ISSN: 2347-1557

Available Online: http://ijmaa.in/

International Journal of Mathematics And its Applications

$(p,q)^{th}\ \psi{ m -order}$ and $(p,q)^{th}\ \psi{ m -type}$ of Entire and Meromorphic Functions and Some of its Estimation

Dibyendu Banerjee^{1,*} and Simul Sarkar²

- 1 Department of Mathematics, Visva-Bharati, Santiniketan, West Bengal, India.
 - 2 Shikarpur High School (H.S), Mathabhanga, West Bengal, India.

Abstract: We introduce the concept of $(p,q)^{th}$ $\psi - order$ and $(p,q)^{th}$ $\psi - type$ of entire and meromorphic functions to generalise some results related to the $\varphi - order$ concept introduced by Chyzhykov-Semochko in [7]. In this paper we establish some

estimates of the sum, product and the derivative of entire and meromorphic functions in the complex plane.

MSC: 30D35.

Keywords: Entire function, Meromorphic function, $(p,q)^{th}$ $\psi - order$, $(p,q)^{th}$ $\psi - type$.

© JS Publication.

1. Introduction and Definitions

To discuss the growth of functions first we recall the following definitions.

Definition 1.1. The order $\rho(f)$ of a meromorphic function f is defined as

$$\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r},$$

where T(r, f) is the Nevanlinna characteristic function of f. Again for $0 < \rho(f) < \infty$, we define the type $\tau(f)$ of a meromorphic function f by

$$\tau(f) = \limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho(f)}}.$$

Definition 1.2. The order $\widetilde{\rho}(f)$ of an entire function f is defined as

$$\widetilde{\rho}(f) = \limsup_{r \to \infty} \frac{\log \log \ M(r,f)}{\log r},$$

where $M(r, f) = \max\{|f(z)| : |z| = r\}$ is the maximum modulus of f. Again for $0 < \widetilde{\rho}(f) < \infty$, we define the type $\widetilde{\tau}(f)$ of an entire function f by

$$\widetilde{\tau}(f) = \limsup_{r \to \infty} \frac{\log \, M(r,f)}{r^{\widetilde{\rho}(f)}}.$$

With this we have two known classical results involving the order and the type of $f_1 + f_2$ and f_1f_2 , where f_1 and f_2 are entire or meromorphic functions respectively.

 $^{^*}$ E-mail: dibyendu192@rediffmail.com

Theorem 1.3 ([15]). If f_1 and f_2 be two entire functions, then we have

$$\rho(f_1 + f_2) \le \max\{\rho(f_1), \rho(f_2)\},$$
$$\rho(f_1 f_2) \le \max\{\rho(f_1), \rho(f_2)\}$$

and

$$\widetilde{\tau}(f_1 + f_2) \le \max{\{\widetilde{\tau}(f_1), \widetilde{\tau}(f_2)\}},$$

$$\widetilde{\tau}(f_1 f_2) \le \widetilde{\tau}(f_1) + \widetilde{\tau}(f_2).$$

Theorem 1.4 ([8]). If f_1 and f_2 be two meromorphic functions and $\rho(f_1) < \rho(f_2)$, then $\rho(f_1 + f_2) = \rho(f_1 f_2) = \rho(f_2)$.

In [14], Latreuch and Belaïdi established new estimates for the order and type of meromorphic functions and they obtained the following results which improved the above two theorems.

Theorem 1.5 ([14]). Let f_1 and f_2 be two meromorphic functions.

(i). If
$$0 < \rho(f_1) < \rho(f_2) < \infty$$
, then $\tau(f_1 + f_2) = \tau(f_1 f_2) = \tau(f_2)$.

(ii). If
$$0 < \rho(f_1) = \rho(f_2) = \rho(f_1 + f_2) = \rho(f_1 f_2) < \infty$$
, then

$$|\tau(f_1) - \tau(f_2)| \le \tau(f_1 + f_2) \le \tau(f_1) + \tau(f_2),$$

$$|\tau(f_1) - \tau(f_2)| \le \tau(f_1 f_2) \le \tau(f_1) + \tau(f_2).$$

Theorem 1.6 ([14]). If f_1 and f_2 be two meromorphic functions satisfying $0 < \rho(f_1) = \rho(f_2) < \infty$ and $\tau(f_1) \neq \tau(f_2)$, then $\rho(f_1 + f_2) = \rho(f_1 f_2) = \rho(f_1) = \rho(f_2)$.

Theorem 1.7 ([14]). Let f_1 and f_2 be two entire functions.

(i). If
$$0 < \rho(f_1) < \rho(f_2) < \infty$$
, then $\widetilde{\tau}(f_1 + f_2) = \widetilde{\tau}(f_2)$ and $\widetilde{\tau}(f_1 f_2) \le \widetilde{\tau}(f_2)$.

(ii). If
$$0 < \rho(f_1) = \rho(f_2) = \rho(f_1 + f_2) = \rho(f_1 f_2) < \infty$$
, then

$$\widetilde{\tau}(f_1 + f_2) \le \max{\{\widetilde{\tau}(f_1), \widetilde{\tau}(f_2)\}},$$

$$\widetilde{\tau}(f_1 f_2) \le \widetilde{\tau}(f_1) + \widetilde{\tau}(f_2).$$

Furthermore, if $\widetilde{\tau}(f_1) \neq \widetilde{\tau}(f_2)$, then $\widetilde{\tau}(f_1 + f_2) = \max{\{\widetilde{\tau}(f_1), \widetilde{\tau}(f_2)\}}$.

Theorem 1.8 ([14]). If f_1 and f_2 be two entire functions and $0 < \rho(f_1) = \rho(f_2) < \infty$ and $\tilde{\tau}(f_1) \neq \tilde{\tau}(f_2)$, then $\rho(f_1 + f_2) = \rho(f_1) = \rho(f_2)$.

