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Abstract: In this paper, the authors investigate the general solution in vectors space and generalized Hyers-Ulam Stability of n-

dimensional Cubic functional Equation

f

(
n∑
i=1

xi

)
+

n∑
j=1

f

−xj +
∑

i=1;i6=j
xi

 = (n− 5)
∑

1≤i<j≤k≤n
f (xi + xj + xk) +

(
−n2 + 8n− 11

) ∑
i=1;i6=j

f (xi + xj)

−
n∑
j=1

f (2xj) +
1

2

(
n3 − 10n2 + 23n + 2

) n∑
i=1

f (xi)

with n > 5, and n is a positive integer using FNS,RNS,IFNS and FELBIN’S type spaces, using direct and fixed point

methods.
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1. Introduction

In 2003, V. Radu [49] observed that many theorems concerning the stability problem of various functional equation follows

from direct and fixed point alternative. Indeed, he applied the fixed point method to prove the Stability of Cauchy

functional Equations, Jenson’s functional Equations, quadratic functional equations, and Cubic Functional Equations

(see[2,3,4,5]). After his work, many authors used the fixed point method to prove the stability of various functional

Equations[13,14,15,16,17,18,19,20,23,24,25].

In this paper, we consider the fuzzy version stability problem in the fuzzy normed linear space setting. In 2008, A.K.

Mirmostafaee and M.S. Moslehion[36,37,38] used the definition of a fuzzy norm in [3] to obtain a fuzzy version of Stability

for the cauchy functional equation:

f (x+ y)− f (x)− f (y) = 0 (1)
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and the quadratic functional equation

f (x+ y) + f (x− y)− 2f (x)− 2f (y) = 0 (2)

we call a solution of (1) an additive mapping and a Solution of (2) is called a quadratic mapping. In particular, every

Solution of the quadratic equation (2) is said to be a quadratic function. It is well known that a function f between real

vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that f (x) = B (x, x)

for all x (see[1,16]). The bi-additive function B is given by

B (x, y) =
1

4
[f (x+ y)− f (x− y)] (3)

Hyers-Ulam-Rassias Stability Problem for the quadratic functional equation(2) was proved by skof for the functions f :

A → B , where A is normed space and B is Banach space (see[2]). Cholewa noticed that the theorem of skof is still true

if relevant domain A is replaced by an abelian group. In the paper[10], Czerwik proved the Hyers-Ulam-Rassias Stability

of the functional equation(2). Grabice has generalized these result mentioned above. We only mention here the papers

[20],[28],[43],[48] concerning the stability of the quadratic functional equations. The following cubic functional equation,

which is the oldest cubic functional, and was introduced by J.M. Rassios[45](in 2001):

f (x+ 2y) + 3f (x) = 3f (x+ y) + f (x− y) + 6f (y) (4)

Jun and Kim [21] introduced the following cubic functional equation

f (2x+ y) + f (2x− y) = 2f (x+ y) + 2f (x− y) + 12f (x) (5)

and they established the general solution and the generalized Hyers-Ulam-Rassias Stability for the functional equation (5)

(in this case we have a much better possible upper bound for (3) than the Hyers-Ulam-Rassions Stability). The function

f (x) = x3 satisfies the functional equation(5), which is thus called a cubic functional equation. Every solution of the cubic

functional equation is said to be cubic function. There are many works in the very active area of the stability of functional

equations. We only mention here the papers [39] and [8] concerning the stability of the cubic functional equation. The

generalized Hyers-Ulam-Rassias Stability of different functional equation in random normed and fuzzy normed spaces has

been recently studied in [3-13],[15],[23]. The solution and stability of the succeeding cubic functional equation,

f (x+ y + 2z) + f (x+ y − 2z) + f (2x) + f (2y) = 2 [f (x+ y) + 2f (x+ z) + 2f (y + z) + 2f (x− z)− 12f (y − z)] (6)

g (2x− y) + g (x− 2y) = 6g (x− y) + 3g (x)− 3g (y) (7)

f (2x± y ± z) + f (±y ± z) + 2f (±y) + 2f (±y) = 2f (x± y ± z)

