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1. Introduction and Definitions

To discuss the growth of functions first we recall the following definitions.

Definition 1.1. The order p(f) of a meromorphic function f is defined as

p(f) = limsup 128 L)

9
r—o00 log r

where T(r, f) is the Nevanlinna characteristic function of f. Again for 0 < p(f) < oo, we define the type 7(f) of a

meromorphic function f by

T(r, f)

'r'ﬂ(f) ’

7(f) = limsup

T—00

Definition 1.2. The order p(f) of an entire function f is defined as

~ . loglog M(r, f)
=1 Do e M\LhJ)
o(f) 1in sup Tour

where M (r, f) = max{|f(z)| : |z| =} is the mazimum modulus of f. Again for 0 < p(f) < oo, we define the type 7(f) of

an entire function f by

log M(r, f)

7(f) = limsup 5

r—00
With this we have two known classical results involving the order and the type of fi + f2 and fif2, where fi and f2 are

entire or meromorphic functions respectively.
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Theorem 1.3 ([15]). If f1 and f2 be two entire functions, then we have

p(f1 + f2) <max{p(f1), p(f2)},
p(f1f2) < max{p(f1), p(f2)}

and

T(f1 + f2) < max{7(f1),7(f2)},
T(f1fe) <7(f1) +7(f2)-

Theorem 1.4 ([8]). If fi and f> be two meromorphic functions and p(f1) < p(f2), then p(fi + f2) = p(fi1f2) = p(f2).

In [14], Latreuch and Belaidi established new estimates for the order and type of meromorphic functions and they obtained

the following results which improved the above two theorems.
Theorem 1.5 ([14]). Let f1 and f2 be two meromorphic functions.
(i). If 0 < p(f1) < p(f2) < o0, then T(f1 + f2) = 7(f1.f2) = 7(f2)-

(ii). If 0 < p(f1) = p(f2) = p(f1 + f2) = p(f1[2) < 00, then

I7(f1) = 7(f2)| < 7(fr + fo) < 7(f1) + 7(fo),
I7(f1) = 7(f2)| < 7(frf2) < 7(f1) + 7(f2).

Theorem 1.6 ([14]). If f1 and f2 be two meromorphic functions satisfying 0 < p(f1) = p(f2) < 0o and 7(f1) # 7(f2), then
p(fi+ f2) = p(fif2) = p(f1) = p(f2).

Theorem 1.7 ([14]). Let f1 and fo be two entire functions.
(i) If 0 < p(f1) < p(f2) < oo, then 7(f1 + f2) = 7(f2) and 7(f1f2) < 7(f2).

(ii). If 0 < p(f1) = p(f2) = p(f1 + f2) = p(f1f2) < 0o, then

T(f1+ f2) < max{7(f1),7(f2)},
T(frf2) <7(f1) +7(f2).

Furthermore, if T(f1) # T(f2), then T(f1 + f2) = max{7(f1),7(f2)}.

Theorem 1.8 ([14]). If fi and fa be two entire functions and 0 < p(f1) = p(f2) < oo and 7(f1) # 7(f2), then p(fi1 + f2) =
p(f1) = p(f2)-

Analogously p — order and p — type of entire and meromorphic functions are as follows:

Definition 1.9. Let p be an integer and p > 1. The iterated p — order pp(f) of a meromorphic function f is defined as

: logy T(r, f)
= limsup —————=.
pp(f) r_)oop log T
Again if f is an entire function, then

pp(f) — 111’1’1 sup lng+1 M(Tv f)
r—oo log r
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Definition 1.10. The iterated p — type 7(f) of a meromorphic function f with iterated p — order (0 < pp(f) < ) is

defined as

. logp—1 T(r,
7p(f) = limsup 7gprpp(f§ f)

T—00

Again if f is an entire function, then its iterated p — type Tp(f), is defined by

logy M(r, f)

Tp(f) = limsup or (D

r—00

From above it is clear that p1 (f) and 71 (f) coincide with p(f) and 7(f) respectively. Several researchers (see [1, 2, 5, 6, 9, 12])
used the concept of the iterated p-order p,(f) instead of the usual order p(f) to study the fast growing solutions. Tu-Zeng-Xu

[16] generalized Theorems 1.3-1.6 from the usual order to the iterated p — order as follows.