Analogously p-order and p-type of entire and meromorphic functions are as follows:

Definition 1.9. Let p be an integer and $p \ge 1$. The iterated $p - order \rho_p(f)$ of a meromorphic function f is defined as

$$\rho_p(f) = \limsup_{r \to \infty} \frac{\log_p T(r, f)}{\log r}.$$

Again if f is an entire function, then

$$\rho_p(f) = \limsup_{r \to \infty} \frac{\log_{p+1} M(r, f)}{\log r}.$$

Definition 1.10. The iterated $p-type \ \tau_p(f)$ of a meromorphic function f with iterated $p-order \ (0<\rho_p(f)<\infty)$ is defined as

$$\tau_p(f) = \limsup_{r \to \infty} \frac{\log_{p-1} T(r, f)}{r^{\rho_p(f)}}.$$

Again if f is an entire function, then its iterated $p-type \ \widetilde{\tau}_p(f)$, is defined by

$$\widetilde{\tau}_p(f) = \limsup_{r \to \infty} \frac{\log_p M(r, f)}{r^{\rho_p(f)}}.$$

From above it is clear that $\rho_1(f)$ and $\tau_1(f)$ coincide with $\rho(f)$ and $\tau(f)$ respectively. Several researchers (see [1, 2, 5, 6, 9, 12]) used the concept of the iterated p-order $\rho_p(f)$ instead of the usual order $\rho(f)$ to study the fast growing solutions. Tu-Zeng-Xu [16] generalized Theorems 1.3-1.6 from the usual order to the iterated p – order as follows.

Theorem 1.11 ([16]). Let f_1 and f_2 be two meromorphic functions satisfying $0 < \rho_p(f_1) = \rho_p(f_2) < \infty$ and $\tau_p(f_1) < \tau_p(f_2)$.

Then

- (i). $\rho_p(f_1+f_2)=\rho_p(f_1f_2)=\rho_p(f_1)=\rho_p(f_2)$
- (ii). If p > 1, then $\tau_p(f_1 + f_2) = \tau_p(f_1 f_2) = \tau_p(f_2)$.
- (iii). If p=1, then $\alpha \leq \tau_p(f_1+f_2) \leq \beta$ and $\alpha \leq \tau_p(f_1f_2) \leq \beta$, where $\alpha = \tau_p(f_2) \tau_p(f_1)$ and $\beta = \tau_p(f_1) + \tau_p(f_2)$.

Theorem 1.12 ([16]). Let f_1 and f_2 be two entire functions satisfying $0 < \rho_p(f_1) = \rho_p(f_2) < \infty$ and $\tilde{\tau}_p(f_1) < \tilde{\tau}_p(f_2)$. Then

- (i). If $p \ge 1$, then $\rho_p(f_1 + f_2) = \rho_p(f_1) = \rho_p(f_2)$ and $\widetilde{\tau}_p(f_1 + f_2) = \widetilde{\tau}_p(f_2)$.
- (ii). If p > 1, then $\rho_p(f_1 f_2) = \rho_p(f_1) = \rho_p(f_2)$ and $\tilde{\tau}_p(f_1 f_2) = \tilde{\tau}_p(f_2)$.

Since $\rho_p(f') = \rho_p(f)$, $p \ge 1$ and for a meromorphic function f with finite iterated p - order, Tu-Zeng-Xu [16] proved the following theorem for the iterated p - type.

Theorem 1.13 ([16]). Let p > 1 and f be meromorphic function satisfying $0 < \rho_p(f) < \infty$. Then $\tau_p(f') = \tau_p(f)$.

In [7], Chyzhykov and Semochko introduced the concept of the φ – order. After that, Belaïdi ([3, 4]) improved the results in [7] for the lower φ – order and the lower φ – type.

Definition 1.14 ([7]). Let φ be an increasing unbounded function on $[1, \infty)$. The φ -orders of a meromorphic function f are defined by

$$\begin{split} \rho_{\varphi}^{0}(f) &= \limsup_{r \to \infty} \frac{\varphi(e^{T(r,f)})}{\log r}, \\ \rho_{\varphi}^{1}(f) &= \limsup_{r \to \infty} \frac{\varphi(T(r,f))}{\log r}. \end{split}$$

Again if f is an entire function, then the φ – orders are defined by

$$\begin{split} \widehat{\rho}_{\varphi}^{0}(f) &= \limsup_{r \to \infty} \frac{\varphi(M(r,f))}{\log r}, \\ \widehat{\rho}_{\varphi}^{1}(f) &= \limsup_{r \to \infty} \frac{\varphi(\log M(r,f))}{\log r}. \end{split}$$

By Φ we define the class of positive unbounded increasing functions on $[1,\infty)$ such that $\varphi(e^t)$ is slowly growing i.e.,

$$\forall c > 0: \quad \frac{\varphi(e^{ct})}{\varphi(e^t)} = 1, \quad t \to \infty.$$

Recently, Kara and Belaïdi [11] introduced the following definition.

Definition 1.15 ([11]). Let φ be an increasing unbounded function on $[1, \infty)$. The φ – types of a meromorphic function f with φ – order $\in (0, \infty)$ are defined by

$$\begin{split} \tau_{\varphi}^{0}(f) &= \limsup_{r \to \infty} \frac{e^{\varphi(e^{T(r,f)})}}{r^{\rho_{\varphi}^{0}(f)}}, \\ \tau_{\varphi}^{1}(f) &= \limsup_{r \to \infty} \frac{e^{\varphi(T(r,f))}}{r^{\rho_{\varphi}^{1}(f)}}. \end{split}$$

If f is an entire function, then the φ – types are defined by

$$\begin{split} &\widetilde{\tau}_{\varphi}^{0}(f) = \limsup_{r \to \infty} \frac{e^{\varphi(M(r,f))}}{r^{\widetilde{\rho}_{\varphi}^{0}(f)}}, \\ &\widetilde{\tau}_{\varphi}^{1}(f) = \limsup_{r \to \infty} \frac{e^{\varphi(\log M(r,f))}}{r^{\widetilde{\rho}_{\varphi}^{1}(f)}}. \end{split}$$

In this paper we introduce the definitions of $(p,q)^{th}\psi - orders$ and $(p,q)^{th}\psi - types$ related to $(p,q)^{th}\psi - order$ as follows and generalise all earlier results in our directions where ψ is a positive unbounded increasing function on $[1,\infty)$ satisfying the property $\psi(r_1 + r_2) \leq \psi(r_1) + \psi(r_2)$.

