Δ^{m}-lacunary Statistical Convergence of Order α Defined by a Modulus Function

Sushomita Mohanta ${ }^{1, *}$
1 Department of Mathematics, Utkal University, Vani-Vihar, Bhubaneswar, Odisha, India.

Abstract

In this paper, we introduce the concepts of lacunary Δ^{m}-statistically convergent sequence of order α and strongly $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$-summable sequences of order α are introduced. Some inclusion relations between the set of lacunary $\Delta^{m_{-}}$ statistically convergent sequences of order α and strongly $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$-summable sequences of order α and the relations between two arbitrary lacunary sequences are discussed.

MSC: $\quad 40 \mathrm{~A} 35,40 \mathrm{C} 05,46 \mathrm{~A} 45$.

Keywords: Statistical convergence, Lacunary sequence, Lacunary refinment, modulus function.

> (c) JS Publication.

Accepted on: 01.06.2018

1. Introduction

The notion of statistical convergence which is closely related to the concept of natural density or asymptotic density of a subset of the set of natural numbers \mathbb{N} was first introduced by Fast [11] and Schoenberg [26] independently. From the point of view of sequence spaces, the concept of statistical convergence was generalized and developed by \check{S} alát [24], Fridy [13], Connor [4] and many others. However, the order of statistical convergence for sequences of positive linear operators was introduced by Gadjiev and Connor [16] and it was generalized for the method of A-statistical convergence by Duman [6]. Later on, the concept of order of statistical convergence for sequences of numbers was generalized and developed Çolak [3], Bhunia [2], Et [7] and many others. Freedman [12] were introduced a related concept of convergence with the help of a lacunary sequence $\theta=\left(k_{r}\right)$ and called it as a lacunary statistical convergence. Later on, this concept was generalized by Fridy [13], Li [18] and many others.

The order of statistical convergence for sequences of positive linear operators was introduced by Gadjiev and Connor [16] and it was generalized for the method of A-statistical convergence by Duman et al. [6] and for sequences of numbers by Çolak [3]. Later on, for sequences of numbers, this concept was generalized and developed by Altinok [1], Bhunia [2], Et [7] and many others.

Kızmaz [17] was introduced the difference operator on the basic sequence spaces ℓ_{∞}, c and c_{0}. Later on, Et and Çolak [8] were introduced the m-th order difference operator on the basic sequence spaces. The concept of modulus function was introduced by Nakano [22]. Later on, Ruckle [23], Maddox [20, 21] and several authors have constructed various types of sequence spaces by using modulus function.

[^0]The purpose of this paper is to introduce and study the space of lacunary strongly Δ^{m}-summable sequence of order α defined by a modulus function, lacunary Δ^{m}-statistically convergent sequences of order α and discuss some inclusion relations between the set of lacunary Δ^{m}-statistical convergence of order α and lacunary strongly Δ^{m}-summable sequences of order α.

2. Definitions and Preliminaries

Definition 2.1. Let $f:[0, \infty) \rightarrow[0, \infty)$. Then f is called a modulus if
(i). $f(x)=0$ if and only if $x=0$,
(ii). $f(x+y) \leq f(x)+f(y)$, for all $x>0, y>0$,
(iii). f is increasing,
(iv). f is continuous from the right at 0 .

It is immediate from (ii) and (iv) that f is continuous everywhere on $[0, \infty)$.
Definition 2.2 ([13]). A sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L, if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0,
$$

where the vertical bars indicate the number of elements in the enclosed set. The set of all statistically convergent sequences will be denoted by S.

Definition 2.3. A sequence $x=\left(x_{k}\right)$ is said to be Δ^{m}-statistically convergent to the number L, if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left|\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

The set of all Δ^{m}-statistically convergent sequences will be denoted by $S\left(\Delta^{m}\right)$.

Definition 2.4 ([3]). Let $0<\alpha \leq 1$ be given. The sequence $x=\left(x_{k}\right)$ is said to be statistically convergent of order α to the number L, if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

In this case, we write $S^{\alpha}-\lim x_{k}=L$. The set of all statistically convergent sequences of order α will be denoted by S^{α}.
Definition 2.5. Let $0<\alpha \leq 1$ be given. The sequence $x=\left(x_{k}\right)$ is said to be Δ^{m}-statistically convergent of order α to the number L, if for every $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

In this case, we write $S^{\alpha}\left(\Delta^{m}\right)-\lim x_{k}=L$. The set of all Δ^{m}-statistically convergent sequences of order α will be denoted by $S^{\alpha}\left(\Delta^{m}\right)$.