Theorem 1.11 ([16]). Let fi and f2 be two meromorphic functions satisfying 0 < pp(f1) = pp(f2) < 00 and 7,(f1) < Tp(f2).
Then

(i). po(f1r + f2) = pp(f1f2) = pp(f1) = pu(f2).
(ii). If p> 1, then 1p(f1 + f2) = Tp(f1f2) = 1p(f2).
(ii). If p=1, then a < 7p(f1 + f2) < B and o < p(f1f2) < B, where o = 7p(f2) — 7p(f1) and B = 7p(f1) + 7p(f2).
Theorem 1.12 ([16]). Let f1 and f2 be two entire functions satisfying 0 < py(f1) = pp(f2) < 00 and 7p(f1) < Tp(f2). Then
(i)- If p 2 1, then pp(f1 + f2) = pp(f1) = pp(f2) and Tp(f1 + f2) = Tp(f2).

(ii). If p > 1, then pp(fif2) = pp(f1) = pp(f2) and Tp(f1f2) = Tp(f2)-

Since pp(f,) = pp(f), p > 1 and for a meromorphic function f with finite iterated p — order, Tu-Zeng-Xu [16] proved the

following theorem for the iterated p — type.
Theorem 1.13 ([16]). Let p > 1 and f be meromorphic function satisfying 0 < pp(f) < co. Then Tp(f') =7p(f).

In [7], Chyzhykov and Semochko introduced the concept of the ¢ — order. After that, Belaidi ([3, 4]) improved the results

in [7] for the lower ¢ — order and the lower ¢ — type.

Definition 1.14 ([7]). Let ¢ be an increasing unbounded function on [1,00). The ¢ — orders of a meromorphic function f

are defined by

T(r,f)
0 . ga(e )
:1 —_—
po(f) imsup =
1 . o(T(r, f))
Po) =M =

Again if f is an entire function, then the ¢ — orders are defined by

FL(f) = lim sup %f))
e(f) = lim sup %(f))

By ® we define the class of positive unbounded increasing functions on [1, 00) such that ¢(e) is slowly growing i.e.,

ct
Ve > 0: (p(et):l, t — oo.
p(et)

Recently, Kara and Belaidi [11] introduced the following definition.
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Definition 1.15 ([11]). Let ¢ be an increasing unbounded function on [1,00). The ¢ — types of a meromorphic function f

with ¢ — order € (0,00) are defined by

o . ep(e” )

T,(f) = limsup PG
r—00 r

e?(T(r,f))

1 .
To(f) = lim sup T

If f is an entire function, then the ¢ — types are defined by

» P (M(r,1)

To(f) = lliisip B

a ) er(log M(r.f))
T,(f) = limsup AT
r—oo r

In this paper we introduce the definitions of (p, q)*"¢ — orders and (p, q)"1) — types related to (p, q)"1) — order as follows
and generalise all earlier results in our directions where 1 is a positive unbounded increasing function on [1, 00) satisfying

the property ¥(r1 + r2) < ¥(r1) + ¥(r2).

Definition 1.16. Let ¢ be an increasing unbounded function on [1,00). The (p, q)th P — orders of a meromorphic function

f are defined by

loglp(elog[P‘l]T(r,f))

I

[p,q],0 1
p¢ (f) - hrl-Ti)Solip lOg[q]T’

[p—1]
PP () = limsup log(log®* T (r, f))

=00 logldlr

p=>q=1

’

If f is an entire function, then the (p,q)'™™ 1 — orders are defined by

)

Llog!P M (r, )
~[p,q],0 T logy(e )
P (ﬁ—hggp——ﬁ@mr—f

logi(e'>s™ 1)

o0 logldlr

Definition 1.17. Let ¢ be an increasing unbounded function on [1,00). The (p,q)™" ¢ — types of a meromorphic function

f with (p,q)™™ ¢ — order € (0,00) are defined by

b(elos” T

[p,q],0 _ 1
Ty (f) = limsup i ,
r—00 [log[q,l]r}pﬁf a0y

[p—1]
TLp’q]’l(f) = lim sup w(log T(T’ 1)) :
p,q],1

r—00 [log[qfl]r}/)w )

If f is an entire function, then the (p,q)'™ 1 — types are defined as

log[p]JW('r,f)
?LP’Q]’O(f)thSUp 1/J(6 : ) ’
B ~p,q],0(f)
r—00 [log[q 1],,.}/’11,

P(elos"THIME. 1))

