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Abstract: Let f = h + g be harmonic functions in the unit disk D = {z € C: |z| < 1} normalized by f(0) = 0 = f,(0) — 1. In this
paper we find the radius of the Goodman-Ronning type starlikeness and convexity of Df, = zf, —ezfz (le] = 1), when
the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions.
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1. Introduction

Let H denote the class of all complex-valued harmonic functions f in the unit disk D = {z € C: |z| < 1} normalized by
f(0) = 0 = f.(0) — 1. The harmonic function f has a unique representation f = h + g, where h and g are analytic and

co-analytic parts of f given by

h(z)=2z+ Z anz"; g(z) = Z bn2". (1)

The Jacobian of f = h + g is given by J;(z) = |W'(2)]” — |¢’(2)]* . The map f is sense preserving and locally one to one in
D if and only if J¢(z) > 0 in D (see [3]). We now recall a few basic subclasses of harmonic functions (see [3, 5]). Let Hsp
be the subclass of H, consisting of sense preserving functions. For the functions in this class, |b1| < 1. Let H 9 denote the
subclass of H with by = 0. The class ng = Hgp N HY contains all sense preserving harmonic functions with by = 0. Let
Sy and S% be the subclasses of Hgp and HYp respectively containing univalent harmonic functions and S}, Ky and Cy
be the subclasses of Sy mapping D on to star-like, convex and close-to-convex domains, respectively. Let K3, St denote
the subclasses of S% consisting of functions mapping D on to convex and star-like domains respectively. In 1984, Clunie

and Sheil-Small [3], conjectured that if f € S% then the Taylor coefficients of the functions h and g satisfy the inequality
1 1
|an] §6(2n+1)(n+1) |bn|§g(2n—1)(n—1) for all n > 2. (2)

Equality holds for the harmonic Koebe function defined by

2 — 124 1,8 1,24 1.3
K(z) = Hi(z) + Gi(z) = (f_z);‘ *2(1—;)3' 3)
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In [3],if f=h+g € CY, then

1 —1
|an‘§n—2&— n

and |b,| < 5 (4)

holds for all n > 2. Equality holds for the harmonic right half-plane mapping L € C'% given by

L(z) = Ha(2) + Ga2(2) = (1 752)2 + (1 Ez)z (5)

In [1, 6, 7], Thomas Rosy introduced and examined two new subclass of harmonic univalent functions of Goodman-Ronning
type.

Definition 1.1 ([6]). A function f € H is said to be in the subclass Gu(a) if Re {(1 + e”)% — e”} >a,0<a<l.

Here 2/ = Z(z =re"), f'(2) = Z(f(2) = & f(re”?),0<r<1,0€R.

Lemma 1.2 ([6]). Let f = h+g, where h and g are given by (1), and let

oo
2n—-1—-«a 2n+1+a
n bnl| <2
S [P el + P | < ©

where a1 =1 and 0 < a < 1, then f is harmonic univalent in D and f € Gu(a).

Definition 1.3 ([7]). A function f € H is said to be in the subclass GKg(a) if Re{l +(@1 +ei”)zf,/;$> 76”} > a,

0<a<l. Herez = Z(z=re"), f'(2) = &(f(z) = Zf(re’), 0<r <1, 0€R.

Lemma 1.4 ([7]). Let f = h+g, where h and g are given by (1) and let

= [n@2n—1-a) n(2n+1+ «)
n n <
S (M el + M | <2 ™

where a1 =1 and 0 < a < 1, then f is harmonic univalent in D and f € GKg(a).

2. Radius of the Goodman-Ronning type Starlikeness and Convexity

of D?

The sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators D} =
2f.—¢eZfz (|e| = 1) are obtained for f = h+g, where h and g are given by (1) and Fi(z) = (1-A)f+AD% (0 < X < 1) when
the coefficients of h and g satisfy the harmonic Bieberbach coefficients conjecture conditions (see [2,4]). We consider the
function from the classes Gu(a), GKu(a) and obtain the radius of starlikeness and convexity of order « for the harmonic

linear differential operator D}. We now recall certain standard sums,

0o
(a). Z TLT'n71 _ r(2—r7)

= a2

&, n— Id 473’7‘4’7‘2
(b). 3 npnt = K

= n— r(8—5r+4r2—r3
(). 3 nipnt = redrarr)

d X 4 -1 r(16+r+11r2—5r3 1)
(d). > nr = (I-—r)5 :

> 2 3 4_.5
5 n—1 _ r(32451r4+46r<—14r°4+67r"—r°)
(e). > n’r = a5 .

370



Vadivelan Urkalan, Thomas Rosy and S. Sunil Varma

For0<r <1and f =h+ g€ H, the operator ch’r is defined by

D5 (rz

D;’T(Z) — ) — 2+ Znanrn—lzn —62 nbprn—1lzn, |€| =1. (8)
n=2

n=2
Theorem 2.1. Let f = h+ g, where h and g are given by (1) and the coefficients satisfy the condition (2) for n > 2. Then,

(1). D}" € Gu(a) for r < ri(a), where ri(a) is the unique real root of the equation
(1—a) — (25 —9a)r + (5 — 21a)r® — 21(1 — a)r® + 10(1 — a)r* —2(1 —a)r® =0 (9)

in the interval (0,1).

(2). D} € Gu(0) for r < r1(0), where r1(0) ~ 0.040270 is the unique real root of the equation
1—25r +5r° —21r° 107" —27° =0 (10)

in the interval (0,1).

Proof.  Let 0 < r < 1, it suffices to show that D}" € G (a) where D" is defined as in (8). Consider,

o0 oo
2n—1—« _ 2n+ 1+« _
Si=3 T—q  [manl?” =Y T—q ol E

n=2 n=2

Using the coefficient bounds (2),

i (2n—1-a) <n(2n+1)(n+1) — i (2n+1+ ) <n(2n71)(n71))rn_1

1-—a 6 l1-« 6
n=2
1—a [Zn 2n—1—a)2n+1)(n+ 1)r" Z 2n+1+a)(2n—1)(n—1)r"_1:|
n=2 n=2

1 Zn n® —n — 3an)r" !
—a)
1 (oo} oo
= 30 —a) Z4n4rn_l — (14 3a) Z n2rn_1:| .
n=2 n=2
Now, using the standard sums,

r(4d—3r+ 7’2)
(1—=7r)3

2 53,4
S, = 1 {41”(164—7"—4—117" 5r +T)—(1+3a)

3(1—a) (1—nr)®
By Lemma 1.1, we need to show that S; < 1, this is equivalent to
4r(16 + 7 + 1172 — 57° + ) — (14 3a)r(4 — 3r + ) (1 —7)* < 3(1 —a)(1 —r)°.

Let pa(r) = (1 — @) — (25 — 9a)r + (5 — 21a)r? — 21(1 — @)r® + 10(1 — a)r* — 2(1 — a)r® > 0. Since pa(0) =1 —a > 0 as

0 < a<1and po(1) = —33, pa(r) has at least one zero in the interval (0, 1).

po(r) = 9a — 25 4+ 2(5 — 21a)r — 63(1 — a)r® +40(1 — a)r® — 10(1 — a)r*

=9a —25+2(5 — 21a)r — (1 — a)r’[23 + 10(r — 2)°]

w
=-J
—_
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< 9a — 25+ 2(5 — 21a)r — 33(1 — a)r® = qa (7).

Now, it is enough to show that the polynomial g.(r) is negative in the interval r € (0,1) for every a € [0,1) since

gn(r) = 2(5 — 21a) — 66(1 — a)r and the critical point for the equation is ro = 32(712712)’ ga(r) > 0 for 0 < r < ro and
da(r) <0 for ro < r < 1. We have two cases: 0 < o < 5/21 and 5/21 < o < 1.

Case 1: When 0 < a < 5/21, ga(r0) = W < 0 in the interval r € (0,1).