Definition 2.6 ([14]). By a lacunary sequence, we mean an increasing integer sequence $\theta=\left(k_{r}\right)$ such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this article, the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio $\frac{k_{r}}{k_{r-1}}$ will be abbreviated by q_{r}.

Definition $2.7([14])$. A sequence $x=\left(x_{k}\right)$ is said to be lacunary statistically convergent to the number L, if for every $\varepsilon>0$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

The set of all lacunary statistically convergent sequences will be denoted by S_{θ}.
Definition 2.8. A sequence $x=\left(x_{k}\right)$ is said to be lacunary Δ^{m}-statistically convergent to the number L, if for every $\varepsilon>0$,

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

The set of all lacunary Δ^{m}-statistically convergent sequences will be denoted by $S_{\theta}\left(\Delta^{m}\right)$.
Definition 2.9 ([25]). Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and $0<\alpha \leq 1$ be given. The sequence $x=\left(x_{k}\right)$ is said to be lacunary statistically convergent of order α to the number L, if for every $\varepsilon>0$

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

where $I_{r}=\left(k_{r-1}, k_{r}\right]$ and h_{r}^{α} denote the α th power $\left(h_{r}\right)^{\alpha}$ of h_{r}. That is, $h^{\alpha}=\left(h_{r}^{\alpha}\right)=\left(h_{1}^{\alpha}, h_{2}^{\alpha}, \ldots, h_{r}^{\alpha}, \ldots\right)$. In this case, we write $S_{\theta}^{\alpha}-\lim x_{k}=L$. The set of all lacunary statistically convergent sequences of order α will be denoted by S_{θ}^{α}.

Definition 2.10. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence and $0<\alpha \leq 1$ be given. The sequence $x=\left(x_{k}\right)$ is said to be lacunary Δ^{m}-statistically convergent of order α to the number L, if for every $\varepsilon>0$

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

In this case, we write $S_{\theta}^{\alpha}\left(\Delta^{m}\right)-\lim x_{k}=L$. The set of all lacunary Δ^{m}-statistically convergent sequences of order α will be denoted by $S_{\theta}^{\alpha}\left(\Delta^{m}\right)$.

Definition 2.11 ([12]). The lacunary sequence $\beta=\left(l_{r}\right)$ is called a lacunary refinement of the lacunary sequence $\theta=\left(k_{r}\right)$ if $\left(k_{r}\right) \subseteq\left(l_{r}\right)$.

Lemma 2.12 ([21]). Let a_{k}, b_{k} for all k be sequences of complex numbers and $\left(p_{k}\right)$ be a bounded sequence of positive real numbers, then

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq C\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)
$$

and

$$
|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{H}\right)
$$

where $C=\max \left(1,2^{H-1}\right), H=\sup p_{k}$ and λ is any complex number.
Lemma 2.13 ([21]). Let $a_{k} \geq 0, b_{k} \geq 0$ for all k be sequences of complex numbers and $1 \leq p_{k} \leq \sup p_{k}<\infty$, then

$$
\left(\sum_{k}\left|a_{k}+b_{k}\right|^{p_{k}}\right)^{\frac{1}{M}} \leq\left(\sum_{k}\left|a_{k}\right|^{p_{k}}\right)^{\frac{1}{M}}+\left(\sum_{k}\left|b_{k}\right|^{p_{k}}\right)^{\frac{1}{M}}
$$

where $M=\max (1, H), H=\sup p_{k}$.
Definition 2.14. Let $\theta=\left(k_{r}\right)$ be a lacunary sequence, f be any modulus function, $\alpha \in(0,1]$ be any real number and let $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers. A sequence $x=\left(x_{k}\right)$ is said to be lacunary strongly $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$ summable of order α, if there is a real number L such that

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}=0 .
$$

In this case, we write $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)-\lim x_{k}=L$. The set of all lacunary strongly $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$-summable sequences of order α will be denoted by $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$.

3. Main Results

Theorem 3.1. Let $\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then the class $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$ is a linear space over C.

Proof. Using Lemma 2.12, the subadditivity property of a modulus function f and the result $f(\lambda x) \leq(1+[|\lambda|]) f(x)$, it is easy to show that $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$ is a linear space over \mathbb{C}.

