Radius Problem for Subclasses of Harmonic Univalent Functions

Vadivelan Urkalan ${ }^{1, *}$ Thomas Rosy ${ }^{2}$ and S. Sunil Varma ${ }^{2}$
1 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R \& D Institute of Science and Technology, Tamil Nadu, India.
2 Department of Mathematics, Madras Christian College, Tambaram, Chennai, Tamil Nadu, India.

Abstract

Let $f=h+\bar{g}$ be harmonic functions in the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$ normalized by $f(0)=0=f_{z}(0)-1$. In this paper we find the radius of the Goodman-Ronning type starlikeness and convexity of $D_{f}^{\varepsilon}=z f_{z}-\varepsilon \bar{z} f_{\bar{z}}(|\varepsilon|=1)$, when the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions.

Keywords: Univalent functions, Harmonic functions, Goodman-Ronning type functions.
(c) JS Publication.

Accepted on: 17.08.2018

1. Introduction

Let H denote the class of all complex-valued harmonic functions f in the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$ normalized by $f(0)=0=f_{z}(0)-1$. The harmonic function f has a unique representation $f=h+\bar{g}$, where h and g are analytic and co-analytic parts of f given by

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} ; g(z)=\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{1}
\end{equation*}
$$

The Jacobian of $f=h+\bar{g}$ is given by $J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}$. The map f is sense preserving and locally one to one in D if and only if $J_{f}(z)>0$ in D (see [3]). We now recall a few basic subclasses of harmonic functions (see [3, 5]). Let $H_{S P}$ be the subclass of H, consisting of sense preserving functions. For the functions in this class, $\left|b_{1}\right|<1$. Let H^{0} denote the subclass of H with $b_{1}=0$. The class $H_{S P}^{0}=H_{S P} \cap H^{0}$ contains all sense preserving harmonic functions with $b_{1}=0$. Let S_{H} and S_{H}^{0} be the subclasses of $H_{S P}$ and $H_{S P}^{0}$ respectively containing univalent harmonic functions and S_{H}^{*}, K_{H} and C_{H} be the subclasses of S_{H} mapping D on to star-like, convex and close-to-convex domains, respectively. Let $K_{H}^{* 0}, S_{H}^{* 0}$ denote the subclasses of S_{H}^{0} consisting of functions mapping D on to convex and star-like domains respectively. In 1984, Clunie and Sheil-Small [3], conjectured that if $f \in S_{H}^{0}$ then the Taylor coefficients of the functions h and g satisfy the inequality

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{6}(2 n+1)(n+1) \quad\left|b_{n}\right| \leq \frac{1}{6}(2 n-1)(n-1) \text { for all } \mathrm{n} \geq 2 . \tag{2}
\end{equation*}
$$

Equality holds for the harmonic Koebe function defined by

$$
\begin{equation*}
K(z)=H_{1}(z)+\overline{G_{1}(z)}=\frac{z-\frac{1}{2} z^{2}+\frac{1}{6} z^{3}}{(1-z)^{3}}+\frac{\overline{\frac{1}{2} z^{2}+\frac{1}{6} z^{3}}}{(1-z)^{3}} . \tag{3}
\end{equation*}
$$

[^0]In [3], if $f=h+\bar{g} \in C_{H}^{0}$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{n+1}{2} \text { and }\left|b_{n}\right| \leq \frac{n-1}{2} \text {, } \tag{4}
\end{equation*}
$$

holds for all $n \geq 2$. Equality holds for the harmonic right half-plane mapping $L \in C_{H}^{0}$ given by

$$
\begin{equation*}
L(z)=H_{2}(z)+\overline{G_{2}(z)}=\frac{z-\frac{1}{2} z^{2}}{(1-z)^{2}}+\frac{\overline{-\frac{1}{2} z^{2}}}{(1-z)^{2}} . \tag{5}
\end{equation*}
$$

In $[1,6,7]$, Thomas Rosy introduced and examined two new subclass of harmonic univalent functions of Goodman-Ronning type.