ﬁ[f’q]’l(f) = lim sup PRI
7—00 [lOg[qfl]T}pw £

Through out this paper, we assume the standard notations of Nevanlinna value distribution theory of meromorphic functions
(see [8, 10, 13, 17]), also we mean by a meromorphic function a function which is meromorphic in the whole complex plane.
Also we assume 9 be a positive unbounded increasing function on [1, c0) satisfying the property ¥ (r1 +r2) < 9 (r1) + ¥(r2)

for large 71, 72.
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2. Basic Theorems

Theorem 2.1. Let f, f1, fo be three meromorphic functions. Then

1.
P f2) < maadpl ™ (1), L (F2)) 5= 0,1 M

2.
P (fif2) < maz{pl (f1), o2 (f2)}, j=0,1. )

3.
pEf"”’j(%) plP I (f), j=0,1and f #0. ®3)

Proof. Let a = pgf -4l (f1) and B8 = pw ’l(fz). Without loss of generality, we may suppose that a < 8. Now from the

definition of (p, q) 1 — order, for any € > 0 and for all large r

l logP~ 1T
o9 Oiog q]r( TR < (i (f) ), k=12

or,logip(log? 1T (r, f1)) < (B + €)log!r
or, log® T (r, fi) < = (el PFOos"r)

or, T(r, fi) < eap? ™V (g~ (P H)es I ryy,

Now from the properties of Nevanlinna characteristic functions, we have

T(r, f1 £ f2) < T(r, fr) +T(r, f2) + O(1)
< 3leaplP V(g (P HNes )]
< ewp[P 1] (¢f1(e(5+3e)log[q]r)).

logi(log® =T (r, f1 £ f2))

logldly
proved similarly and proofs for p;;

< (B + 3¢) or, pgf a4 f) < max{pgf’q]’l(f )s pEf 41 (f5)}. Properties 2 and 3 can be

[p,q],0

Hence,

are analogous. O

Theorem 2.2. Let f1, fo be two meromorphic functions. If pgf’qm(fl) < pEf’qu(fz), (j =0,1), then pgf’q]’j(fl + f2) =

P (fuf2) = pif ™ (f2) for j = 0,1,

Proof.  Assume that p[p I < pgf’q]’j (f2). So by (1), we have
P (1 4+ fo) < P (f). (4)
Again from (1), we get
Pl (1) = PP (fr+ fo = 1) < maa{pll ™ (fu+ f2), 00 (F1)}
So if we suppose that pp’ql’J (f1) > pEf’q (f1 + f2), then

Pl (f2) = P (fr 4 fo = 1) < maz{pll ™ (fr + £2), 60 (1)} = 9™ ()
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which contradicts the assumption p[p’q]” (fr) < [p’q 7(f2). Hence

PEf'qu(fﬂ [P,q (f1+f2) (5)

So, from (4) and (5) we get,

Pl (fi+ 12) = 90 (f2)- (6)
Again from (2), it follows that
Py (f1f2) < A0 (f2). (7)

Now by (3), we have
: : 1
P () = o) < masclpll (1 f2), 2 (50} = mackll o). 2 (1)),
So if we suppose p[p’q]’J(fl) > pgf’q]’j (f1f2), then

DI (f5) = pP DI (f1 f30) < max{p D (1 £2), o2V (1)} = P2 (1),

fi
which is a contradiction. Hence

p{ ™ (£2) < PP (f12). (8)
So from (7) and (8) we get,

P (f1f2) = o0 (f2). (9)
Hence the theorem follows from (6) and (9). O

3. Main Theorems

Theorem 3.1. Let fi1, fo be two meromorphic functions.

(i) 10 < pf ™7 (f1) < plf (f2) < 00 and 0 = 7,0 (f1) <77 (f2), (= 0,1), then

(S f2) = P (fif) = 70 (fa)-

(ii) If 0 < pl" ™ (f1) = plf" ™ (fo) = pif ™ (fi + fo) < 00, (j = 0,1), then

TLP,QLj(fl + f2) < TLP,Q]’j(fl) + qu[ﬁpﬂ]a]'(fﬂ‘

(i) If 0 < pl" ™ (1) = plf"™ (fo) = plf ™ (fif2) < 00, (j = 0,1), then

P%ﬂd(f f2 ) p,q],J(fl) +7_15)p,q],j(f2)_

Proof. We will prove the theorem for j = 1 and the proofs for 5 = 0 are analogous.
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(i) From the definition of the 7 p’q — type for any given € > 0, there exists a sequence {r,,n > 1} tending to infinity

such that
o < YUog" T (10, f))
B [log[‘Z*l]frn]ﬂEf’q]’l(fﬂ

9 (f2) -

W (£2)

