
Int. J. Math. And Appl., 6(3)(2018), 369–375

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Radius Problem for Subclasses of Harmonic Univalent

Functions

Vadivelan Urkalan1,∗ Thomas Rosy2 and S. Sunil Varma2

1 Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Tamil Nadu, India.

2 Department of Mathematics, Madras Christian College, Tambaram, Chennai, Tamil Nadu, India.

Abstract: Let f = h + ḡ be harmonic functions in the unit disk D = {z ∈ C : |z| < 1} normalized by f(0) = 0 = fz(0)− 1. In this

paper we find the radius of the Goodman-Ronning type starlikeness and convexity of Dε
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the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions.
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1. Introduction

Let H denote the class of all complex-valued harmonic functions f in the unit disk D = {z ∈ C : |z| < 1} normalized by

f(0) = 0 = fz(0) − 1. The harmonic function f has a unique representation f = h + g, where h and g are analytic and

co-analytic parts of f given by

h(z) = z +

∞∑
n=2

anz
n; g(z) =

∞∑
n=1

bnz
n. (1)

The Jacobian of f = h + ḡ is given by Jf (z) = |h′(z)|2 − |g′(z)|2 . The map f is sense preserving and locally one to one in

D if and only if Jf (z) > 0 in D (see [3]). We now recall a few basic subclasses of harmonic functions (see [3, 5]). Let HSP

be the subclass of H, consisting of sense preserving functions. For the functions in this class, |b1| < 1. Let H0 denote the

subclass of H with b1 = 0. The class H0
SP = HSP ∩H0 contains all sense preserving harmonic functions with b1 = 0. Let

SH and S0
H be the subclasses of HSP and H0

SP respectively containing univalent harmonic functions and S∗H ,KH and CH

be the subclasses of SH mapping D on to star-like, convex and close-to-convex domains, respectively. Let K∗0H , S
∗0
H denote

the subclasses of S0
H consisting of functions mapping D on to convex and star-like domains respectively. In 1984, Clunie

and Sheil-Small [3], conjectured that if f ∈ S0
H then the Taylor coefficients of the functions h and g satisfy the inequality

|an| ≤
1

6
(2n+ 1)(n+ 1) |bn| ≤

1

6
(2n− 1)(n− 1) for all n ≥ 2. (2)

Equality holds for the harmonic Koebe function defined by

K(z) = H1(z) +G1(z) =
z − 1

2
z2 + 1

6
z3

(1− z)3
+

1
2
z2 + 1

6
z3

(1− z)3
. (3)
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In [3], if f = h+ g ∈ C0
H , then

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
, (4)

holds for all n ≥ 2. Equality holds for the harmonic right half-plane mapping L ∈ C0
H given by

L(z) = H2(z) +G2(z) =
z − 1

2
z2

(1− z)2
+
− 1

2
z2

(1− z)2
. (5)

In [1, 6, 7], Thomas Rosy introduced and examined two new subclass of harmonic univalent functions of Goodman-Ronning

type.

Definition 1.1 ([6]). A function f ∈ H is said to be in the subclass GH(α) if Re
{

(1 + eiγ) zf
′(z)

z′f(z)
− eiγ

}
> α, 0 ≤ α < 1.

Here z′ = ∂
∂θ

(z = reiθ), f ′(z) = ∂
∂θ

(f(z)) = ∂
∂θ
f(reiθ), 0 ≤ r < 1, θ ∈ R.

Lemma 1.2 ([6]). Let f = h+ g, where h and g are given by (1), and let

∞∑
n=1

[
2n− 1− α

1− α |an|+
2n+ 1 + α

1− α |bn|
]
≤ 2 (6)

where a1 = 1 and 0 ≤ α < 1, then f is harmonic univalent in D and f ∈ GH(α).