Definition 1.16. Let ψ be an increasing unbounded function on $[1, \infty)$. The $(p, q)^{th}$ ψ – orders of a meromorphic function f are defined by

$$\begin{split} \rho_{\psi}^{[p,q],0}(f) &= \limsup_{r \to \infty} \frac{\log \psi(e^{\log [p-1]}T(r,f))}{\log^{[q]}r}, \\ \rho_{\psi}^{[p,q],1}(f) &= \limsup_{r \to \infty} \frac{\log \psi(\log^{[p-1]}T(r,f))}{\log^{[q]}r}, \quad p \geq q \geq 1. \end{split}$$

If f is an entire function, then the $(p,q)^{th}$ ψ – orders are defined by

$$\begin{split} \widetilde{\rho}_{\psi}^{[p,q],0}(f) &= \limsup_{r \to \infty} \frac{\log \psi(e^{\log[p]}M^{(r,f)})}{\log^{[q]}r}, \\ \widetilde{\rho}_{\psi}^{[p,q],1}(f) &= \limsup_{r \to \infty} \frac{\log \psi(e^{\log[p+1]}M^{(r,f)})}{\log^{[q]}r}. \end{split}$$

Definition 1.17. Let ψ be an increasing unbounded function on $[1, \infty)$. The $(p, q)^{th}$ ψ – types of a meromorphic function f with $(p, q)^{th}$ ψ – order $\in (0, \infty)$ are defined by

$$\begin{split} \tau_{\psi}^{[p,q],0}(f) &= \limsup_{r \to \infty} \frac{\psi(e^{\log[p-1]}T(r,f))}{[\log[q-1]r]^{\rho_{\psi}^{[p,q],0}(f)}}, \\ \tau_{\psi}^{[p,q],1}(f) &= \limsup_{r \to \infty} \frac{\psi(\log[p-1]T(r,f))}{[\log[q-1]r]^{\rho_{\psi}^{[p,q],1}(f)}}. \end{split}$$

If f is an entire function, then the $(p,q)^{th}$ ψ – types are defined as

$$\begin{split} \widetilde{\tau}_{\psi}^{[p,q],0}(f) &= \limsup_{r \to \infty} \frac{\psi(e^{\log^{[p]}M(r,f)})}{[\log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],0}(f)}}, \\ \widetilde{\tau}_{\psi}^{[p,q],1}(f) &= \limsup_{r \to \infty} \frac{\psi(e^{\log^{[p+1]}M(r,f)})}{[\log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f)}}. \end{split}$$

Through out this paper, we assume the standard notations of Nevanlinna value distribution theory of meromorphic functions (see [8, 10, 13, 17]), also we mean by a meromorphic function a function which is meromorphic in the whole complex plane. Also we assume ψ be a positive unbounded increasing function on $[1, \infty)$ satisfying the property $\psi(r_1 + r_2) \leq \psi(r_1) + \psi(r_2)$ for large r_1, r_2 .

2. Basic Theorems

Theorem 2.1. Let f, f_1, f_2 be three meromorphic functions. Then

1.

$$\rho_{ib}^{[p,q],j}(f_1 \pm f_2) \le \max\{\rho_{ib}^{[p,q],j}(f_1), \rho_{ib}^{[p,q],j}(f_2)\}, \quad j = 0, 1. \tag{1}$$

2.

$$\rho_{\psi}^{[p,q],j}(f_1 f_2) \le \max\{\rho_{\psi}^{[p,q],j}(f_1), \rho_{\psi}^{[p,q],j}(f_2)\}, \quad j = 0, 1.$$
(2)

3.

$$\rho_{\psi}^{[p,q],j}(\frac{1}{f}) = \rho_{\psi}^{[p,q],j}(f), \quad j = 0, 1 \text{ and } f \not\equiv 0.$$
(3)

Proof. Let $\alpha = \rho_{\psi}^{[p,q],1}(f_1)$ and $\beta = \rho_{\psi}^{[p,q],1}(f_2)$. Without loss of generality, we may suppose that $\alpha \leq \beta$. Now from the definition of $(p,q)^{th}$ $\psi - order$, for any $\epsilon > 0$ and for all large r

$$\frac{\log \psi(\log^{[p-1]}T(r, f_k))}{\log^{[q]}r} \le (\rho_{\psi}^{[p,q],1}(f_k) + \epsilon), \ k = 1, 2$$

$$or, \log \psi(\log^{[p-1]}T(r, f_k)) \le (\beta + \epsilon)\log^{[q]}r$$

$$or, \log^{[p-1]}T(r, f_k) \le \psi^{-1}(e^{(\beta + \epsilon)\log^{[q]}r})$$

$$or, T(r, f_k) \le \exp^{[p-1]}(\psi^{-1}(e^{(\beta + \epsilon)\log^{[q]}r})).$$

Now from the properties of Nevanlinna characteristic functions, we have

$$T(r, f_1 \pm f_2) \le T(r, f_1) + T(r, f_2) + O(1)$$

$$\le 3[exp^{[p-1]}(\psi^{-1}(e^{(\beta+\epsilon)log^{[q]}r}))]$$

$$< exp^{[p-1]}(\psi^{-1}(e^{(\beta+3\epsilon)log^{[q]}r})).$$

Hence, $\frac{log\psi(log^{[p-1]}T(r,f_1\pm f_2))}{log^{[q]}r}\leq (\beta+3\epsilon) \text{ or, } \rho_{\psi}^{[p,q],1}(f_1\pm f_2)\leq \max\{\rho_{\psi}^{[p,q],1}(f_1),\rho_{\psi}^{[p,q],1}(f_2)\}.$ Properties 2 and 3 can be proved similarly and proofs for $\rho_{\psi}^{[p,q],0}$ are analogous.

Theorem 2.2. Let f_1, f_2 be two meromorphic functions. If $\rho_{\psi}^{[p,q],j}(f_1) < \rho_{\psi}^{[p,q],j}(f_2)$, (j = 0,1), then $\rho_{\psi}^{[p,q],j}(f_1 + f_2) = \rho_{\psi}^{[p,q],j}(f_1f_2) = \rho_{\psi}^{[p,q],j}(f_2)$ for j = 0,1.