Theorem 3.2. Let $\left(p_{k}\right)$ be a bounded sequence of positive real numbers such that $\inf p_{k}>0$ and let $\alpha_{0} \in(0,1]$ be fixed. Then the sequence space $N_{\theta}^{\alpha_{0}}\left(\Delta^{m}, f, p\right)$ is a complete metric space with respect to the metric

$$
h(X, Y)=\sum_{i=1}^{m} f(|x(i)-y(i)|)+\sup _{r}\left(\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-\Delta^{m} y_{k}\right|\right)\right)^{p_{k}}\right)^{\frac{1}{M}},
$$

where $M=\max \left\{1, \sup p_{k}\right\}$.

Proof. Using Lemma 2.12, Lemma 2.13, the subadditivity property of a modulus function f and the result $f(\lambda x) \leq$ $(1+[\mid \lambda]]) f(x)$, it is easy to show that $N_{\theta}^{\alpha_{0}}\left(\Delta^{m}, f, p\right)$ is a complete metric space with respect to the above metric.

Theorem 3.3. If $0<\alpha<\beta \leq 1$, then $S_{\theta}^{\alpha}\left(\Delta^{m}\right) \subset S_{\theta}^{\beta}\left(\Delta^{m}\right)$ and the inclusion is strict.
Proof. $\frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \leq \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|$. To show the inclusion is strict, let θ be given and the sequence $x=\left(x_{k}\right)$ be defined such that

$$
\Delta^{m} x_{k}= \begin{cases}{\left[\sqrt{h_{r}}\right]} & \text { if } k=1,2, \ldots,\left[\sqrt{h_{r}}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Now $\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-0\right| \geq \varepsilon\right\}\right| \leq \lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\beta}}\left[\sqrt{h_{r}}\right] \leq \frac{\sqrt{h_{r}}}{h_{r}^{\beta}}=\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\beta-\frac{1}{2}}}$. Then $x \in S_{\theta}^{\beta}\left(\Delta^{m}\right)$ for $\frac{1}{2}<\beta \leq 1$ but $x \neq S_{\theta}^{\alpha}\left(\Delta^{m}\right)$ for $0<\alpha \leq \frac{1}{2}$.

Theorem 3.4. Let α and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$ and $\theta=\left(k_{r}\right)$ be a lacunary sequence. For $0<p<\infty, N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right) \subset S_{\theta}^{\beta}\left(\Delta^{m}, p\right)$ and the inclusion is strict for some α and β.

Proof. Let $X \in N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$. So

$$
\lim _{r \rightarrow \infty} \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}=0
$$

Let $\varepsilon>0$ be given. Consider

$$
\begin{aligned}
\sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} & =\sum_{\substack{k \in I_{r},\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}+\sum_{\substack{k \in I_{r},\left|\Delta^{m} x_{k}-L\right|<\varepsilon}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \geq \sum_{\substack{k \in I_{r},\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \geq\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \max \left\{f\left(\varepsilon^{h}\right), f\left(\varepsilon^{H}\right)\right\} \\
\Rightarrow \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} & \geq \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right|^{p} \geq \varepsilon\right\}\right| \max \left\{f\left(\varepsilon^{h}\right), f\left(\varepsilon^{H}\right)\right\} \\
& \geq \frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right|^{p} \geq \varepsilon\right\}\right| \max \left\{f\left(\varepsilon^{h}\right), f\left(\varepsilon^{H}\right)\right\}
\end{aligned}
$$

which implies $\frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \rightarrow 0$ as $r \rightarrow \infty$. It follows that if $x=\left(x_{k}\right)$ is strongly $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$-summable to L, then it is $S_{\theta}^{\beta}\left(\Delta^{m}\right)$-statistically convergent to L.

To show the inclusion is strict, let $f(x)=x, p_{k}=1$ for all $k \in \mathbb{N}$ and consider the following example $x=\left(x_{k}\right)$ be defined such that

$$
\Delta^{m} x_{k}= \begin{cases}{\left[\sqrt{h_{r}}\right]} & \text { if } k=1,2, \ldots,\left[\sqrt{h_{r}}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Then for every $\varepsilon>0$ and $\frac{1}{2}<\beta \leq 1$, we have

$$
\frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-0\right|^{p} \geq \varepsilon\right\}\right|=\frac{\left[\sqrt{h_{r}}\right]}{h_{r}^{\beta}} \rightarrow 0 \text { as } r \rightarrow \infty .
$$