Definition 1.3 ([7]). A function f ∈ H is said to be in the subclass GKH(α) if Re
{

1 + (1 + eiγ) zf
′′(z)

f ′(z) − e
iγ
}
> α,

0 ≤ α < 1. Here z′ = ∂
∂θ

(z = reiθ), f ′(z) = ∂
∂θ

(f(z)) = ∂
∂θ
f(reiθ), 0 ≤ r < 1, θ ∈ R.

Lemma 1.4 ([7]). Let f = h+ g, where h and g are given by (1) and let

∞∑
n=1

[
n(2n− 1− α)

1− α |an|+
n(2n+ 1 + α)

1− α |bn|
]
≤ 2 (7)

where a1 = 1 and 0 ≤ α < 1, then f is harmonic univalent in D and f ∈ GKH(α).

2. Radius of the Goodman-Ronning type Starlikeness and Convexity
of Dε

f

The sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators Dε
f =

zfz−εz̄fz̄ (|ε| = 1) are obtained for f = h+g, where h and g are given by (1) and Fλ(z) = (1−λ)f+λDε
f (0 ≤ λ ≤ 1) when

the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions (see [2,4]). We consider the

function from the classes GH(α), GKH(α) and obtain the radius of starlikeness and convexity of order α for the harmonic

linear differential operator Dε
f . We now recall certain standard sums,

(a).
∞∑
n=2

nrn−1 = r(2−r)
(1−r)2 .

(b).
∞∑
n=2

n2rn−1 = r(4−3r+r2)

(1−r)3 .

(c).
∞∑
n=2

n3rn−1 = r(8−5r+4r2−r3)

(1−r)4 .

(d).
∞∑
n=2

n4rn−1 = r(16+r+11r2−5r3+r4)

(1−r)5 .

(e).
∞∑
n=2

n5rn−1 = r(32+51r+46r2−14r3+6r4−r5)

(1−r)5 .
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For 0 < r < 1 and f = h+ ḡ ∈ H, the operator Dε,r
f is defined by

Dε,r
f (z) =

Dε
f (rz)

r
= z +

∞∑
n=2

nanr
n−1zn − ε

∞∑
n=2

nbnrn−1zn, |ε| = 1. (8)

Theorem 2.1. Let f = h+ ḡ, where h and g are given by (1) and the coefficients satisfy the condition (2) for n ≥ 2. Then,

(1). Dε,r
f ∈ GH(α) for r ≤ r1(α), where r1(α) is the unique real root of the equation

(1− α)− (25− 9α)r + (5− 21α)r2 − 21(1− α)r3 + 10(1− α)r4 − 2(1− α)r5 = 0 (9)

in the interval (0,1).

(2). Dε,r
f ∈ GH(0) for r ≤ r1(0), where r1(0) ≈ 0.040270 is the unique real root of the equation

1− 25r + 5r2 − 21r3 + 10r4 − 2r5 = 0 (10)

in the interval (0,1).

Proof. Let 0 < r < 1, it suffices to show that Dε,r
f ∈ GH(α) where Dε,r

f is defined as in (8). Consider,

S1 =

∞∑
n=2

2n− 1− α
1− α |nan| rn−1 +

∞∑
n=2

2n+ 1 + α

1− α |nbn| rn−1.

Using the coefficient bounds (2),

S1 ≤
∞∑
n=2

(2n− 1− α)

1− α

(
n(2n+ 1)(n+ 1)

6

)
rn−1 +

∞∑
n=2

(2n+ 1 + α)

1− α

(
n(2n− 1)(n− 1)

6

)
rn−1

=
1

6(1− α)

[
∞∑
n=2

n(2n− 1− α)(2n+ 1)(n+ 1)rn−1 +

∞∑
n=2

n(2n+ 1 + α)(2n− 1)(n− 1)rn−1

]

=
1

3(1− α)

∞∑
n=2

n(4n3 − n− 3αn)rn−1

=
1

3(1− α)

[
∞∑
n=2

4n4rn−1 − (1 + 3α)

∞∑
n=2

n2rn−1

]
.