Proof. Assume that $\rho_{ib}^{[p,q],j}(f_1) < \rho_{ib}^{[p,q],j}(f_2)$. So by (1), we have

$$\rho_{\psi}^{[p,q],j}(f_1 + f_2) \le \rho_{\psi}^{[p,q],j}(f_2). \tag{4}$$

Again from (1), we get

$$\rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 + f_2 - f_1) \le \max\{\rho_{\psi}^{[p,q],j}(f_1 + f_2), \rho_{\psi}^{[p,q],j}(f_1)\}.$$

So if we suppose that $\rho_{\psi}^{[p,q],j}(f_1) > \rho_{\psi}^{[p,q],j}(f_1 + f_2)$, then

$$\rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 + f_2 - f_1) \leq \max\{\rho_{\psi}^{[p,q],j}(f_1 + f_2), \rho_{\psi}^{[p,q],j}(f_1)\} = \rho_{\psi}^{[p,q],j}(f_1).$$

which contradicts the assumption $\rho_{\psi}^{[p,q],j}(f_1) < \rho_{\psi}^{[p,q],j}(f_2)$. Hence

$$\rho_{\psi}^{[p,q],j}(f_2) \le \rho_{\psi}^{[p,q],j}(f_1 + f_2). \tag{5}$$

So, from (4) and (5) we get,

$$\rho_{\psi}^{[p,q],j}(f_1 + f_2) = \rho_{\psi}^{[p,q],j}(f_2). \tag{6}$$

Again from (2), it follows that

$$\rho_{\psi}^{[p,q],j}(f_1 f_2) \le \rho_{\psi}^{[p,q],j}(f_2). \tag{7}$$

Now by (3), we have

$$\rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1f_2\frac{1}{f_1}) \leq \max\{\rho_{\psi}^{[p,q],j}(f_1f_2), \rho_{\psi}^{[p,q],j}(\frac{1}{f_1})\} = \max\{\rho_{\psi}^{[p,q],j}(f_1f_2), \rho_{\psi}^{[p,q],j}(f_1)\}.$$

So if we suppose $\rho_{\psi}^{[p,q],j}(f_1) > \rho_{\psi}^{[p,q],j}(f_1f_2)$, then

$$\rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 f_2 \frac{1}{f_1}) \le \max\{\rho_{\psi}^{[p,q],j}(f_1 f_2), \rho_{\psi}^{[p,q],j}(f_1)\} = \rho_{\psi}^{[p,q],j}(f_1).$$

which is a contradiction. Hence

$$\rho_{\psi}^{[p,q],j}(f_2) \le \rho_{\psi}^{[p,q],j}(f_1 f_2). \tag{8}$$

So from (7) and (8) we get,

$$\rho_{\psi}^{[p,q],j}(f_1 f_2) = \rho_{\psi}^{[p,q],j}(f_2). \tag{9}$$

Hence the theorem follows from (6) and (9).

3. Main Theorems

Theorem 3.1. Let f_1, f_2 be two meromorphic functions.

(i) If
$$0 < \rho_{\psi}^{[p,q],j}(f_1) < \rho_{\psi}^{[p,q],j}(f_2) < \infty$$
 and $0 = \tau_{\psi}^{[p,q],j}(f_1) < \tau_{\psi}^{[p,q],j}(f_2)$, $(j = 0,1)$, then

$$\tau_{\psi}^{[p,q],j}(f_1+f_2) = \tau_{\psi}^{[p,q],j}(f_1f_2) = \tau_{\psi}^{[p,q],j}(f_2).$$

(ii) If
$$0 < \rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 + f_2) < \infty$$
, $(j = 0, 1)$, then

$$\tau_{\psi}^{[p,q],j}(f_1+f_2) \le \tau_{\psi}^{[p,q],j}(f_1) + \tau_{\psi}^{[p,q],j}(f_2).$$

(iii) If
$$0 < \rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1f_2) < \infty$$
, $(j = 0, 1)$, then

$$\tau_{\psi}^{[p,q],j}(f_1f_2) \le \tau_{\psi}^{[p,q],j}(f_1) + \tau_{\psi}^{[p,q],j}(f_2).$$

Proof. We will prove the theorem for j = 1 and the proofs for j = 0 are analogous.

(i) From the definition of the $\tau_{\psi}^{[p,q],1}$ – type for any given $\epsilon > 0$, there exists a sequence $\{r_n, n \geq 1\}$ tending to infinity such that

$$\tau_{\psi}^{[p,q],1}(f_2) - \epsilon \le \frac{\psi(\log^{[p-1]}T(r_n, f_2))}{[\log^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_2)}}$$

or, $\psi(log^{[p-1]}T(r_n, f_2)) \geq (\tau_{\psi}^{[p,q],1}(f_2) - \epsilon)[log^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_2)}$ and for all sufficiently large values of r,

$$\psi(\log^{[p-1]}T(r,f_1)) \le (\tau_{\psi}^{[p,q],1}(f_1) + \epsilon)[\log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1)}.$$

We know that $T(r, f_1 + f_2) \ge T(r, f_2) - T(r, f_1) - \log 2$

or,
$$log^{[p-1]}T(r_n, f_1 + f_2) \ge log^{[p-1]}T(r_n, f_2) - log^{[p-1]}T(r_n, f_1) + O(1)$$

or,
$$\psi(log^{[p-1]}T(r_n, f_1 + f_2)) \ge \psi(log^{[p-1]}T(r_n, f_2)) - \psi(log^{[p-1]}T(r_n, f_1)) + O(1)$$

or,
$$\psi(log^{[p-1]}T(r_n, f_1 + f_2)) \ge (\tau_{\psi}^{[p,q],1}(f_2) - \epsilon)[log^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_2)} - (\tau_{\psi}^{[p,q],1}(f_1) + \epsilon)[log^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_1)} + O(1)$$

or,
$$\psi(log^{[p-1]}T(r_n, f_1 + f_2)) \ge (\tau_{\psi}^{[p,q],1}(f_2) - 2\epsilon)[log^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_2)} + O(1)$$

provided ϵ such that $0 < 2\epsilon < \tau_{\psi}^{[p,q],1}(f_2)$. Again we get from Theorem 2.2, $\rho_{\psi}^{[p,q],1}(f_1 + f_2) = \rho_{\psi}^{[p,q],1}(f_2)$ and hence from above

$$\frac{\psi[log^{[p-1]}T(r_n, f_1 + f_2)]}{[loq^{[q-1]}r_n]^{\rho_{\psi}^{[p,q],1}(f_1 + f_2)}} \ge \tau_{\psi}^{[p,q],1}(f_2) - 2\epsilon + o(1).$$