+ f (x± y) + f (x± z) + f (−x± y) + f (−x± z) + 6f (x) (8)

f

(
axi + b

n∑
i=2

xi

)
+ f

(
axi − b

n∑
i=2

xi

)
+ 2a

(
b2 − a2

)
f (xi) = ab2

[
f

(
n∑
i=1

xi

)
+ f

(
xi −

n∑
i=2

xi

)]
(9)

f

(
n−1∑
j=1

xj + 2xn

)
+ f

(
n−1∑
j=1

xj − 2xn

)
+

n−1∑
j=1

(2xj) = 2f

(
n−1∑
j=1

2xj

)
+ 4

n−1∑
j=1

(f (xj + xn) + f (xj − xn)) (10)
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was dealt by Y.S. Jung, I.S. chong[23], M. Arunkumar [3,4,47], H.y.Chu, D.S.Kang[8]. In this paper, the authors investigate

the general solution and generalized Hyers-Ulam Stability of a new form of n-dimentional cubic functional equation,

f

(
n∑
i=1

xi

)
+ f

−xj +
∑

i=1;i 6=j

 = (n− 5)
∑

1≤i≤j<k≤n

(xi + xj + xk) +
(
−n2 + 8n− 11

) ∑
i=1;i 6=j

(xi + xj)

−
n∑
j=1

(2xj) +
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

f (xi) (11)

with n > 5, and n is a positive integer using FNS,RNS,IFNS and FELBIN’S type spaces by direct and fixed point methods.

2. General Solution of the n-dimensional Cubic Functional Equation
(11)

In this section, the authors discuss the general solution of the functional equation (11) by considering X and Y are real

vector space.

Theorem 2.1. If f : X → Y satisfies the functional equation (11) for all x1, x2, x3, ..., xn ∈ X and n > 5 then there exists

a function B : X3 → Y such that f (x) = B (x, x, x) for all x ∈ X, where B is symmetric for each fixed one variable and

additive for each fixed two variables.

Proof. Assume that f : X → Y satisfies the functional equation(11). Letting x1, x2, x3, ..., xn by (x, 0, 0, ..., 0) in (11), we

get

(2n− 2) f (x) = (2n+ 14) f (x)− 2f (2x) (12)

for all x ∈ X. It follows from (12), that

f (2x) = (2)3 f (x) (13)

for all x ∈ X. Replacing x by 2x in (13) we obtain f (4x) = 43f (x). for all x ∈ X. In general for any positive integers a,

we arrive

f (2ax) = (2a)3 f (x) (14)

for all x ∈ X. Setting the above equation (12), we get f (0) = 0.

Replacing (x1, x2, x3, ..., xn) by (x1, x2, x3, x4, x5, x6, 0..., 0) in (11), we have

f (x1 + x2 + x3 + x4 + x5 + x6) + f (−x1 + x2 + x3 + x4 + x5 + x6) + f (x1 − x2 + x3 + x4 + x5 + x6)

+ f (x1 + x2 − x3 + x4 + x5 + x6) + f (x1 + x2 + x3 − x4 + x5 + x6) + f (x1 + x2 + x3 + x4 − x5 + x6)

+ f (x1 + x2 + x3 + x4 + x5 − x6) = (n− 5) [f (x1 + x2 + x3) + f (x1 + x2 + x4) + f (x1 + x2 + x5)]

+ (n− 5) [f (x1 + x2 + x6) + f (x1 + x3 + x4) + f (x1 + x3 + x5)]

+ (n− 5) [f (x1 + x3 + x6) + f (x1 + x4 + x5) + f (x1 + x4 + x6)]

+ (n− 5) [f (x1 + x5 + x6) + f (x2 + x3 + x4) + f (x2 + x3 + x5)]

+ (n− 5) [f (x2 + x3 + x6) + f (x2 + x4 + x5) + f (x2 + x4 + x6)]

+ (n− 5) [f (x2 + x5 + x6) + f (x3 + x4 + x5) + f (x3 + x4 + x6)]

+ (n− 5) [f (x3 + x5 + x6) + f (x4 + x5 + x6)]
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+
(
−n2 + 8n− 11

)
(n− 5) [f (x1 + x2) + f (x1 + x3) + f (x1 + x4) + f (x1 + x5)]

+
(
−n2 + 8n− 11

)
(n− 5) [f (x1 + x6) + f (x2 + x3) + f (x2 + x4) + f (x2 + x5)]

+
(
−n2 + 8n− 11

)
(n− 5) [f (x2 + x6) + f (x3 + x4) + f (x3 + x5) + f (x3 + x6)]

+
(
−n2 + 8n− 11

)
(n− 5) [f (x4 + x5) + f (x4 + x6) + f (x5 + x6)]

− f (2x1)− f (2x2)− f (2x3)− f (2x4)− f (2x5)− f (2x6)