[p,
or, (log?~ T (r,,, f2)) > ( fl}p’q] Y(f2) — ©)[logltYr,]"¥ and for all sufficiently large values of r,

w(ZOQ[p 1] (7»7 fl)) < ( [p,dl, l(f ) n 6)[[09 ] [p aldig, )

We know that T'(r, f1 + f2) > T(r, f2) — T(r, f1) — log2

or, log®~UT (1, fi 4+ fo) > 1og® T (rp, f2) — log? VT (r,, f1) + O(1)

or, Y (log" T (rn, f1 + f2)) = ¥(log" T (rn, f2)) = w(log?~ T (rs, f1)) + O(1)

or, $log T (ra, i+ 2) > (20 () = liog e (2 (11) 4 otags ) 4 0(1)

or, (log® T(ra, fi + 12)) 2 (7 () ~ 29)logls~ra Y 4 0(1)

provided € such that 0 < 2¢ < TLp’q]’l(fz). Again we get from Theorem 2.2, p M+ f) = [p’q (f2) and hence

from above

Yllog? T (Tn,f1+f2)]

> 7Pl ) — 2e 4+ 0(1).
[logla=1lr,, ]Pw 1+ 12) ¥

Since € > 0 is arbitrary so
TIE}p'q]’l(fl + f2) > 7P (fa). (10)

For reverse inequality since

Pl it f2) = o0 (f2) > 0 () = M (=),

so applying (10) we obtain
T (f) = 1 (o o= 1) 2 70 (fa + £2). (11)

Hence from (10) and (11) we get T[p’q (fi+ f2) = [p’q (f2). Now we have to show that T[p’q (fif2) = p’q] 1(f2).

By the property
T(r, fife) 2 T(r, f2) = T(r, f1) + O(1). (12)

and a similar discussion as in the above proof, one can easily show that

[p,q (fifz) > 71 (p,al,1 (f2). (13)

Since p["™" (fuf2) = ol (f2) > oL (f1) = ol (). So, from (13), we get

D (o) = 7PN G fa) 2 T (1)

h

and therefore we get from above

P (fufa) = TP (fa).

This proves the first part of the theorem.
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(i)

(iii)

This completes the proof.

From the definition of the TLP bl _ type for any given € > 0 and for all sufficiently large values of r we have

1]71};)55“’]’1(&)

Y(log? T (r, £1)) < (N (fi) + €)[log!t i=1,2.
Now T(T, f1 —+ fg) S T(T7 fl) + T(T, fg) —+ O(l)
or, log? 1T (r, fi + f2) < log? " T(r, f1) + log? T (r, f2) + O(1)

or, Y(log® T (r, f1 + f2)) < ¥(log? T (r, f1)) + ¥ (log? ' T(r, f2)) + O(1)

Pt p) Wit 2)

or, Y(log? T (r, fi + f2)) < (7" (1) + ©)llogle~ ] o “"‘”%m + e)lloght= " +0(1)
or, Y(log” VT(r, f1 + £2)) < (V) 4 72T (1) + 29 ltogle I o),
Hence,
logP~ 1T
Y(log qu]fl + f2)) < pr,q],l(fl) + T,([/)p7q],1(f2) +2€ + o(1).
[logla—117]"s (f1+£2)
Since € > 0 is arbitrary, so we get
N L) S 7PN T ().

This proves the second part of the theorem.
From the definition of the TLP alhl _ type for any given € > 0 and for all sufficiently large values of r we have

[p—1] [p.q), q—1] PEf gy

Y(log? VT (r, f1)) < (7 (£i) + €)[log 7] =12
Now T'(r, fif2) <T(r, fr) + T(r, f2)
or, log? =T (r, fif2) < 1og? =T (r, f1) + log® =T (r, f2)
or, (log? T (r, f1f2)) < waog“’*”T(r f)) + w(log”*”ﬂr, f2))
[p—1] pq P[pwq]’l(flfz) [p,q], 1] P[p a 1(f1f2)

or, Y(log® T (r, f1f2)) < (r,/ (f1) + €)[logh 7] +( U(f2) + €)[logtr)"
or, ¥(log” VT(r, 1£2)) < (I (1) 4+ 720 (£2)) + 20)toght O,
Hence,

P(log? T (r, f1 1> al, 4.