Since $\epsilon > 0$ is arbitrary so

$$\tau_{\psi}^{[p,q],1}(f_1 + f_2) \ge \tau_{\psi}^{[p,q],1}(f_2). \tag{10}$$

For reverse inequality since

$$\rho_{\psi}^{[p,q],1}(f_1+f_2) = \rho_{\psi}^{[p,q],1}(f_2) > \rho_{\psi}^{[p,q],1}(f_1) = \rho_{\psi}^{[p,q],1}(-f_1),$$

so applying (10) we obtain

$$\tau_{\psi}^{[p,q],1}(f_2) = \tau_{\psi}^{[p,q],1}(f_1 + f_2 - f_1) \ge \tau_{\psi}^{[p,q],1}(f_1 + f_2). \tag{11}$$

Hence from (10) and (11) we get $\tau_{\psi}^{[p,q],1}(f_1+f_2) = \tau_{\psi}^{[p,q],1}(f_2)$. Now we have to show that $\tau_{\psi}^{[p,q],1}(f_1f_2) = \tau_{\psi}^{[p,q],1}(f_2)$. By the property

$$T(r, f_1 f_2) \ge T(r, f_2) - T(r, f_1) + O(1).$$
 (12)

and a similar discussion as in the above proof, one can easily show that

$$\tau_{\psi}^{[p,q],1}(f_1 f_2) \ge \tau_{\psi}^{[p,q],1}(f_2). \tag{13}$$

Since $\rho_{\psi}^{[p,q],1}(f_1f_2) = \rho_{\psi}^{[p,q],1}(f_2) > \rho_{\psi}^{[p,q],1}(f_1) = \rho_{\psi}^{[p,q],1}(\frac{1}{f_1})$. So, from (13), we get

$$au_{\psi}^{[p,q],1}(f_2) = au_{\psi}^{[p,q],1}(f_1 f_2 \frac{1}{f_1}) \ge au_{\psi}^{[p,q],1}(f_1 f_2)$$

and therefore we get from above

$$\tau_{\psi}^{[p,q],1}(f_1f_2) = \tau_{\psi}^{[p,q],1}(f_2).$$

This proves the first part of the theorem.

(ii) From the definition of the $\tau_{\psi}^{[p,q],1} - type$ for any given $\epsilon > 0$ and for all sufficiently large values of r we have

$$\psi(log^{[p-1]}T(r,f_i)) \le (\tau_{\psi}^{[p,q],1}(f_i) + \epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_i)} \quad i = 1, 2.$$

Now
$$T(r, f_1 + f_2) \le T(r, f_1) + T(r, f_2) + O(1)$$

or,
$$log^{[p-1]}T(r, f_1 + f_2) \le log^{[p-1]}T(r, f_1) + log^{[p-1]}T(r, f_2) + O(1)$$

or,
$$\psi(log^{[p-1]}T(r, f_1 + f_2)) \le \psi(log^{[p-1]}T(r, f_1)) + \psi(log^{[p-1]}T(r, f_2)) + O(1)$$

$$\text{or, } \psi(log^{[p-1]}T(r,f_1+f_2)) \leq (\tau_{\psi}^{[p,q],1}(f_1)+\epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1+f_2)} + (\tau_{\psi}^{[p,q],1}(f_2)+\epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1+f_2)} + O(1)$$

or,
$$\psi(log^{[p-1]}T(r, f_1 + f_2)) \le (\tau_{\psi}^{[p,q],1}(f_1) + \tau_{\psi}^{[p,q],1}(f_2)) + 2\epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1 + f_2)} + O(1).$$

Hence,

$$\frac{\psi(log^{[p-1]}T(r,f_1+f_2))}{[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1+f_2)}} \leq \tau_{\psi}^{[p,q],1}(f_1) + \tau_{\psi}^{[p,q],1}(f_2) + 2\epsilon + o(1).$$

Since $\epsilon > 0$ is arbitrary, so we get

$$au_{\psi}^{[p,q],1}(f_1+f_2) \le au_{\psi}^{[p,q],1}(f_1) + au_{\psi}^{[p,q],1}(f_2).$$

This proves the second part of the theorem.

(iii) From the definition of the $\tau_{\psi}^{[p,q],1}-type$ for any given $\epsilon>0$ and for all sufficiently large values of r we have

$$\psi(log^{[p-1]}T(r,f_i)) \le (\tau_{\psi}^{[p,q],1}(f_i) + \epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_i)} \quad i = 1, 2.$$

Now
$$T(r, f_1 f_2) \le T(r, f_1) + T(r, f_2)$$

or,
$$log^{[p-1]}T(r, f_1f_2) \le log^{[p-1]}T(r, f_1) + log^{[p-1]}T(r, f_2)$$

or,
$$\psi(log^{[p-1]}T(r, f_1f_2)) \le \psi(log^{[p-1]}T(r, f_1)) + \psi(log^{[p-1]}T(r, f_2))$$

or,
$$\psi(log^{[p-1]}T(r, f_1f_2)) \leq (\tau_{\psi}^{[p,q],1}(f_1) + \epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1f_2)} + (\tau_{\psi}^{[p,q],1}(f_2) + \epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1f_2)}$$

or,
$$\psi(log^{[p-1]}T(r, f_1f_2)) \le (\tau_{\psi}^{[[p,q],1}(f_1) + \tau_{\psi}^{[[p,q],1}(f_2)) + 2\epsilon)[log^{[q-1]}r]^{\rho_{\psi}^{[[p,q],1}(f_1f_2)}$$

Hence,

$$\frac{\psi(log^{[p-1]}T(r,f_1f_2))}{[log^{[q-1]}r]^{\rho_{\psi}^{[p,q],1}(f_1f_2)}} \le \tau_{\psi}^{[p,q],1}(f_1) + \tau_{\psi}^{[p,q],1}(f_2) + 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, so we get

$$\tau_{\psi}^{[p,q],1}(f_1f_2) \le \tau_{\psi}^{[p,q],1}(f_1) + \tau_{\psi}^{[p,q],1}(f_2).$$

This completes the proof.

Theorem 3.2. Let f_1, f_2 be two meromorphic functions.