Definition 1.1 ([6]). A function $f \in H$ is said to be in the subclass $G_{H}(\alpha)$ if $\operatorname{Re}\left\{\left(1+e^{i \gamma}\right) \frac{z f^{\prime}(z)}{z^{\prime} f(z)}-e^{i \gamma}\right\}>\alpha, 0 \leq \alpha<1$. Here $z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), f^{\prime}(z)=\frac{\partial}{\partial \theta}(f(z))=\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right), 0 \leq r<1, \theta \in \mathbb{R}$.

Lemma $1.2([6])$. Let $f=h+\bar{g}$, where h and g are given by (1), and let

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\frac{2 n-1-\alpha}{1-\alpha}\left|a_{n}\right|+\frac{2 n+1+\alpha}{1-\alpha}\left|b_{n}\right|\right] \leq 2 \tag{6}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$, then f is harmonic univalent in D and $f \in G_{H}(\alpha)$.
Definition 1.3 ([7]). A function $f \in H$ is said to be in the subclass $G K_{H}(\alpha)$ if $\operatorname{Re}\left\{1+\left(1+e^{i \gamma}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-e^{i \gamma}\right\}>\alpha$, $0 \leq \alpha<1$. Here $z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right), f^{\prime}(z)=\frac{\partial}{\partial \theta}(f(z))=\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right), 0 \leq r<1, \theta \in \mathbb{R}$.

Lemma 1.4 ([7]). Let $f=h+\bar{g}$, where h and g are given by (1) and let

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\frac{n(2 n-1-\alpha)}{1-\alpha}\left|a_{n}\right|+\frac{n(2 n+1+\alpha)}{1-\alpha}\left|b_{n}\right|\right] \leq 2 \tag{7}
\end{equation*}
$$

where $a_{1}=1$ and $0 \leq \alpha<1$, then f is harmonic univalent in D and $f \in G K_{H}(\alpha)$.

2. Radius of the Goodman-Ronning type Starlikeness and Convexity of D_{f}^{ε}

The sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D_{f}^{\varepsilon}=$ $z f_{z}-\varepsilon \bar{z} f_{\bar{z}}(|\varepsilon|=1)$ are obtained for $f=h+\bar{g}$, where h and g are given by (1) and $F_{\lambda}(z)=(1-\lambda) f+\lambda D_{f}^{\varepsilon}(0 \leq \lambda \leq 1)$ when the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions (see [2,4]). We consider the function from the classes $G_{H}(\alpha), G K_{H}(\alpha)$ and obtain the radius of starlikeness and convexity of order α for the harmonic linear differential operator D_{f}^{ε}. We now recall certain standard sums,
(a). $\sum_{n=2}^{\infty} n r^{n-1}=\frac{r(2-r)}{(1-r)^{2}}$.
(b). $\sum_{n=2}^{\infty} n^{2} r^{n-1}=\frac{r\left(4-3 r+r^{2}\right)}{(1-r)^{3}}$.
(c). $\sum_{n=2}^{\infty} n^{3} r^{n-1}=\frac{r\left(8-5 r+4 r^{2}-r^{3}\right)}{(1-r)^{4}}$.
(d). $\sum_{n=2}^{\infty} n^{4} r^{n-1}=\frac{r\left(16+r+11 r^{2}-5 r^{3}+r^{4}\right)}{(1-r)^{5}}$.
(e). $\sum_{n=2}^{\infty} n^{5} r^{n-1}=\frac{r\left(32+51 r+46 r^{2}-14 r^{3}+6 r^{4}-r^{5}\right)}{(1-r)^{5}}$.