Uog™ LTSI o ol gy 4 19 (1) + 26,

[log[q—l]r]pw 172

Since € > 0 is arbitrary, so we get
TP fif) < TPV + 7P (f).
O

Theorem 3.2. Let fi1, fo be two meromorphic functions.

(i) If 0 < p2 U (f1) = pP9I (fo) = pP DI (1 + fo) < 00, (j = 0,1), then

el () < el (g 4 oy 47 PDI(f) for = 0,1,

(ii) If 0 < ™ (f1) = pf*™ (f2) = pl ™ (1 f2) < 00, (j = 0,1) then

T () < 7P (fif2) + 70 (f2), for j=0,1.
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Proof. The proofs of the theorem are follows immediately from Theorem 3.1 (ii). Since p[p"ﬂ’ﬂ(fl) = pif’q]’j (fr+ f2) =

pgf"”’j(fg) p’q]’J( f2), then we get

Tl[/,pﬂ]’j(fl) _ qujpyq],]'(fl +fa—fo) < TLp’q]7j(f1 + fa) +T1[L)P,q],j(f2).

Similarly using Theorem 3.1 (iii) and since p[p’q]’J (fr) = p’q]’J (fif2) = pEf’q (f2) = [p’q]’](f ), so we have

TLp,q],j(f ) _ 7_1[pp,q »J(f fo ) [p,q ,J(f f2 ) p,q],J(fQ).

f2

This completes the proof. O

Theorem 3.3. Let fi, fo be two entire functions.

(i) If 0 < 507 (f1) < p2 D (f2) < 00 and 0 = 7P (f1) < 7PV (f), (j = 0,1), then

;LP;Q]aj(fl _|_ f2) = ?prq],j(fQL
~[p,q I(fifa) < ~[p"ﬂ’](f2)-

(i6) If 0 < 5™ (f1) = 5™ (f2) = B (fi + f2) < o0, (7 = 0,1), then

;LP,Q]J(fl + f2) < i[bPaQ],j(fl) + 3_’11[&1041],]'(]02)‘
(i) If 0 < B (1) = 5™ (f2) = P (fif2) < o0, (5=0,1), then

FPVI(fufa) TPV (f1) + 70D (fa).

Proof. We will prove the theorem for j = 1 and the proofs for j = 0 are analogous.

(i) From the definition of ?Lp’q]’l — type for any given € > 0, there exists a sequence {r,,n > 1} tending to infinity such

that

Ullog " M(ry, £2)) = (7 (f2) = Ollog ", PV 02

and for all sufficiently large values of r we obtain,
~[
Wllog" M(r, £1) < G (1) + €)llog I 00,

Now from of the each circle |z| = r, we choose a sequence {z,, n > 1} with |z,| = r,, and satisfying | f2(zn)| = M (rn, f2),
we get, M(rn, f1 + f2) 2 | f1(zn) + f2(20)]

or, M(rn, fi + f2) 2 |fo(zn)] = [f1(zn)]

or, M(rn, fi + f2) 2 M(rn, fa) = M(rn, f1)

or, log[P]M(rn,fl + f2) > log[p]M(rn, f2) — log[p]M(rn,fl)

or, Y(log®' M (rn, f1r + f2)) > (log™ M(ra, f2)) — ¥ (log® M (rv, f1))
> [P (f2) — ) — G () + O)ltog M P

~[ 1,1
= (7P (f2) = 26)lloglt ™ U
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provided € such that 0 < 2e < 7T, N[p’q] ! (f2) and r,, — oco. It follows from Theorem 2.2, we get, p A{p’q (fit+f2) = ﬁ{ﬁ’q] ! (f2).

So we get from above

W (log™! (rn,f1+fz)) > Flpalt

(f2) =
llogla—1ly, 76 " (r+f2)
Since € > 0 is arbitrary so
TP f2) 2 TP (f), (14)
For reverse inequality since
Py (o f2) = B0 () > P (h) = B0 (),

so applying (14) we obtain
AP () =T (a4 o= 1) 2 TP ).

So finally we get from above 7" (fi + fo) = 77" (f2). Now we have to show that 7! (f1f2) < 77" (f2). By
the property M(r, f1f2) < M(r, f1)M(r, f2)
or,
logM (r, f1f2) < log(M(r, f)M(r, f2))
= logM (r, f1) + logM (r, f2)

or, log®" M(r, 1 f2) < log® M (r, f1) + log®" M (r, f2)

¥ (log” M (r, f1 £2)) < w(z()g“’]M(r, 1))+ ¢(log® M(r, f2))

< [EPD (1) + € + G (£2) + O ltog P U

_ (?&p’q]’l(h)+26)[log[q71]7“]ﬁwy ’ (fz)_

It follows from Theorem 2.2 we get, p “{p"ﬂ Mfa) = A{p’q (f1f2). So we get from above

[p]
Y(log®' M(r, f1f2)) ~1[pp,q (f2) + 2.

