9375 0.9375

5 0.25 1.25 1.25

6 0.3125 1.5625 1.5625

7 0.375 1.875 1.875

8 0.4375 2.1875 2.1875

9 0.5 2.5 2.5

10 0.5625 2.8125 2.8125

11 0.625 3.125 3.125

12 0.6875 3.4375 3.4375

13 0.75 3.75 3.75

14 0.8125 4.0625 4.0625

15 0.875 4.375 4.375

16 0.9375 4.6875 4.6875

17 1 5 5

Table 4. Comparison of Numerical Approach and Analytical Approach

Figure 3. Comparison of Numerical Approach and Analytical Approach in MATLAB(Problem Statement 2.1)

�

Problem Statement 3.2. Find the potential distribution between two surfaces for different boundary conditions i.e.,

V (x = 1) = 0 and V (x = 6) = 4.

Solution.

(A). Analytical Solution: The analytical solution for this problem with boundary condition is given as,

V (x) = 0.8 (x− 1) (12)
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(B). FDM Algorithm MATLAB: The FDM solution developed in MATLAB results in the graph shown in Figure 4.

Figure 4. Comparison of Numerical Approach and Analytical Approach in MATLAB (Problem Statement 2.2)

From Figure 4, it is observed the error is more prominent for first 4 iterations and reduces as the iteration increases.

The solution using both methods are approximately same at 8th iteration suggesting to halt the further iterations.

Thus, the accuracy of solution is substantially good.

�

4. Conclusion

This paper presents understanding of Finite Difference Method to solve one dimensional differential equation system for

electrostatic field of engineering. For simple boundary conditions, the solutions of both methods are similar, indicating

infinitesimal error for smaller number of iterations, but as the boundary conditions become more complex, with increase

in iterations both solutions converge to similar results and reduction in error within acceptable level is observed. For

further research, the approximations of these methods can be improved and executed on software packages as applied to two

dimensions and three dimensions numerical with complex boundary conditions.
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