(i) If
$$0 < \rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 + f_2) < \infty$$
, $(j = 0,1)$, then

$$\tau_{\psi}^{[p,q],j}(f_1) \le \tau_{\psi}^{[p,q],j}(f_1 + f_2) + \tau_{\psi}^{[p,q],j}(f_2), \text{ for } j = 0, 1.$$

(ii) If
$$0 < \rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(f_1 f_2) < \infty, \ (j=0,1)$$
 then

$$\tau_{\psi}^{[p,q],j}(f_1) \le \tau_{\psi}^{[p,q],j}(f_1f_2) + \tau_{\psi}^{[p,q],j}(f_2), \text{ for } j = 0, 1.$$

Proof. The proofs of the theorem are follows immediately from Theorem 3.1 (ii). Since $\rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_1 + f_2) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(-f_2)$, then we get

$$\tau_{\psi}^{[p,q],j}(f_1) = \tau_{\psi}^{[p,q],j}(f_1 + f_2 - f_2) \le \tau_{\psi}^{[p,q],j}(f_1 + f_2) + \tau_{\psi}^{[p,q],j}(f_2).$$

Similarly using Theorem 3.1 (iii) and since $\rho_{\psi}^{[p,q],j}(f_1) = \rho_{\psi}^{[p,q],j}(f_1f_2) = \rho_{\psi}^{[p,q],j}(f_2) = \rho_{\psi}^{[p,q],j}(\frac{1}{f_2})$, so we have

$$\tau_{\psi}^{[p,q],j}(f_1) = \tau_{\psi}^{[p,q],j}(f_1 f_2 \frac{1}{f_2}) \le \tau_{\psi}^{[p,q],j}(f_1 f_2) + \tau_{\psi}^{[p,q],j}(f_2).$$

This completes the proof.

Theorem 3.3. Let f_1, f_2 be two entire functions.

(i) If
$$0 < \widetilde{\rho}_{\psi}^{[p,q],j}(f_1) < \widetilde{\rho}_{\psi}^{[p,q],j}(f_2) < \infty$$
 and $0 = \widetilde{\tau}_{\psi}^{[p,q],j}(f_1) < \widetilde{\tau}_{\psi}^{[p,q],j}(f_2)$, $(j = 0,1)$, then

$$\widetilde{ au}_{\psi}^{[p,q],j}(f_1+f_2) = \widetilde{ au}_{\psi}^{[p,q],j}(f_2), \ \widetilde{ au}_{b}^{[p,q],j}(f_1f_2) \le \widetilde{ au}_{b}^{[p,q],j}(f_2).$$

(ii) If
$$0 < \widetilde{\rho}_{\psi}^{[p,q],j}(f_1) = \widetilde{\rho}_{\psi}^{[p,q],j}(f_2) = \widetilde{\rho}_{\psi}^{[p,q],j}(f_1 + f_2) < \infty$$
, $(j = 0, 1)$, then

$$\widetilde{\tau}_{\psi}^{[p,q],j}(f_1+f_2) \le \widetilde{\tau}_{\psi}^{[p,q],j}(f_1) + \widetilde{\tau}_{\psi}^{[p,q],j}(f_2).$$

(iii) If
$$0 < \widetilde{\rho}_{\psi}^{[p,q],j}(f_1) = \widetilde{\rho}_{\psi}^{[p,q],j}(f_2) = \widetilde{\rho}_{\psi}^{[p,q],j}(f_1f_2) < \infty, \ (j=0,1), \ then$$

$$\widetilde{\tau}_{\psi}^{[p,q],j}(f_1f_2) \le \widetilde{\tau}_{\psi}^{[p,q],j}(f_1) + \widetilde{\tau}_{\psi}^{[p,q],j}(f_2).$$

Proof. We will prove the theorem for j = 1 and the proofs for j = 0 are analogous.

(i) From the definition of $\tilde{\tau}_{\psi}^{[p,q],1} - type$ for any given $\epsilon > 0$, there exists a sequence $\{r_n, n \geq 1\}$ tending to infinity such that

$$\psi(\log^{[p]} M(r_n, f_2)) \ge (\tilde{\tau}_{\psi}^{[p,q],1}(f_2) - \epsilon)[\log^{[q-1]} r_n]^{\tilde{\rho}_{\psi}^{[p,q],1}(f_2)}$$

and for all sufficiently large values of r we obtain,

$$\psi(\log^{[p]} M(r, f_1) \le (\widetilde{\tau}_{\psi}^{[p,q], 1}(f_1) + \epsilon) [\log^{[q-1]} r]^{\widetilde{\rho}_{\psi}^{[p,q], 1}(f_1)}$$

Now from of the each circle $|z| = r_n$ we choose a sequence $\{z_n, n \ge 1\}$ with $|z_n| = r_n$ and satisfying $|f_2(z_n)| = M(r_n, f_2)$,

we get,
$$M(r_n, f_1 + f_2) \ge |f_1(z_n) + f_2(z_n)|$$

or,
$$M(r_n, f_1 + f_2) \ge |f_2(z_n)| - |f_1(z_n)|$$

or,
$$M(r_n, f_1 + f_2) \ge M(r_n, f_2) - M(r_n, f_1)$$

or,
$$log^{[p]}M(r_n, f_1 + f_2) \ge log^{[p]}M(r_n, f_2) - log^{[p]}M(r_n, f_1)$$

$$\begin{split} or, & \psi(log^{[p]}M(r_n,f_1+f_2)) \geq \psi(log^{[p]}M(r_n,f_2)) - \psi(log^{[p]}M(r_n,f_1)) \\ & \geq [(\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) - \epsilon) - (\widetilde{\tau}_{\psi}^{[p,q],1}(f_1) + \epsilon)][log^{[q-1]}r_n]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_2)} \\ & = (\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) - 2\epsilon)[log^{[q-1]}r_n]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_2)} \end{split}$$

provided ϵ such that $0 < 2\epsilon < \widetilde{\tau}_{\psi}^{[p,q],1}(f_2)$ and $r_n \to \infty$. It follows from Theorem 2.2, we get, $\widetilde{\rho}_{\psi}^{[p,q],1}(f_1+f_2) = \widetilde{\rho}_{\psi}^{[p,q],1}(f_2)$. So we get from above

$$\frac{\psi(\log^{[p]}M(r_n,f_1+f_2))}{[\log^{[q-1]}r_n]^{\tilde{\rho}_{\psi}^{[p,q],1}(f_1+f_2)}} \geq \tilde{\tau}_{\psi}^{[p,q],1}(f_2) - 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary so

$$\widetilde{\tau}_{\psi}^{[p,q],1}(f_1 + f_2) \ge \widetilde{\tau}_{\psi}^{[p,q],1}(f_2).$$
 (14)