[log[qfu,ﬂ]ﬁﬁf"q]’l(flfz) -
Since € > 0 is arbitrary, we get
~[P7q (fif2) < [qu (f2).
This proves the first part of the theorem.

~[p,q],1

From the definition of 7, Ty — type for any given € > 0 and for all sufficiently large values of r

GllogP M(r, £)) <GP () + ) llog® )Pl D i 210,

Now, M(r, fi + f2) < M(r, f1) + M(r, f2)
or, logP! M (r, f1 + f2) < log®"! M (r, f1) + log®! M (r, f2)
or,

P(logP M(r, fi + f2)) < w(log[P]M(r, £1)) + 9 (log™ M(r, f2))

<[EPDA) + o) + FERD(f) + O)l[logla=1]Pd " (it 2),
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Hence,
3 (log™”! (7"7 f1 + f2))

[logla— 1]T]P¢, L1+ 12)

ST AT (f2) + 26

Since € > 0 is arbitrary, so we get

~[p’q] Y+ ) < wp’Q] Y+ [p’q (f2)-

This proves the second part of the theorem.

~[p,q],1

(iii) From the definition of 7, Ty — type for any given € > 0 and for all sufficiently large values of r

w(log (r fz)) < ( [p,al, l(fz) —|—e)[log[q_l]r]ﬁgf,%l(fi) i=1,2.

Now M (r, f1f2) < M(r, f1)M(r, f2)

or,
logM (r, f1f2) < log(M(r, f1)M(r, f2))
= logM (7, f1) + logM (r, f2)

or, logP! M (r, f1f2) < log®”! M (r, f1) + log® M (r, f2)

or,
P(log™ M(r, f1£2)) < ¥(log™ M(r, 1)) + 1 (log” M (r, f2))
<GP (F2) 4 €) + G (o) + ) llogt~UeP " 1)
= G () 7P () 4 20)floglt~ g 1),
Hence,

W (log™” M (r, f1f2))
[logla—117)Pv [pqll(ﬁfz)

ST+ TS (f2) + 26
Since € > 0 is arbitrary, we get
T S ST AT ().

This completes the proof.

Theorem 3.4. Let f be a meromorphic function. Then

Pl () < 0l (S) for j =01,
Proof. Take pgf‘q]’l(f) = a. So from the definition of p[p b _ order for any € > 0 and for all 7 > 7o, we have
T(r, f) = Oeap (w0,

Now by the lemma of logarithmic derivative ([10, 13]), we get

T(r, f) =m(r, f)+ N(r, f)

’

[
o f
i
o f
= O(logT (v, f) + logr) + 2T(r, f)

<m(r,=)+m(r, f) + 2N (r, f)

<m(r, =) +27(r, f)

< 3T(r, f) +0(1)

— Oeap V(g (el H39 )y -y g .
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where E C [0,00) is a set of finite linear measure. So from above for all sufficiently large values of r

logy(log® 1T (r, f/)) < (o + 3e)log!r.

By the arbitrariness of €, we finally get
PSS a=pl ().

This proves the theorem. O

Theorem 3.5. Let f be a meromorphic function. Then
Ty <l (f) for j=0,1.
Proof. Take pgf’(ﬂ’l(f) = a. So from the definition of 7 [pal.1 _ type for any € > 0 and for all » > 7o, we have
T(r, f) = Oleap® V[~ (=™ + €)[log!'~*r])].
Now by the lemma of logarithmic derivative ([10, 13]), we get

T(r,f)=m(r, f )+ N(r )

<m(r,

f
f
f) m(r, f) + 2N (r, f)

/

< m(r, J;>+2T< 5

= O(logT (r, f) + logr) + 2T (r, f)
<3T(r, f) +0(1)

= O[exp[pfl] [1#71(( Pall 4 36)[log a=1] r]a)]], r¢ E.

where E C [0,00) is a set of finite linear measure. So from above for all sufficiently large values of r

G(log" T (r, f1)) < (¢ + 3€)[log "1,

By the arbitrariness of €, we finally get

TS < 7).

This proves the theorem. O
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