That is $x_{k} \rightarrow 0\left(S_{\theta}^{\beta}\left(\Delta^{m}\right)\right)$. But for $0<\alpha<1$,

$$
\frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left|\Delta^{m} x_{k}-0\right|=\frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}^{\alpha}} \rightarrow \infty \text { as } r \rightarrow \infty,
$$

and for $\alpha=1$,

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left|\Delta^{m} x_{k}-0\right|=\frac{\left[\sqrt{h_{r}}\right]\left[\sqrt{h_{r}}\right]}{h_{r}} \rightarrow 1 \text { as } r \rightarrow \infty
$$

Which implies $x_{k} \nrightarrow 0\left(N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)\right)$.

Theorem 3.5. Let $0<\alpha \leq 1$ and $\theta=\left(k_{r}\right)$ be a lacunary sequence. If $\liminf _{r} q_{r}>1$, then $S^{\alpha}\left(\Delta^{m}\right) \subset S_{\theta}^{\alpha}\left(\Delta^{m}\right)$.
 that

$$
\frac{h_{r}}{k_{r}} \geq \frac{\delta}{1+\delta} \Rightarrow\left(\frac{h_{r}}{k_{r}}\right)^{\alpha} \geq\left(\frac{\delta}{1+\delta}\right)^{\alpha} \Rightarrow \frac{1}{k_{r}^{\alpha}} \geq \frac{\delta^{\alpha}}{(1+\delta)^{\alpha}} \frac{1}{h_{r}^{\alpha}}
$$

If $x_{k} \rightarrow L\left(S^{\alpha}\right)$, then for every $\varepsilon>0$ and for sufficiently large r, we have

$$
\begin{aligned}
\frac{1}{k_{r}^{\alpha}}\left|\left\{k \leq k_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| & \geq \frac{1}{k_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& \geq \frac{\delta^{\alpha}}{\left(1+\delta^{\alpha}\right)} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

This proves the sufficiency of the theorem.

Theorem 3.6. Let $0<\alpha \leq 1$ and $\theta=\left(k_{r}\right)$ be a lacunary sequence. If $\lim \sup _{r} q_{r}<\infty$, then $S_{\theta}^{\alpha}\left(\Delta^{m}\right) \subset S\left(\Delta^{m}\right)$.

Proof. If $\limsup \sup _{r} q_{r}<\infty$, then there exists a constant $A>0$ such that $q_{r}<A$ for all $r \in \mathbb{N}$. Suppose that $x_{k} \rightarrow$ $L\left(S_{\theta}^{\alpha}\left(\Delta^{m}\right)\right)$. So $\lim _{r \rightarrow \infty}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|=0$. Let $\varepsilon>0$. Suppose $N_{r}=\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|$. Hence $\lim _{r \rightarrow \infty} \frac{N_{r}}{h_{r}^{\alpha}}=0$. Then there exists $r_{0} \in \mathbb{N}$ such that for $0<\alpha \leq 1$,

$$
\frac{N_{r}}{h_{r}^{\alpha}}<\varepsilon \text { for all } r>r_{0} \Rightarrow \frac{N_{r}}{h_{r}}<\varepsilon \text { for all } r>r_{0} .
$$

Let $B=\max \left\{N_{r}: 1 \leq r \leq r_{0}\right\}$ and choose n such that $k_{r-1}<n \leq k_{r}$, then we have

$$
\begin{aligned}
\frac{1}{n}\left|\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| & \leq \frac{1}{k_{r-1}}\left|\left\{k \leq k_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& =\frac{1}{k_{r-1}}\left\{N_{1}+N_{2}+\ldots+N_{r_{0}}+N_{r_{0}+1}+\ldots+N_{r}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{B r_{0}}{k_{r-1}}+\frac{1}{k_{r-1}}\left\{h_{r_{0}+1} \frac{N_{r_{0}+1}}{h_{r_{0}+1}}+\ldots+h_{r} \frac{N_{r}}{h_{r}}\right\} \\
& \leq \frac{B r_{0}}{k_{r-1}}+\frac{1}{k_{r-1}}\left(\sup _{r>r_{0}} \frac{N_{r}}{h_{r}}\right)\left\{h_{r_{0}+1}+\ldots+h_{r}\right\} \\
& \leq \frac{B r_{0}}{k_{r-1}}+\frac{1}{k_{r-1}} \varepsilon\left(k_{r}-k_{0}\right) \\
& \leq \frac{B r_{0}}{k_{r-1}}+\varepsilon q_{r} \leq \frac{B r_{0}}{k_{r-1}}+\varepsilon A
\end{aligned}
$$

which implies that $\frac{1}{n}\left|\left\{k \leq n:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \rightarrow 0$ as $n \rightarrow \infty$ and it follows that $x_{k} \rightarrow L\left(S\left(\Delta^{m}\right)\right)$.
Theorem 3.7. If