For $0<r<1$ and $f=h+\bar{g} \in H$, the operator $D_{f}^{\varepsilon, r}$ is defined by

$$
\begin{equation*}
D_{f}^{\varepsilon, r}(z)=\frac{D_{f}^{\varepsilon}(r z)}{r}=z+\sum_{n=2}^{\infty} n a_{n} r^{n-1} z^{n}-\varepsilon \overline{\sum_{n=2}^{\infty} n b_{n} r^{n-1} z^{n}},|\varepsilon|=1 . \tag{8}
\end{equation*}
$$

Theorem 2.1. Let $f=h+\bar{g}$, where h and g are given by (1) and the coefficients satisfy the condition (2) for $n \geq 2$. Then,
(1). $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ for $r \leq r_{1}(\alpha)$, where $r_{1}(\alpha)$ is the unique real root of the equation

$$
\begin{equation*}
(1-\alpha)-(25-9 \alpha) r+(5-21 \alpha) r^{2}-21(1-\alpha) r^{3}+10(1-\alpha) r^{4}-2(1-\alpha) r^{5}=0 \tag{9}
\end{equation*}
$$

in the interval $(0,1)$.
(2). $D_{f}^{\varepsilon, r} \in G_{H}(0)$ for $r \leq r_{1}(0)$, where $r_{1}(0) \approx 0.040270$ is the unique real root of the equation

$$
\begin{equation*}
1-25 r+5 r^{2}-21 r^{3}+10 r^{4}-2 r^{5}=0 \tag{10}
\end{equation*}
$$

in the interval $(0,1)$.

Proof. Let $0<r<1$, it suffices to show that $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ where $D_{f}^{\varepsilon, r}$ is defined as in (8). Consider,

$$
S_{1}=\sum_{n=2}^{\infty} \frac{2 n-1-\alpha}{1-\alpha}\left|n a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty} \frac{2 n+1+\alpha}{1-\alpha}\left|n b_{n}\right| r^{n-1} .
$$

Using the coefficient bounds (2),

$$
\begin{aligned}
S_{1} & \leq \sum_{n=2}^{\infty} \frac{(2 n-1-\alpha)}{1-\alpha}\left(\frac{n(2 n+1)(n+1)}{6}\right) r^{n-1}+\sum_{n=2}^{\infty} \frac{(2 n+1+\alpha)}{1-\alpha}\left(\frac{n(2 n-1)(n-1)}{6}\right) r^{n-1} \\
& =\frac{1}{6(1-\alpha)}\left[\sum_{n=2}^{\infty} n(2 n-1-\alpha)(2 n+1)(n+1) r^{n-1}+\sum_{n=2}^{\infty} n(2 n+1+\alpha)(2 n-1)(n-1) r^{n-1}\right] \\
& =\frac{1}{3(1-\alpha)} \sum_{n=2}^{\infty} n\left(4 n^{3}-n-3 \alpha n\right) r^{n-1} \\
& =\frac{1}{3(1-\alpha)}\left[\sum_{n=2}^{\infty} 4 n^{4} r^{n-1}-(1+3 \alpha) \sum_{n=2}^{\infty} n^{2} r^{n-1}\right] .
\end{aligned}
$$

Now, using the standard sums,

$$
S_{1}=\frac{1}{3(1-\alpha)}\left[\frac{4 r\left(16+r+11 r^{2}-5 r^{3}+r^{4}\right)}{(1-r)^{5}}-(1+3 \alpha) \frac{r\left(4-3 r+r^{2}\right)}{(1-r)^{3}}\right] .
$$

By Lemma 1.1, we need to show that $S_{1} \leq 1$, this is equivalent to

$$
4 r\left(16+r+11 r^{2}-5 r^{3}+r^{4}\right)-(1+3 \alpha) r\left(4-3 r+r^{2}\right)(1-r)^{2} \leq 3(1-\alpha)(1-r)^{5} .
$$

Let $p_{\alpha}(r)=(1-\alpha)-(25-9 \alpha) r+(5-21 \alpha) r^{2}-21(1-\alpha) r^{3}+10(1-\alpha) r^{4}-2(1-\alpha) r^{5} \geq 0$. Since $p_{\alpha}(0)=1-\alpha>0$ as $0 \leq \alpha<1$ and $p_{\alpha}(1)=-33, p_{\alpha}(r)$ has at least one zero in the interval $(0,1)$.