Case 2: When 5/21 < a < 1, o (0) = 9a — 25 < 0 since 0 < a < 1 and ¢ (1) = —48, ¢o(r) < 0 in the interval r € (0,1) for
all 5/21 < & < 1.

Combining the two cases, we conclude that go(r) < 0 in the interval » € (0,1) and for all a € [0,1). This proves that
Pa(r) < ga(r) < 0 in the interval r € (0,1) and for all @ € [0,1). Thus D}" € Gr(a) for r < r1(a) where r1(a) is the
unique real root of the Equation (9). Also the roots of the Equation (9) are decreasing as a function of « € [0,1). When

a = 0, Equation (9) reduces to 1 — 257 + 572 — 21r% + 10r* — 2r® = 0, consequently r1(a) < 71(0), where r1(0) ~ 0.040270

is the unique real root of the Equation (10) in the interval (0, 1). O
Theorem 2.2. Let f = h+ g, where h and g are given by (1), and the coefficients satisfy the condition (2) forn > 2. Then,

(1). D}" € GKu(a) for r < ra2(a) where r2(a) is the unique real root of the equation
3(1 — @) + (42a — 138)r — 180(1 4 a)r® + (126a — 222)r* + 87(1 — a)r* — 36(1 — a)r® +6(1 — a)r® =0 (11)

in the interval (0,1).

(2). D}" € GKu(a) for r <rz(0) where 2 ~ 0.021141082 is the unique real root of the equation
3 —138r — 1801 — 222r° + 87r* — 36r° +6r° =0 (12)

in the interval (0,1).

Proof. Consider,

S < i n(2n —1— a) (n(2n + 16)(n + 1)> el i n(2n1—i;1a+ ) <n(2n - é)(n - 1)) et

n=2

- ﬁ [Z n2@n—1-a)2n+Dn+ 1" + 3 n?2n+1+a)(2n —1)(n - 1)71n1:|
= 3(1 1_ ) Z an® — (Sa + 1)713)1""_1
_ 3(1 17 a) |:Z 41’1,57‘”*1 (1 + 3&) Z 1’L3Tn1:|

Using standard sums,

8 — 5r + 4r? — r®)
(I—r)*

1 {47«(32 +51r +46r° — 14r° 4 6r* —1°) (1+ 3a)r(

3(1 —a) (1—r)s
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By Lemma 1.4 we need to show that Sz < 1 or r has to satisfy the inequality
4r(32 4 517 + 46r° — 147° + 6r* —r°) — (1 + 3a)r(8 — 5r + 4r° — ) (1 —7)? < 3(1 — a)(1 —7)°

Let to(r) = 3(1 — @) + (42c — 138)r — 180(1 + )r? 4 (126a — 222)r® + 87(1 — a)r* — 36(1 — a)r® + 6(1 — a)r® > 0. That
is ta(r) > 0. Here to(0) > (1 — ) > 0 and to(1) = —160 < 0 so to(r) has at least one root in the interval (0, 1). By
similar arguments in Theorem 2.3 we conclude that D}" € GKu(a) for r < r2(a), where r2(a) is the unique real root of
the Equation (11). Also the roots of the Equation (11), are decreasing as a function of o € [0,1). When « = 0, (11) reduces
to the equation 3 — 138 — 180r% — 222r® + 87r* — 36r° + 6r° = 0. Consequently, 2(a) < 72(0), where r2(0) ~ 0.021141 is

the unique real root of the Equation (12) in the interval (0, 1). O

Theorem 2.3. Let f = h+ g where h and g are given by (1), and the coefficients satisfy the condition (4) for n > 2. Then,
(1). D}" € Gu(a) for r < Ri(a) where Ri(«) is the unique real root of the equation
sa(r) = (1 —a) —6(3 —a)r +11(1 — a)r® = 8(1 — a)r’® + 2(1 — a)r* (13)
in the interval (0,1).
(2). D} € Gu(a) for r < Ri(0) where R1 ~ 0.057492 is the unique real root of the equation
1—18r +117% = 8% 427" =0 (14)

in the interval (0,1).