+
1

2

(
n3 − 10n2 + 23n+ 2

)
[f (x1) + f (x2) + f (x3) + f (x4) + f (x5) + f (x6)] (15)

for all x1, x2, x3, x4, x5, x6 ∈ X. Using (13)in (15), we obtain

f (x1 + x2 + x3 + x4 + x5 + x6) + f (−x1 + x2 + x3 + x4 + x5 + x6) + f (x1 − x2 + x3 + x4 + x5 + x6) +

f (x1 + x2 − x3 + x4 + x5 + x6) + f (x1 + x2 + x3 − x4 + x5 + x6) + f (x1 + x2 + x3 + x4 − x5 + x6) +

f (x1 + x2 + x3 + x4 + x5 − x6) = f (x1 + x2 + x3) + f (x1 + x2 + x4) + f (x1 + x2 + x5) + f (x1 + x2 + x6) +

f (x1 + x3 + x4) + f (x1 + x3 + x5) + f (x1 + x3 + x6) + f (x1 + x4 + x5) + f (x1 + x4 + x6) + f (x1 + x5 + x6) +

f (x2 + x3 + x4) + f (x2 + x3 + x5) + f (x2 + x3 + x6) + f (x2 + x4 + x5) + f (x2 + x4 + x6) + f (x2 + x5 + x6) +

f (x3 + x4 + x5) + f (x3 + x4 + x6) + f (x3 + x5 + x6) + f (x4 + x5 + x6) + f (x1 + x2) + f (x1 + x3) + f (x1 + x4) +

f (x1 + x5) + f (x1 + x6) + f (x2 + x3) + f (x2 + x4) + f (x2 + x5) + f (x2 + x6) + f (x3 + x4) + f (x3 + x5) + f (x3 + x6) +

f (x4 + x5) + f (x4 + x6) + f (x5 + x6)− 8f (x1)− 8f (x2)− 8f (x3)− 8f (x4)− 8f (x5)− 8f (x6)

− 2 [f (x1) + f (x2) + f (x3) + f (x4) + f (x5) + f (x6)] (16)

for all x1, x2, x3, x4, x5, x6 ∈ X. Replacing (x1, x2, x3, x4, x5, x6) by (x, 0, 0, 0, 0, 0) in (16) and using (13), we get

f (−x) = −f (x) (17)

for all x ∈ X. Hence f is an odd function. Setting (x1, x2, x3, x4, x5, x6) by (x, x, y, 0, 0, 0) in(16), we obtain

3f (2x+ y) + 2f (y) + f (2x− y) = 8f (x+ y) + 24f (x) + 6f (y) (18)

for all x, y ∈ X. Replacing y by −y in (18) and using (17), we arrive

3f (2x− y)− 2f (y) + f (2x+ y) = 8f (x− y) + 24f (x)− 6f (y) (19)

for all x, y ∈ X. Adding (18) and (19), we get

f (2x+ y) + (2x− y) = 2f (x+ y) + 2f (x− y) + 12f (x) (20)

for all x, y ∈ X. By theorem 2.1 of [16], we desired our result. Hence the proof is complete.

Throughout this paper we use the following notation for a given mapping f : X → Y

Df (x1, x2, x3, ..., xn) = f

(
n∑
i=1

xi

)
+

n∑
j=1

f

−xj +
∑

i=1;i6=j

xi

− (n− 5)
∑

;1≤i<j≤k≤n

f (xi + xj + xk)

−
(
−n2 + 8n− 11

) ∑
i=1;i 6=j

f (xi + xj) +
n∑
j=1

f (2xj)−
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

f (xi)

for all x1, x2, x3, ..., xn ∈ X.
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3. Preliminaries of Fuzzy Normed spaces

We use the definition of fuzzy normed spaces given in [15] and [32,50,58].

Definition 3.1. Let X be a real linear space. A function N : X ×R→ [0, 1] (the so-called fuzzy subset) is said to be a fuzzy

norm on X if for all x, y ∈ X and all s, t ∈ R,

(F1) N (x, c) = 0 for c ≤ 0;

(F2) x = 0 if and only if N (x, c) = 1 for all c > 0;

(F3) N (cx, t) = N
(
x, t
|c|

)
if c 6= 0

(F4) N (x+ y, s+ t) ≥ min {N (x, s) , N (y, t)} ;

(F5) N (x, .) is a non-decreasing function on < and limt→∞N (x, t) = 1;

(F6) for x 6= 0, N (x, .) is (upper semi) continuous on <.