$$
\begin{aligned}
p_{\alpha}^{\prime}(r) & =9 \alpha-25+2(5-21 \alpha) r-63(1-\alpha) r^{2}+40(1-\alpha) r^{3}-10(1-\alpha) r^{4} \\
& =9 \alpha-25+2(5-21 \alpha) r-(1-\alpha) r^{2}\left[23+10(r-2)^{2}\right]
\end{aligned}
$$

$$
<9 \alpha-25+2(5-21 \alpha) r-33(1-\alpha) r^{2}=q_{\alpha}(r)
$$

Now, it is enough to show that the polynomial $q_{\alpha}(r)$ is negative in the interval $r \in(0,1)$ for every $\alpha \in[0,1)$ since $q_{\alpha}^{\prime}(r)=2(5-21 \alpha)-66(1-\alpha) r$ and the critical point for the equation is $r_{0}=\frac{5-21 \alpha}{33(1-\alpha)}, q_{\alpha}^{\prime}(r)>0$ for $0 \leq r<r_{0}$ and $q_{\alpha}^{\prime}(r)<0$ for $r_{0}<r<1$. We have two cases: $0 \leq \alpha \leq 5 / 21$ and $5 / 21<\alpha<1$.
Case 1: When $0 \leq \alpha \leq 5 / 21, q_{\alpha}\left(r_{0}\right)=\frac{16\left(9 \alpha^{2}+57 \alpha-50\right)}{33(1-\alpha)}<0$ in the interval $r \in(0,1)$.
Case 2: When $5 / 21<\alpha<1, q_{\alpha}(0)=9 \alpha-25<0$ since $0 \leq \alpha<1$ and $q_{\alpha}(1)=-48, q_{\alpha}(r)<0$ in the interval $r \in(0,1)$ for all $5 / 21<\alpha<1$.

Combining the two cases, we conclude that $q_{\alpha}(r)<0$ in the interval $r \in(0,1)$ and for all $\alpha \in[0,1)$. This proves that $p_{\alpha}^{\prime}(r)<q_{\alpha}(r)<0$ in the interval $r \in(0,1)$ and for all $\alpha \in[0,1)$. Thus $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ for $r \leq r_{1}(\alpha)$ where $r_{1}(\alpha)$ is the unique real root of the Equation (9). Also the roots of the Equation (9) are decreasing as a function of $\alpha \in[0,1)$. When $\alpha=0$, Equation (9) reduces to $1-25 r+5 r^{2}-21 r^{3}+10 r^{4}-2 r^{5}=0$, consequently $r_{1}(\alpha) \leq r_{1}(0)$, where $r_{1}(0) \approx 0.040270$ is the unique real root of the Equation (10) in the interval $(0,1)$.

Theorem 2.2. Let $f=h+\bar{g}$, where h and g are given by (1), and the coefficients satisfy the condition (2) for $n \geq 2$. Then,
(1). $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq r_{2}(\alpha)$ where $r_{2}(\alpha)$ is the unique real root of the equation

$$
\begin{equation*}
3(1-\alpha)+(42 \alpha-138) r-180(1+\alpha) r^{2}+(126 \alpha-222) r^{3}+87(1-\alpha) r^{4}-36(1-\alpha) r^{5}+6(1-\alpha) r^{6}=0 \tag{11}
\end{equation*}
$$

in the interval $(0,1)$.
(2). $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq r_{2}(0)$ where $r_{2} \approx 0.021141082$ is the unique real root of the equation

$$
\begin{equation*}
3-138 r-180 r^{2}-222 r^{3}+87 r^{4}-36 r^{5}+6 r^{6}=0 \tag{12}
\end{equation*}
$$

in the interval $(0,1)$.