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{h_{r}^{\alpha}}{k_{r}}>0, \tag{1}
\end{equation*}
$$

then $S\left(\Delta^{m}\right) \subset S_{\theta}^{\alpha}\left(\Delta^{m}\right)$.

Proof. For a given $\varepsilon>0$, we have

$$
\left\{k \leq k_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\} \subset\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}
$$

Therefore,

$$
\begin{aligned}
\frac{1}{k_{r}}\left|\left\{k \leq k_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| & \geq \frac{1}{k_{r}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& =\frac{h_{r}^{\alpha}}{k_{r}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

Taking limit as $r \rightarrow \infty$ and using equation (1), we have

$$
x_{k} \rightarrow L\left(S\left(\Delta^{m}\right)\right) \Rightarrow x_{k} \rightarrow L\left(S_{\theta}^{\alpha}\left(\Delta^{m}\right)\right)
$$

Theorem 3.8. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be any two lacunary sequences such that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let α and β be such that $0<\alpha \leq \beta \leq 1$.
(i). If

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{h_{r}^{\alpha}}{l_{r}^{\beta}}>0 \tag{2}
\end{equation*}
$$

then $S_{\theta^{\prime}}^{\beta}\left(\Delta^{m}\right) \subseteq S_{\theta}^{\alpha}\left(\Delta^{m}\right)$.
(ii). If

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{l_{r}}{h_{r}^{\beta}}=1 \tag{3}
\end{equation*}
$$

then $S_{\theta}^{\alpha}\left(\Delta^{m}\right) \subseteq S_{\theta^{\prime}}^{\beta}\left(\Delta^{m}\right)$.
Proof.
(i). Suppose that $I_{r} \subset J_{r}$ for all $r \in \mathbb{N}$ and let equation (2) be satisfied. For given $\varepsilon>0$, we have

$$
\left\{k \in J_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\} \supseteq\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}
$$

and so

$$
\frac{1}{l_{r}^{\beta}}\left|\left\{k \in J_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \geq \frac{h_{r}^{\alpha}}{l_{r}^{\beta}} \frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
$$

for all $r \in \mathbb{N}$, where $I_{r}=\left(k_{r-1}, k_{r}\right], J_{r}=\left(s_{r-1}, s_{r}\right], h_{r}=k_{r}-k_{r-1}$ and $l_{r}=s_{r}-s_{r-1}$. Now taking the limit as $r \rightarrow \infty$ in the last inequality and using equation (2), we get $S_{\theta^{\prime}}^{\beta}\left(\Delta^{m}\right) \subseteq S_{\theta}^{\alpha}\left(\Delta^{m}\right)$.
(ii). Let $x=\left(x_{k}\right) \in S_{\theta}^{\alpha}\left(\Delta^{m}\right)$ and equation (3) be satisfied. Since $I_{r} \subset J_{r}$, for $\varepsilon>0$ we may write

$$
\begin{aligned}
\frac{1}{l_{r}^{\beta}}\left|\left\{k \in J_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| & =\frac{1}{l_{r}^{\beta}}\left|\left\{s_{r-1}<k \leq k_{r-1}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& +\frac{1}{l_{r}^{\beta}}\left|\left\{k_{r}<k \leq s_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|+\frac{1}{l_{r}^{\beta}}\left|\left\{k_{r-1}<k \leq k_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& \leq \frac{k_{r-1}-s_{r-1}}{l_{r}^{\beta}}+\frac{s_{r}-k_{r}}{l_{r}^{\beta}}+\frac{1}{l_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& =\frac{l_{r}-h_{r}}{l_{r}^{\beta}}+\frac{1}{l_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& \leq \frac{l_{r}-h_{r}^{\beta}}{h_{r}^{\beta}}+\frac{1}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right| \\
& \leq\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right)+\frac{1}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|
\end{aligned}
$$

for all $r \in \mathbb{N}$. Since $\lim _{r \rightarrow \infty} \frac{l_{r}}{h_{r}^{\beta}}=1$ by equation (3) the first term and since $x=\left(x_{k}\right) \in S_{\theta}^{\alpha}\left(\Delta^{m}\right)$ the second term of right hand side of above inequality tend to 0 as $r \rightarrow \infty\left(\right.$ Note that $\left.\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right) \geq 0\right)$. This implies that $S_{\theta}^{\alpha}\left(\Delta^{m}\right) \subseteq$ $S_{\theta^{\prime}}^{\beta}\left(\Delta^{m}\right)$.