The pair (X,N) is called a fuzzy normed linear space. One may regard N (x, t) as the truth-value of the statement the norm

of x is less than or equal to the real numbers t
′
.

Example 3.2. Let (X, ‖.‖) be a normed linear space. Then

N (x, t) =


t

t+‖x‖ , t > 0, x ∈ X

0 ; t ≤ 0, x ∈ X

is a fuzzy norm on X.

Definition 3.3. Let (X,N) be a fuzzy normed linear space. Let xn be a sequence in X. Then xn is said to be convergent if

there exists x ∈ X such that lim
n→∞

(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of the sequence xn and we

denote it by N − lim
n→∞

xn = x.

Definition 3.4. A sequence xn in X is called cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all n ≥ n0

and all p > 0, we have N (xn+p − xn, t) > 1− ε.

Definition 3.5. Every convergent sequence in a fuzzy normed space is cauchy. If each cauchy sequence is convergent, then

the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 3.6. A mapping f : X → Y between fuzzy normed spaces X and Y is continuous at a point x0 if for each

sequence {xn} covering to x0 in x, the sequence f {xn} converges to f (x0). If f is continuous at each point of x0 ∈ X then

f is said to be continuous on X.

4. Fuzzy Stability Results: Direct Method

Throughout this section, assume that X,
(
Z,N

′
)

and
(
Y,N

′
)

are linear space, fuzzy normed space and fuzzy Banach

space,respectively. Now, we investigate the generalized Hyers-Ulam Stability of n-dimensional cubic functional (11).

Theorem 4.1. Let β ∈ {−1, 1} be fixed and let α : Xn → Z be a mapping such that for some d with 0 <
(
d
23

)β
< 1

N
′ (
α
(

2βx, 0, 0, ..., 0
)
, r
)
≥ N

′ (
dβα (x, 0, 0, ..., 0) , r

)
(21)

for all x ∈ X and all r > 0, d > 0, and

lim
k→∞

N
′ (
α
(

2βkx1, 2
βkx2, 2

βkx3, ..., 2
βkxn

)
, 2β3kr

)
= 1 (22)
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for all x1, x2, x3, ..., xn ∈ X and r > 0. Suppose that a function f : X → Y satisfies the inequality

N (Df (x1, x2, x3, ..., xn) , r) ≥ N
′
(α (x1, x2, x3, ..., xn) , r) (23)

for all r > 0 and x1, x2, x3, ..., xn ∈ X. Then the limit

C (x) = N − lim
k→∞

f
(
2βkx

)
2β3k

(24)

for all x ∈ X and the mapping C : X → Y is a unique cubic mapping such that

N (f (x)− C (x) , r) ≥ N
′ (
α (x, 0, 0, ..., 0) , r

∣∣23 − d
∣∣) (25)

for all x ∈ X and all r > 0.

Proof. First assume β = 1. Replacing (x1, x2, x3, ..., xn) by (x, 0, 0, ..., 0) in (23),we get

N
(
2f (2x)− 24f (x) , r

)
≥ N

′
(α (x, 0, 0, ..., 0) , r)

N (f (2x)− 8f (x) , r) ≥ N
′
(α (x, 0, 0, ..., 0) , r) (26)

for all x ∈ X and all r > 0. Replacing x by 2kx in (26), we obtain

N

(
f
(
2k+1x

)
23

− f
(

2kx
)
,
r

23

)
≥ N

′ (
α
(

2kx, 0, 0, ..., 0
)
, r
)

(27)

for all x ∈ X and all r > 0. Using (21), F3 in (27), we arrive

N

(
f
(
2k+1x

)
23

− f
(

2kx
)
,
r

23

)
≥ N

′ (
α (x, 0, 0, ..., 0) ,

r

dk

)
(28)

for all x ∈ X and all r > 0. It is easy to verify from (28), that

N

(
f
(
2k+1x

)
23(K+1)

−
f
(
2kx
)

23k
,

r

23.23k

)
≥ N

′ (
α (x, 0, 0, ..., 0) ,

r

dk

)
(29)

holds for all x ∈ X and all r > 0. Replacing r by dkr in (29), we get

N

(
f
(
2k+1x

)
23(K+1)

−
f
(
2kx
)

23k
,
dkr

23.23k

)
≥ N

′
(α (x, 0, 0, ..., 0) , r) (30)

for all x ∈ X and all r > 0. It is easy to see that

f
(
2kx
)

23k
− f (x) =

k−1∑
i=0

[
f
(
2i+1x

)
23(i+1)

−
f
(
2ix
)