Proof.  Let 0 <r <1 it suffices to show that D}" € G (a), where D" is defined as in (8). Consider,

[eS) [eS]
2n—1—« ne n+1l+a ne
S3: E ﬁmanh 1+ E ﬁhlbn"r 1.

n=2 n=2

Using the coefficient bounds (4),

= (2n—1-a) (n+1) o @2n+1+a) (nn—1)Y\ .1
3 <
S“—; 1-a 2 ; 1-a 2 )"
1 oo oo el
= — 2n—1-— 1r n(2 1 -1
30 —a) |:7§n n a)(n+1) ; n+1+a)(n—1)r :|
-t 3 (4n® — 2n(1 + a))r™ !
C2(1-a) &
:# 2007137' 1+ ) i
(I-a)| & —=

Using the standard sums we have

_ 2_ .3
1 [27"(8 5r + 4r r)_(1+a)

r(2— r)]
(1-a) (1—r)t (1—r)2]"
By Lemma 1.2, it is sufficient to prove that Sz < 1 which is equivalent to so(r) > 0 where sq(r) is given by (13)
also sa(0) = 1 —a > 0 and sq(l) = —12 < 0 and so sa(r) has at least one zero in the interval (0, 1) since
sh(r) = =2{3B—a)+ (1 —a)r[4(r—(3/2))*> +2]} < 0 we have sq(r) is strictly decreasing in (0, 1) and hence has
exactly one root in (0, 1) for all a € [0,1). Thus D}" € Gu(a) for r < Ri(a), where Ri(a) is the unique real root of
the Equation (13) in the interval (0, 1). Also the roots of the Equation (13) are decreasing as a function of a € [0,1).

)
Consequently, R1(a) < R1(0) where R1(0) /2 0.057492 is the unique real root of the equation (14) in the interval (0,1). O
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Theorem 2.4. Let f = h+ g where h and g are given by (1), and the coefficients satisfy the condition (4) for n > 2. Then,

(1). D}" € GKu(a) for r < Ra(a) where Ra(a) is the unique real root of the equation
Ua(r) = (1 —a) = 3(11 — 3a)r — 3(1 4+ 7a)r® — 21(1 — a)r® + 10(1 — a)r* — 2(1 — a)r® (15)

in the interval (0, 1).

(2). D}" € GKu(a) for r < R2(0) where Rz = 0.030202 is the unique real oot of the equation
1-33r—3r* =217 +10r* —27° =0 (16)

in the interval (0,1).

Proof.  Consider

S4§in(2n—1—a) (n(n+1)>rnf1+in(2n+l+a) (n(n—l))rn,l

—= l1-«a 2 = l1-«a 2
1 oo B oo o
= 30— [;nQ(Zn —l—a)(n+1)r" "+ ;n2(2n +1+a)(n—1)r 1]
-t 3 (4n* —2(1 4+ a)n®)r" !
21— ) =
1 - 4 n—1 G 2 n—1
= 2y 0" —(1+40a) n°r .
0> £
Using the standard sums, we have
_ 1 2r(16+r+11r25—5r3+r4)_(1+a)r(4—3r+7’2)
1-a) 1-7) 1—7)3

By Lemma 1.4, it is sufficient to prove that Sy < 1 which is equivalent to ua(r) > 0 where uq(r) is given by (14) also
ua(0) =1 —a > 0 and us(1) = —48 < 0 and so us(r) has at least one zero in the interval (0,1). By similar arguments
in Theorem 2.4 we conclude that D}" € GKu(a) for r < Rz(a) where Rz(a) is the unique real root of the Equation
(15). Also the roots of the Equation (15) are decreasing as a function of a € [0,1). Consequently, Rz(a) < R2(0) where

R2(0) ~ 0.030202 is the unique real root of the equation (16) in the interval (0, 1). O
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