Theorem 3.9. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subseteq J_{r}$ for all $r \in \mathbb{N}$, α and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$ and $0<p<\infty$. Then we have
(i). If equation (2) holds, then $N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right) \subset N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$,
(ii). If equation (3) holds and $x \in \ell_{\infty}$, then $N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right) \subset N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right)$.

Proof.

(i). Let $x=\left(x_{k}\right) \in N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right)$ and suppose that equation (2) holds. Since $I_{r} \subseteq J_{r}$ and $h_{r} \leq l_{r}$ for all $r \in \mathbb{N}$, we have

$$
\begin{aligned}
\frac{1}{l_{r}^{\beta}} \sum_{k \in J_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} & \geq \frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& =\frac{h_{r}^{\alpha}}{l_{r}^{\beta}} \frac{1}{h_{r}^{\alpha}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}
\end{aligned}
$$

Using equation (2), we get $x_{k} \rightarrow L\left(N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)\right)$.
(ii). Let $x=\left(x_{k}\right) \in N_{\theta}^{\alpha}\left(\Delta^{m}, f, p\right)$ and suppose that equation (3) holds. Since f is bounded, then there exists some $M_{1}>0$ such that $f\left(\left|\Delta^{m} x_{k}-L\right|\right) \leq M_{1}$ for all k. Now, since $I_{r} \subseteq J_{r}$ and $h_{r} \leq l_{r}$ for all $r \in \mathbb{N}$, we may write

$$
\frac{1}{l_{r}^{\beta}} \sum_{k \in J_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}=\frac{1}{l_{r}^{\beta}} \sum_{k \in J_{r}-I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}
$$

$$
\begin{aligned}
& \leq\left(\frac{l_{r}-h_{r}}{l_{r}^{\beta}}\right) M_{1}^{H}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}-h_{r}^{\beta}}{h_{r}^{\beta}}\right) M_{1}^{H}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right) M_{1}^{H}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}
\end{aligned}
$$

for every $r \in \mathbb{N}$. Therefore $x=\left(x_{k}\right) \in N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right)$.
Theorem 3.10. Let $\theta=\left(k_{r}\right)$ and $\theta^{\prime}=\left(s_{r}\right)$ be two lacunary sequences such that $I_{r} \subseteq J_{r}$ for all $r \in \mathbb{N}, \alpha$ and β be fixed real numbers such that $0<\alpha \leq \beta \leq 1$ and $0<p<\infty$. Then
(i). If equation (2) holds and a sequence is strongly $N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right)$-summable to L, then it is lacunary Δ^{m}-statistically convergent to L.
(ii). If equation (3) holds, f is a bounded modulus function and $x=\left(x_{k}\right)$ is lacunary Δ^{m}-statistically convergent to L, then it is strongly $N_{\theta^{\prime}}^{\beta}\left(\Delta^{m}, f, p\right)$-summable to L.

Proof.
(i). Using the techniques of Theorem 3.7 and the condition 2 , it can be easily proved.
(ii). Suppose $x_{k} \rightarrow L\left(S_{\theta}^{\alpha}\left(\Delta^{m}\right)\right)$ and f is a bounded modulus function. Then there exists some $M_{1}>0$ such that $f\left(\mid \Delta^{m} x_{k}-\right.$ $L \mid) \leq M_{1}$ for all k, then for every $\varepsilon>0$, we may write