Now, using the standard sums,

S1 =
1

3(1− α)

[
4r(16 + r + 11r2 − 5r3 + r4)

(1− r)5
− (1 + 3α)

r(4− 3r + r2)

(1− r)3

]
.

By Lemma 1.1, we need to show that S1 ≤ 1, this is equivalent to

4r(16 + r + 11r2 − 5r3 + r4)− (1 + 3α)r(4− 3r + r2)(1− r)2 ≤ 3(1− α)(1− r)5.

Let pα(r) = (1− α)− (25− 9α)r + (5− 21α)r2 − 21(1− α)r3 + 10(1− α)r4 − 2(1− α)r5 ≥ 0. Since pα(0) = 1− α > 0 as

0 ≤ α < 1 and pα(1) = −33, pα(r) has at least one zero in the interval (0, 1).

p′α(r) = 9α− 25 + 2(5− 21α)r − 63(1− α)r2 + 40(1− α)r3 − 10(1− α)r4

= 9α− 25 + 2(5− 21α)r − (1− α)r2[23 + 10(r − 2)2]
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< 9α− 25 + 2(5− 21α)r − 33(1− α)r2 = qα(r).

Now, it is enough to show that the polynomial qα(r) is negative in the interval r ∈ (0, 1) for every α ∈ [0, 1) since

q′α(r) = 2(5 − 21α) − 66(1 − α)r and the critical point for the equation is r0 = 5−21α
33(1−α)

, q′α(r) > 0 for 0 ≤ r < r0 and

q′α(r) < 0 for r0 < r < 1. We have two cases: 0 ≤ α ≤ 5/21 and 5/21 < α < 1.

Case 1: When 0 ≤ α ≤ 5/21, qα(r0) = 16(9α2+57α−50)
33(1−α)

< 0 in the interval r ∈ (0, 1).

Case 2: When 5/21 < α < 1, qα(0) = 9α− 25 < 0 since 0 ≤ α < 1 and qα(1) = −48, qα(r) < 0 in the interval r ∈ (0, 1) for

all 5/21 < α < 1.

Combining the two cases, we conclude that qα(r) < 0 in the interval r ∈ (0, 1) and for all α ∈ [0, 1). This proves that

p′α(r) < qα(r) < 0 in the interval r ∈ (0, 1) and for all α ∈ [0, 1). Thus Dε,r
f ∈ GH(α) for r ≤ r1(α) where r1(α) is the

unique real root of the Equation (9). Also the roots of the Equation (9) are decreasing as a function of α ∈ [0, 1). When

α = 0, Equation (9) reduces to 1− 25r + 5r2 − 21r3 + 10r4 − 2r5 = 0, consequently r1(α) ≤ r1(0), where r1(0) ≈ 0.040270

is the unique real root of the Equation (10) in the interval (0, 1).

Theorem 2.2. Let f = h+ ḡ, where h and g are given by (1), and the coefficients satisfy the condition (2) for n ≥ 2. Then,

(1). Dε,r
f ∈ GKH(α) for r ≤ r2(α) where r2(α) is the unique real root of the equation

3(1− α) + (42α− 138)r − 180(1 + α)r2 + (126α− 222)r3 + 87(1− α)r4 − 36(1− α)r5 + 6(1− α)r6 = 0 (11)

in the interval (0,1).

(2). Dε,r
f ∈ GKH(α) for r ≤ r2(0) where r2 ≈ 0.021141082 is the unique real root of the equation

3− 138r − 180r2 − 222r3 + 87r4 − 36r5 + 6r6 = 0 (12)

in the interval (0,1).

Proof. Consider,

S2 =

∞∑
n=2

n(2n− 1− α)

1− α |nan| rn−1 +

∞∑
n=2

n(2n+ 1 + α)

1− α |nbn| rn−1.