Proof. Consider,

$$
S_{2}=\sum_{n=2}^{\infty} \frac{n(2 n-1-\alpha)}{1-\alpha}\left|n a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty} \frac{n(2 n+1+\alpha)}{1-\alpha}\left|n b_{n}\right| r^{n-1} .
$$

Using the coefficient bounds (2),

$$
\begin{aligned}
S_{2} & \leq \sum_{n=2}^{\infty} \frac{n(2 n-1-\alpha)}{1-\alpha}\left(\frac{n(2 n+1)(n+1)}{6}\right) r^{n-1}+\sum_{n=2}^{\infty} \frac{n(2 n+1+\alpha)}{1-\alpha}\left(\frac{n(2 n-1)(n-1)}{6}\right) r^{n-1} \\
& =\frac{1}{6(1-\alpha)}\left[\sum_{n=2}^{\infty} n^{2}(2 n-1-\alpha)(2 n+1)(n+1) r^{n-1}+\sum_{n=2}^{\infty} n^{2}(2 n+1+\alpha)(2 n-1)(n-1) r^{n-1}\right] \\
& \left.=\frac{1}{3(1-\alpha)} \sum_{n=2}^{\infty} 4 n^{5}-(3 \alpha+1) n^{3}\right) r^{n-1} \\
& =\frac{1}{3(1-\alpha)}\left[\sum_{n=2}^{\infty} 4 n^{5} r^{n-1}-(1+3 \alpha) \sum_{n=2}^{\infty} n^{3} r^{n-1}\right] .
\end{aligned}
$$

Using standard sums,

$$
=\frac{1}{3(1-\alpha)}\left[\frac{4 r\left(32+51 r+46 r^{2}-14 r^{3}+6 r^{4}-r^{5}\right)}{(1-r)^{6}}-(1+3 \alpha) \frac{r\left(8-5 r+4 r^{2}-r^{3}\right)}{(1-r)^{4}}\right] .
$$

By Lemma 1.4 we need to show that $S_{2} \leq 1$ or r has to satisfy the inequality

$$
4 r\left(32+51 r+46 r^{2}-14 r^{3}+6 r^{4}-r^{5}\right)-(1+3 \alpha) r\left(8-5 r+4 r^{2}-r^{3}\right)(1-r)^{2} \leq 3(1-\alpha)(1-r)^{6}
$$

Let $t_{\alpha}(r)=3(1-\alpha)+(42 \alpha-138) r-180(1+\alpha) r^{2}+(126 \alpha-222) r^{3}+87(1-\alpha) r^{4}-36(1-\alpha) r^{5}+6(1-\alpha) r^{6} \geq 0$. That is $t_{\alpha}(r) \geq 0$. Here $t_{\alpha}(0) \geq(1-\alpha)>0$ and $t_{\alpha}(1)=-160<0$ so $t_{\alpha}(r)$ has at least one root in the interval (0,1). By similar arguments in Theorem 2.3 we conclude that $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq r_{2}(\alpha)$, where $r_{2}(\alpha)$ is the unique real root of the Equation (11). Also the roots of the Equation (11), are decreasing as a function of $\alpha \in[0,1)$. When $\alpha=0$, (11) reduces to the equation $3-138 r-180 r^{2}-222 r^{3}+87 r^{4}-36 r^{5}+6 r^{6}=0$. Consequently, $r_{2}(\alpha) \leq r_{2}(0)$, where $r_{2}(0) \approx 0.021141$ is the unique real root of the Equation (12) in the interval $(0,1)$.

Theorem 2.3. Let $f=h+\bar{g}$ where h and g are given by (1), and the coefficients satisfy the condition (4) for $n \geq 2$. Then,
(1). $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ for $r \leq R_{1}(\alpha)$ where $R_{1}(\alpha)$ is the unique real root of the equation

$$
\begin{equation*}
s_{\alpha}(r)=(1-\alpha)-6(3-\alpha) r+11(1-\alpha) r^{2}-8(1-\alpha) r^{3}+2(1-\alpha) r^{4} \tag{13}
\end{equation*}
$$

in the interval $(0,1)$.
(2). $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ for $r \leq R_{1}(0)$ where $R_{1} \approx 0.057492$ is the unique real root of the equation

$$
\begin{equation*}
1-18 r+11 r^{2}-8 r^{3}+2 r^{4}=0 \tag{14}
\end{equation*}
$$

in the interval $(0,1)$.
Proof. Let $0<r<1$ it suffices to show that $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$, where $D_{f}^{\varepsilon, r}$ is defined as in (8). Consider,

$$
S_{3}=\sum_{n=2}^{\infty} \frac{2 n-1-\alpha}{1-\alpha}\left|n a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty} \frac{2 n+1+\alpha}{1-\alpha}\left|n b_{n}\right| r^{n-1} .
$$