For reverse inequality since

$$\widetilde{\rho}_{\psi}^{[p,q],1}(f_1+f_2) = \widetilde{\rho}_{\psi}^{[p,q],1}(f_2) > \widetilde{\rho}_{\psi}^{[p,q],1}(f_1) = \widetilde{\rho}_{\psi}^{[p,q],1}(-f_1),$$

so applying (14) we obtain

$$\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) = \widetilde{\tau}_{\psi}^{[p,q],1}(f_1 + f_2 - f_1) \ge \widetilde{\tau}_{\psi}^{[p,q],1}(f_1 + f_2).$$

So finally we get from above $\tilde{\tau}_{\psi}^{[p,q],1}(f_1+f_2) = \tilde{\tau}_{\psi}^{[p,q],1}(f_2)$. Now we have to show that $\tilde{\tau}_{\psi}^{[p,q],1}(f_1f_2) \leq \tilde{\tau}_{\psi}^{[p,q],1}(f_2)$. By the property $M(r, f_1f_2) \leq M(r, f_1)M(r, f_2)$

or,

$$log M(r, f_1 f_2) \le log(M(r, f_1)M(r, f_2))$$
$$= log M(r, f_1) + log M(r, f_2)$$

or, $log^{[p]}M(r, f_1f_2) \leq log^{[p]}M(r, f_1) + log^{[p]}M(r, f_2)$

or,

$$\begin{split} \psi(\log^{[p]}M(r,f_1f_2)) &\leq \psi(\log^{[p]}M(r,f_1)) + \psi(\log^{[p]}M(r,f_2)) \\ &\leq [(\widetilde{\tau}_{\psi}^{[p,q],1}(f_1) + \epsilon) + (\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) + \epsilon)][\log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_2)} \\ &= (\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) + 2\epsilon)[\log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_2)}. \end{split}$$

It follows from Theorem 2.2 we get, $\tilde{\rho}_{\psi}^{[p,q],1}(f_2) = \tilde{\rho}_{\psi}^{[p,q],1}(f_1f_2)$. So we get from above

$$\frac{\psi(log^{[p]}M(r,f_1f_2))}{[log^{[q-1]}r]^{\tilde{\rho}_{\psi}^{[p,q],1}(f_1f_2)}} \leq \tilde{\tau}_{\psi}^{[p,q],1}(f_2) + 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we get

$$\widetilde{\tau}_{\psi}^{[p,q],1}(f_1f_2) \leq \widetilde{\tau}_{\psi}^{[p,q],1}(f_2).$$

This proves the first part of the theorem.

(ii) From the definition of $\tilde{\tau}_{\psi}^{[p,q],1} - type$ for any given $\epsilon > 0$ and for all sufficiently large values of r

$$\psi(\log^{[p]}M(r,f_i)) \leq (\widetilde{\tau}_{\psi}^{[p,q],1}(f_i) + \epsilon)[\log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_i)} \quad i = 1, 2.$$

Now,
$$M(r, f_1 + f_2) \le M(r, f_1) + M(r, f_2)$$

or, $\log^{[p]} M(r, f_1 + f_2) \le \log^{[p]} M(r, f_1) + \log^{[p]} M(r, f_2)$
or,

$$\begin{split} \psi(log^{[p]}M(r,f_1+f_2)) &\leq \psi(log^{[p]}M(r,f_1)) + \psi(log^{[p]}M(r,f_2)) \\ &\leq [(\widetilde{\tau}_{\psi}^{[p,q],1}(f_1) + \epsilon) + (\widetilde{\tau}_{\psi}^{[p,q],1}(f_2) + \epsilon)][log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_1+f_2)}. \end{split}$$

Hence,

$$\frac{\psi(\log^{[p]}M(r,f_1+f_2))}{[\log^{[q-1]}r]\tilde{\rho}_{\psi}^{[p,q],1}(f_1+f_2)} \leq \tilde{\tau}_{\psi}^{[p,q],1}(f_1) + \tilde{\tau}_{\psi}^{[p,q],1}(f_2) + 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, so we get

$$\widetilde{\tau}_{\psi}^{[p,q],1}(f_1+f_2) \leq \ \widetilde{\tau}_{\psi}^{[p,q],1}(f_1) + \widetilde{\tau}_{\psi}^{[p,q],1}(f_2).$$

This proves the second part of the theorem.

(iii) From the definition of $\tilde{\tau}_{\psi}^{[p,q],1} - type$ for any given $\epsilon > 0$ and for all sufficiently large values of r

$$\psi(\log^{[p]} M(r,f_i)) \leq (\widetilde{\tau}_{\psi}^{[p,q],1}(f_i) + \epsilon)[\log^{[q-1]} r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_i)} \quad i = 1, 2.$$

Now $M(r, f_1 f_2) \le M(r, f_1) M(r, f_2)$

or,

$$log M(r, f_1 f_2) \le log(M(r, f_1)M(r, f_2))$$
$$= log M(r, f_1) + log M(r, f_2)$$

or, $log^{[p]}M(r, f_1f_2) \le log^{[p]}M(r, f_1) + log^{[p]}M(r, f_2)$

or,

$$\begin{split} \psi(log^{[p]}M(r,f_{1}f_{2})) &\leq \psi(log^{[p]}M(r,f_{1})) + \psi(log^{[p]}M(r,f_{2})) \\ &\leq [(\widetilde{\tau}_{\psi}^{[p,q],1}(f_{1}) + \epsilon) + (\widetilde{\tau}_{\psi}^{[p,q],1}(f_{2}) + \epsilon)][log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_{1}f_{2})} \\ &= (\widetilde{\tau}_{\psi}^{[p,q],1}(f_{1}) + \widetilde{\tau}_{\psi}^{[p,q],1}(f_{2}) + 2\epsilon)[log^{[q-1]}r]^{\widetilde{\rho}_{\psi}^{[p,q],1}(f_{1}f_{2})}. \end{split}$$

Hence,

$$\frac{\psi(log^{[p]}M(r,f_1f_2))}{[log^{[q-1]}r]^{\tilde{\rho}_{\psi}^{[p,q],1}(f_1f_2)}} \leq \tilde{\tau}_{\psi}^{[p,q],1}(f_1) + \tilde{\tau}_{\psi}^{[p,q],1}(f_2) + 2\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we get

$$\widetilde{\tau}_{\psi}^{[p,q],1}(f_1f_2) \le \widetilde{\tau}_{\psi}^{[p,q],1}(f_1) + \widetilde{\tau}_{\psi}^{[p,q],1}(f_2).$$

This completes the proof.