Using the coefficient bounds (2),

S2 ≤
∞∑
n=2

n(2n− 1− α)

1− α

(
n(2n+ 1)(n+ 1)

6

)
rn−1 +

∞∑
n=2

n(2n+ 1 + α)

1− α

(
n(2n− 1)(n− 1)

6

)
rn−1

=
1

6(1− α)

[
∞∑
n=2

n2(2n− 1− α)(2n+ 1)(n+ 1)rn−1 +

∞∑
n=2

n2(2n+ 1 + α)(2n− 1)(n− 1)rn−1

]

=
1

3(1− α)

∞∑
n=2

4n5 − (3α+ 1)n3)rn−1

=
1

3(1− α)

[
∞∑
n=2

4n5rn−1 − (1 + 3α)

∞∑
n=2

n3rn−1

]
.

Using standard sums,

=
1

3(1− α)

[
4r(32 + 51r + 46r2 − 14r3 + 6r4 − r5)

(1− r)6
− (1 + 3α)

r(8− 5r + 4r2 − r3)

(1− r)4

]
.
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By Lemma 1.4 we need to show that S2 ≤ 1 or r has to satisfy the inequality

4r(32 + 51r + 46r2 − 14r3 + 6r4 − r5)− (1 + 3α)r(8− 5r + 4r2 − r3)(1− r)2 ≤ 3(1− α)(1− r)6

Let tα(r) = 3(1− α) + (42α− 138)r − 180(1 + α)r2 + (126α− 222)r3 + 87(1− α)r4 − 36(1− α)r5 + 6(1− α)r6 ≥ 0. That

is tα(r) ≥ 0. Here tα(0) ≥ (1 − α) > 0 and tα(1) = −160 < 0 so tα(r) has at least one root in the interval (0, 1). By

similar arguments in Theorem 2.3 we conclude that Dε,r
f ∈ GKH(α) for r ≤ r2(α), where r2(α) is the unique real root of

the Equation (11). Also the roots of the Equation (11), are decreasing as a function of α ∈ [0, 1). When α = 0, (11) reduces

to the equation 3− 138r − 180r2 − 222r3 + 87r4 − 36r5 + 6r6 = 0. Consequently, r2(α) ≤ r2(0), where r2(0) ≈ 0.021141 is

the unique real root of the Equation (12) in the interval (0, 1).

Theorem 2.3. Let f = h+ ḡ where h and g are given by (1), and the coefficients satisfy the condition (4) for n ≥ 2. Then,

(1). Dε,r
f ∈ GH(α) for r ≤ R1(α) where R1(α) is the unique real root of the equation

sα(r) = (1− α)− 6(3− α)r + 11(1− α)r2 − 8(1− α)r3 + 2(1− α)r4 (13)

in the interval (0,1).

(2). Dε,r
f ∈ GH(α) for r ≤ R1(0) where R1 ≈ 0.057492 is the unique real root of the equation

1− 18r + 11r2 − 8r3 + 2r4 = 0 (14)

in the interval (0,1).

Proof. Let 0 < r < 1 it suffices to show that Dε,r
f ∈ GH(α), where Dε,r

f is defined as in (8). Consider,

S3 =

∞∑
n=2

2n− 1− α
1− α |nan| rn−1 +

∞∑
n=2

2n+ 1 + α

1− α |nbn| rn−1.

Using the coefficient bounds (4),

S3 ≤
∞∑
n=2

(2n− 1− α)

1− α

(
n(n+ 1)

2

)
rn−1 +

∞∑
n=2

(2n+ 1 + α)

1− α

(
n(n− 1)

2

)
rn−1

=
1

2(1− α)

[
∞∑
n=2

n(2n− 1− α)(n+ 1)rn−1 +

∞∑
n=2

n(2n+ 1 + α)(n− 1)rn−1

]

=
1

2(1− α)

∞∑
n=2

(4n3 − 2n(1 + α))rn−1

=
1

(1− α)

[
2

∞∑
n=2

n3rn−1 − (1 + α)

∞∑
n=2

nrn−1

]
.