Using the coefficient bounds (4),

$$
\begin{aligned}
S_{3} & \leq \sum_{n=2}^{\infty} \frac{(2 n-1-\alpha)}{1-\alpha}\left(\frac{n(n+1)}{2}\right) r^{n-1}+\sum_{n=2}^{\infty} \frac{(2 n+1+\alpha)}{1-\alpha}\left(\frac{n(n-1)}{2}\right) r^{n-1} \\
& =\frac{1}{2(1-\alpha)}\left[\sum_{n=2}^{\infty} n(2 n-1-\alpha)(n+1) r^{n-1}+\sum_{n=2}^{\infty} n(2 n+1+\alpha)(n-1) r^{n-1}\right] \\
& =\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left(4 n^{3}-2 n(1+\alpha)\right) r^{n-1} \\
& =\frac{1}{(1-\alpha)}\left[2 \sum_{n=2}^{\infty} n^{3} r^{n-1}-(1+\alpha) \sum_{n=2}^{\infty} n r^{n-1}\right] .
\end{aligned}
$$

Using the standard sums we have

$$
\frac{1}{(1-\alpha)}\left[\frac{2 r\left(8-5 r+4 r^{2}-r^{3}\right)}{(1-r)^{4}}-(1+\alpha) \frac{r(2-r)}{(1-r)^{2}}\right] .
$$

By Lemma 1.2, it is sufficient to prove that $S_{3} \leq 1$ which is equivalent to $s_{\alpha}(r) \geq 0$ where $s_{\alpha}(r)$ is given by (13) also $s_{\alpha}(0)=1-\alpha>0$ and $s_{\alpha}(1)=-12<0$ and so $s_{\alpha}(r)$ has at least one zero in the interval (0,1) since $s_{\alpha}^{\prime}(r)=-2\left\{3(3-\alpha)+(1-\alpha) r\left[4(r-(3 / 2))^{2}+2\right]\right\}<0$ we have $s_{\alpha}(r)$ is strictly decreasing in $(0,1)$ and hence has exactly one root in $(0,1)$ for all $\alpha \in[0,1)$. Thus $D_{f}^{\varepsilon, r} \in G_{H}(\alpha)$ for $r \leq R_{1}(\alpha)$, where $R_{1}(\alpha)$ is the unique real root of the Equation (13) in the interval (0,1). Also the roots of the Equation (13) are decreasing as a function of $\alpha \in[0,1$). Consequently, $R_{1}(\alpha) \leq R_{1}(0)$ where $R_{1}(0) \approx 0.057492$ is the unique real root of the equation (14) in the interval (0,1).

Theorem 2.4. Let $f=h+\bar{g}$ where h and g are given by (1), and the coefficients satisfy the condition (4) for $n \geq 2$. Then, (1). $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq R_{2}(\alpha)$ where $R_{2}(\alpha)$ is the unique real root of the equation

$$
\begin{equation*}
u_{\alpha}(r)=(1-\alpha)-3(11-3 \alpha) r-3(1+7 \alpha) r^{2}-21(1-\alpha) r^{3}+10(1-\alpha) r^{4}-2(1-\alpha) r^{5} \tag{15}
\end{equation*}
$$

in the interval $(0,1)$.
(2). $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq R_{2}(0)$ where $R_{2} \approx 0.030202$ is the unique real root of the equation

$$
\begin{equation*}
1-33 r-3 r^{2}-21 r^{3}+10 r^{4}-2 r^{5}=0 \tag{16}
\end{equation*}
$$

in the interval $(0,1)$.
Proof. Consider

$$
S_{4}=\sum_{n=2}^{\infty} \frac{n(2 n-1-\alpha)}{1-\alpha}\left|n a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty} \frac{n(2 n+1+\alpha)}{1-\alpha}\left|n b_{n}\right| r^{n-1} .
$$