$$
\begin{aligned}
\frac{1}{l_{r}^{\beta}} \sum_{k \in J_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} & =\frac{1}{l_{r}^{\beta}} \sum_{k \in J_{r}-I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}-h_{r}}{l_{r}^{\beta}}\right) M_{1}^{H}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}-h_{r}^{\beta}}{l_{r}^{\beta}}\right) M_{1}^{H}+\frac{1}{l_{r}^{\beta}} \sum_{k \in I_{r}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right) M_{1}^{H}+\frac{1}{h_{r}^{\beta}} \sum_{\sum_{k \in I_{r},}}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}}+\frac{1}{h_{r}^{\beta}} \sum_{x_{k}} \sum_{x_{k}-I_{r},}\left(f\left(\left|\Delta^{m} x_{k}-L\right|\right)\right)^{p_{k}} \\
& \leq\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right) M_{1}^{H}+\frac{M_{1}^{p}}{h_{r}^{\beta}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|+\frac{h_{r}}{h_{r}^{\beta}} \max \left\{f\left(\varepsilon^{h}\right), f\left(\varepsilon^{H}\right)\right\} \\
& \leq\left(\frac{l_{r}}{h_{r}^{\beta}}-1\right) M_{1}^{H}+\frac{M_{1}^{H}}{h_{r}^{\alpha}}\left|\left\{k \in I_{r}:\left|\Delta^{m} x_{k}-L\right| \geq \varepsilon\right\}\right|+\frac{l_{r}}{h_{r}^{\beta}} \max \left\{f\left(\varepsilon^{h}\right), f\left(\varepsilon^{H}\right)\right\}
\end{aligned}
$$

for all $r \in \mathbb{N}$. Using equation (3), we obtain $x_{k} \rightarrow L\left(N_{\theta^{\prime}}^{\alpha}\left(\Delta^{m}, f, p\right)\right)$.

References

[1] H. Altionk, M. Et and M. Işik, Δ_{i}^{m}-lacunary statistical convergence of order α, AIP Conference Proceedings 1926, 020004(2018); 10.1063/1.5020453.
[2] S. Bhunia, P. Das and S. K. Pal, Restricting statistical conergence, Acta Math Hungar, 134(1-2)(2012), 153-161.
[3] R. Çolak, Statistical convergence of order $\tilde{\alpha}$, Modern methods in Analysis and its Applications, Anamaya Publ. New Delhi, India (2010), 121-129.
[4] J. S. Connor, The statistical and strong p-Cesàro convergence of sequence, Analysis, 8(1980), 47-63.
[5] P. Das and E. Savaş, On I-statistical and I-lacunary statistical convergence of order α, Bulletin of the Iranian Math. Soc., 40(2)(2014), 459-472.
[6] O. Duman, M. K. Khan and C. Orhan, A-statistical convergence of approximating operators, Math Inequal. Appl., $6(4)(2003), 689-699$.
[7] M. Et, A. Alotaibi and S. A. Mohiuddine, On $\left(\Delta^{m}, I\right)$-statistical convergence of order $\tilde{\alpha}$, The Scientific World Journal.
[8] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21(4)(1995), 377-386.
[9] M. Et, Spaces of Cesàro difference sequences of order α defined by a modulus in a locally convex space, Taiwanese J. Math., 10(4)(2006), 865-879.
[10] M. Et and H. Şengül, Some Cesàro type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28(8)(2014), 1593-1602.
[11] H. Fast, Sur la convergence statistique, Collo. Math., 2(1951), 241-244.
[12] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro type summability space, Proc. London Math. Soc., $37(3)(1978), 508-520$.
[13] J. A. Fridy, On statistical convergence, Analysis, 5(4)(1985), 301-313.
[14] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1993), 43-51.
[15] J. A. Fridy and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173(2)(1993), 497-504.
[16] A. D. Gadjiev and C. Orhan, Some approximation theorem via statistical convergence, Rockey Mountain J. Math., $32(1)(2002), 129-138$.
[17] H. Kızmaz, On certain sequence spaces, Canad Math Bull, 24(1981), 169-176.
[18] J. Li, Lacunary statistical convergence and inclusion properties between lacunary methods, International J. Math. and Math. Sci., 23(3)(2000), 175-180.
[19] I. J. Maddox, Elements of functional analysis, Cambridge Univ. Press, (1970).
[20] I. J. Maddox, A new type of convergence, Math. Proc. Camb. Phil. Soc., 83(1978), 61-64.
[21] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
[22] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[23] W. H. Ruckle, FK spaces in which the sequence of co-ordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[24] T. Šalát, On statistically convergent sequence of real numbers, Math. Slovaca, 30(1980), 139-150.
[25] H. Şengül and M. Et, Lacunary statistical convergence of order α^{*}, Acta Math. Scientia, 34B(2)(2014), 473-482.
[26] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer Math Monthly, 66(1959), 361-375.

[^0]: * E-mail: sushomita@gmail.com