Using the standard sums we have

1

(1− α)

[
2r(8− 5r + 4r2 − r3)

(1− r)4
− (1 + α)

r(2− r)
(1− r)2

]
.

By Lemma 1.2, it is sufficient to prove that S3 ≤ 1 which is equivalent to sα(r) ≥ 0 where sα(r) is given by (13)

also sα(0) = 1 − α > 0 and sα(1) = −12 < 0 and so sα(r) has at least one zero in the interval (0, 1) since

s′α(r) = −2
{

3(3− α) + (1− α)r
[
4 (r − (3/2))2 + 2

]}
< 0 we have sα(r) is strictly decreasing in (0, 1) and hence has

exactly one root in (0, 1) for all α ∈ [0, 1). Thus Dε,r
f ∈ GH(α) for r ≤ R1(α), where R1(α) is the unique real root of

the Equation (13) in the interval (0, 1). Also the roots of the Equation (13) are decreasing as a function of α ∈ [0, 1).

Consequently, R1(α) ≤ R1(0) where R1(0) ≈ 0.057492 is the unique real root of the equation (14) in the interval (0,1).
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Theorem 2.4. Let f = h+ ḡ where h and g are given by (1), and the coefficients satisfy the condition (4) for n ≥ 2. Then,

(1). Dε,r
f ∈ GKH(α) for r ≤ R2(α) where R2(α) is the unique real root of the equation

uα(r) = (1− α)− 3(11− 3α)r − 3(1 + 7α)r2 − 21(1− α)r3 + 10(1− α)r4 − 2(1− α)r5 (15)

in the interval (0, 1).

(2). Dε,r
f ∈ GKH(α) for r ≤ R2(0) where R2 ≈ 0.030202 is the unique real root of the equation

1− 33r − 3r2 − 21r3 + 10r4 − 2r5 = 0 (16)

in the interval (0,1).

Proof. Consider

S4 =

∞∑
n=2

n(2n− 1− α)

1− α |nan| rn−1 +

∞∑
n=2

n(2n+ 1 + α)

1− α |nbn| rn−1.

Using the coefficient bound (4),

S4 ≤
∞∑
n=2

n(2n− 1− α)

1− α

(
n(n+ 1)

2

)
rn−1 +

∞∑
n=2

n(2n+ 1 + α)

1− α

(
n(n− 1)

2

)
rn−1

=
1

2(1− α)

[
∞∑
n=2

n2(2n− 1− α)(n+ 1)rn−1 +

∞∑
n=2

n2(2n+ 1 + α)(n− 1)rn−1

]

=
1

2(1− α)

∞∑
n=2

(4n4 − 2(1 + α)n2)rn−1

=
1

(1− α)

[
2

∞∑
n=2

n4rn−1 − (1 + α)

∞∑
n=2

n2rn−1

]
.

Using the standard sums, we have

=
1

(1− α)

[
2r(16 + r + 11r2 − 5r3 + r4)

(1− r)5
− (1 + α)

r(4− 3r + r2)

(1− r)3

]
.

By Lemma 1.4, it is sufficient to prove that S4 ≤ 1 which is equivalent to uα(r) ≥ 0 where uα(r) is given by (14) also

uα(0) = 1 − α > 0 and uα(1) = −48 < 0 and so uα(r) has at least one zero in the interval (0,1). By similar arguments

in Theorem 2.4 we conclude that Dε,r
f ∈ GKH(α) for r ≤ R2(α) where R2(α) is the unique real root of the Equation

(15). Also the roots of the Equation (15) are decreasing as a function of α ∈ [0, 1). Consequently, R2(α) ≤ R2(0) where

R2(0) ≈ 0.030202 is the unique real root of the equation (16) in the interval (0, 1).
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