Using the coefficient bound (4),

$$
\begin{aligned}
S_{4} & \leq \sum_{n=2}^{\infty} \frac{n(2 n-1-\alpha)}{1-\alpha}\left(\frac{n(n+1)}{2}\right) r^{n-1}+\sum_{n=2}^{\infty} \frac{n(2 n+1+\alpha)}{1-\alpha}\left(\frac{n(n-1)}{2}\right) r^{n-1} \\
& =\frac{1}{2(1-\alpha)}\left[\sum_{n=2}^{\infty} n^{2}(2 n-1-\alpha)(n+1) r^{n-1}+\sum_{n=2}^{\infty} n^{2}(2 n+1+\alpha)(n-1) r^{n-1}\right] \\
& =\frac{1}{2(1-\alpha)} \sum_{n=2}^{\infty}\left(4 n^{4}-2(1+\alpha) n^{2}\right) r^{n-1} \\
& =\frac{1}{(1-\alpha)}\left[2 \sum_{n=2}^{\infty} n^{4} r^{n-1}-(1+\alpha) \sum_{n=2}^{\infty} n^{2} r^{n-1}\right] .
\end{aligned}
$$

Using the standard sums, we have

$$
=\frac{1}{(1-\alpha)}\left[\frac{2 r\left(16+r+11 r^{2}-5 r^{3}+r^{4}\right)}{(1-r)^{5}}-(1+\alpha) \frac{r\left(4-3 r+r^{2}\right)}{(1-r)^{3}}\right] .
$$

By Lemma 1.4, it is sufficient to prove that $S_{4} \leq 1$ which is equivalent to $u_{\alpha}(r) \geq 0$ where $u_{\alpha}(r)$ is given by (14) also $u_{\alpha}(0)=1-\alpha>0$ and $u_{\alpha}(1)=-48<0$ and so $u_{\alpha}(r)$ has at least one zero in the interval $(0,1)$. By similar arguments in Theorem 2.4 we conclude that $D_{f}^{\varepsilon, r} \in G K_{H}(\alpha)$ for $r \leq R_{2}(\alpha)$ where $R_{2}(\alpha)$ is the unique real root of the Equation (15). Also the roots of the Equation (15) are decreasing as a function of $\alpha \in[0,1)$. Consequently, $R_{2}(\alpha) \leq R_{2}(0)$ where $R_{2}(0) \approx 0.030202$ is the unique real root of the equation (16) in the interval $(0,1)$.

References

[1] B. Adolph Stephen, Thomas Rosy, K. G. Subramanian and H. Silverman, Subclasses of Harmonic Starlike Functions, Journal of Analysis, 9(2001), 99-108.
[2] S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, Rocky Mountain J. Math., 44(3)(2014), 753-777.
[3] J. Clinie and T. Sheil Small, Harmonic Univalent Functions, Ann. Acad. Aci. Ser. A.I. Math., 9(1984), 3-25.
[4] Z. Liu and S. Ponnusamy, Radius of fully starlikeness and fully convexity of harmonic linear differential operator, Bull. Korean Math. Soc., 55(3)(2018), 819-835.
[5] Peter Duren, Harmonic Mappings in The Plane, Cambridge University Press, (2004).
[6] Thomas Rosy, B. Adolph Stephen and K. G. Subramanian, Goodman-Ronning Type Harmonic Univalent Functions, Kyungpook Mathematical Journal, 41(2001), 45-54.
[7] Thomas Rosy, B. Adolph Stephen and K. G. Subramanian and J. M. Jahangiri, Goodman-type Harmonic Convex Functions, Journal of Natural Geometry, 21(2001), 39-50.

[^0]: * E-mail: vadivelanu@gmail.com