Theorem 3.4. Let f be a meromorphic function. Then

$$\rho_{\psi}^{[p,q],j}(f^{'}) \leq \rho_{\psi}^{[p,q],j}(f) \text{ for } j = 0, 1.$$

Proof. Take $\rho_{\psi}^{[p,q],1}(f) = \alpha$. So from the definition of $\rho_{\psi}^{[p,q],1} - order$ for any $\epsilon > 0$ and for all $r > r_0$, we have

$$T(r,f) = O(\exp^{[p-1]}(\psi^{-1}(e^{\log^{[q]}r(\alpha+\epsilon)}))).$$

Now by the lemma of logarithmic derivative ([10, 13]), we get

$$\begin{split} T(r,f^{'}) &= m(r,f^{'}) + N(r,f^{'}) \\ &\leq m(r,\frac{f^{'}}{f}) + m(r,f) + 2N(r,f) \\ &\leq m(r,\frac{f^{'}}{f}) + 2T(r,f) \\ &= O(\log T(r,f) + \log r) + 2T(r,f) \\ &\leq 3T(r,f) + O(1) \\ &= O(\exp^{[p-1]}(\psi^{-1}(e^{(\alpha+3\epsilon)\log^{[q]}r}))), \quad r \not\in E. \end{split}$$

where $E \subset [0,\infty)$ is a set of finite linear measure. So from above for all sufficiently large values of r

$$log\psi(log^{[p-1]}T(r,f^{'})) \leq (\alpha + 3\epsilon)log^{[q]}r.$$

By the arbitrariness of ϵ , we finally get

$$\rho_{\psi}^{[p,q],1}(f^{'}) \le \alpha = \rho_{\psi}^{[p,q],1}(f).$$

This proves the theorem.

Theorem 3.5. Let f be a meromorphic function. Then

$$\tau_{\psi}^{[p,q],j}(f') \leq \tau_{\psi}^{[p,q],j}(f) \text{ for } j = 0, 1.$$

Proof. Take $\rho_{\psi}^{[p,q],1}(f) = \alpha$. So from the definition of $\tau_{\psi}^{[p,q],1} - type$ for any $\epsilon > 0$ and for all $r > r_0$, we have

$$T(r,f) = O[exp^{[p-1]}[\psi^{-1}((\tau_{b}^{[p,q],1} + \epsilon)[log^{[q-1]}r]^{\alpha})]].$$

Now by the lemma of logarithmic derivative ([10, 13]), we get

$$\begin{split} T(r,f^{'}) &= m(r,f^{'}) + N(r,f^{'}) \\ &\leq m(r,\frac{f^{'}}{f}) + m(r,f) + 2N(r,f) \\ &\leq m(r,\frac{f^{'}}{f}) + 2T(r,f) \\ &= O(\log T(r,f) + \log r) + 2T(r,f) \\ &\leq 3T(r,f) + O(1) \\ &= O[\exp^{[p-1]}[\psi^{-1}((\tau_{\psi}^{[p,q],1} + 3\epsilon)[\log^{[q-1]}r]^{\alpha})]], \quad r \not\in E. \end{split}$$

where $E \subset [0,\infty)$ is a set of finite linear measure. So from above for all sufficiently large values of r

$$\psi(log^{[p-1]}T(r,f^{'})) \leq ((\tau_{\psi}^{[p,q],1}+3\epsilon)[log^{[q-1]}r]^{\alpha}).$$

By the arbitrariness of ϵ , we finally get

$$\tau_{\psi}^{[p,q],1}(f') \leq \tau_{\psi}^{[p,q],1}(f).$$

This proves the theorem.

References

- [1] B. Belaïdi, On the iterated order and fixed points of entire solutions of some complex linear differential equations, Electron. J. Qual. Theory Differ. Equ., (2006), 1-11.
- [2] B. Belaïdi, Growth and oscillation of solutions to linear differential equations with entire coefficients having the same order, Electron. J. Differential Equations, 2009(2009), 1-10.
- [3] B. Belaïdi, Growth of ρ_{φ} -order solutions of linear differential equations with entire coefficients, PanAmer. Math. J., 27(2017), 26-42.

- [4] B. Belaïdi, Fast growing solutions to linear differential equations with entire coefficients having the same ρ_{φ} -order, J. of Math. and Applications, 42(2019), 63-77.
- [5] T. B. Cao, J. F. Xu and Z. X. Chen, On the meromorphic solutions of linear differential equations on the complex plane,
 J. Math. Anal. Appl., 364(2010), 130-142.
- [6] T. B. Cao and H. X. Yi, The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc, J. Math. Anal. Appl., 319(2006), 278-294.
- [7] I. Chyzhykov and N. Semochko, Fast growing entire solutions of linear differential equations, Math. Bull. Shevchenko Sci. Soc., 13(2016), 1-16.
- [8] A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Irdat Nauk, Moscow, 1970 (in Russian), Transl. Math. Monogr., vol. 236, Amer. Math. Soc., Providence RI, (2008).
- [9] K. Hamani and B. Belaïdi, Growth of solutions of complex linear differential equations with entire coefficients of finite iterated order, Acta Univ. Apulensis Math. Inform, 27(2011), 203-216.
- [10] W. Hayman, Meromorphic Functions, Oxford Mathematical Monographs Clarendon Press, Oxford, (1964).
- [11] M. A. Kara and B. Belaïdi, Some estimates of the φ -order and the φ -type of entire and meromorphic functions, Int. J. Open Problems Complex Analysis, 10(2019), 42-58.
- [12] L. Kinnunen, Linear dfffierential equations with solutions of finite iterated order, Southeast Asian Bull. Math., 22(1998), 385-405.
- [13] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, 15. Walter de Gruyter and Co., Berlin, (1993).
- [14] Z. Latreuch and B. Belaïdi, New estimations about the order of growth and the type of meromorphic functions in the complex plane, An. Univ. Oradea Fasc. Mat., 20(2013), 169-176.
- [15] B. Ya Levin, Lectures on entire functions, In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko. Translated from the Russian manuscript by Tkachenko. Translations of Mathematical Monographs, 150. American Mathematical Society, Providence, RI, (1996).
- [16] J. Tu, Y. Zeng and H. Y. Xu, The order and type of meromorphic functions and entire functions of finite iterated order, J. Comput. Anal. Appl., 21(2016), 994-1003.
- [17] L. Yang, Value distribution theory, Springer-Verlag, Berlin, (1993).