23i

]
(31)

for all x ∈ x. From the equations (30) and (31), we have

N

(
f
(
2kx
)

23k
− f (x) ,

k−1∑
i=0

dir

23.23k

)
≥ min

k−1⋃
i=0

{
f
(
2i+1x

)
23(i+1)

−
f
(
2ix
)

23i
,
dir

23.23k

}

≥ min
k−1⋃
i=0

{
N
′
(α (x, 0, 0, ..., 0) , r)

}
≥ N

′
(α (x, 0, 0, ..., 0) , r) (32)
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for all x ∈ X and all r > 0. Replacing x by 2mx in (32) and using (21), (F3), we obtain

N

(
f
(
2k+mx

)
23(k+m)

− f (2mx)

23m
,

k−1∑
i=0

dir

23.23(i+m)

)
≥ N

′ (
α (x, 0, 0, ..., 0) ,

r

dm

)
(33)

for all x ∈ X and all r > 0 and all m, k ≥ 0. Replacing r by dmr in (33), we get

N

(
f
(
2k+mx

)
23(k+m)

− f (2mx)

23m
,

m+k−1∑
i=m

dir

23.23i

)
≥ N

′
(α (x, 0, 0, ..., 0) , r) (34)

for all x ∈ X and all r > 0 and all m, k ≥ 0. Using (F3) in (33), we obtain

N

(
f
(
2k+mx

)
23(k+m)

− f (2mx)

23m
, r

)
≥ N

′
(
α (x, 0, 0, ..., 0) ,

r∑m+k−1
i=m

di

23.23i

)
(35)

for all x ∈ X and all r > 0 and all m, k ≥ 0. Since 0 < d < 23 and
∑k
i=0

(
d
23

)i
<∞, the cauchy criterion for convergence and

(F5) implies that

{
f(2kx)

23k

}
is a cauchy sequence in (Y,N),since (Y,N) is a fuzzy Banach space, this sequence convergence

to some point C (x) ∈ Y . So one can define the mapping C : X → Y by

C (x) = N − lim
k→∞

{
f
(
2kx
)

23k

for all x ∈ X. Letting m = 0 in (35), we get

N

(
f
(
2kx
)

23(k)
− f (x) , r

)
≥ N

′
(
α (x, 0, 0, ..., 0) ,

r∑k−1
i=0

di

23.23i

)
(36)

For all x ∈ x and all r > 0. Letting K →∞ in (36) and using (F6), we arrive

N (f (x)− C (x) , r) ≥ N
′

α (x, 0, 0, ..., 0) ,
r

1
8

[
d0

20
+ d1

23
+ d1

23
+ d2

(23)2
+ ...

]


≥ N
′ (
α (x, 0, 0, ..., 0) , r

(
23 − d

))
for all x ∈ x and all r > 0. To prove C satisfies the (11), replacing (x1, x2, x3, ..., xn) by

(
2kx1, 2

kx2, 2
kx3, ..., 2

kxn
)

in

(23),respectively, we obtain

N

(
1

23k
Df

(
2kx1, 2

kx2, 2
kx3, ..., 2

kxn
)
, r

)
≥ N

′ (
α
(

2kx1, 2
kx2, 2

kx3, ..., 2
kxn

)
, 23kr

)
(37)

for all r > 0 and all x1, x2, x3, ..., xn ∈ X. Now

N

(
C

(∑
i=1

xi

)
+

n∑
j=1

C

−xj +
∑

i=1;i 6=j

xi

− (n− 5)
∑

1≤i<j≤k≤n

C (xi + xj + xk)


−N

− (−n2 + 8n− 11
) n∑
i=1;i 6=j

C (xi + xj)−
n∑
j=1

C (2xj)−
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

C (xi)


≥ min

{
N

(
C

(
n∑
i=1

xi

)
− 1

23k
f

(
n∑
i=1

2kxi

)
,
r

7

)}
,

min

N
 n∑
j=1

C

−xj +
n∑

i=1;i 6=j

xi

− 1

23k

n∑
j=1

f

2k

−xj +
n∑

i=1;i6=j

xi

, r
7

 ,

 ,
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min

N
− (n− 5)

∑
i=1;1≤i<j≤k≤n

C (xi + xj + xk) +
1

23k
(n− 5)

∑
i=1;1≤i<j≤k≤n

f
(

(xi + xj + xk) 2k
)
,
r

7

 ,

 ,

min

N
− (−n2 + 8n− 11

) n∑
i=1;i6=j

C (xi + xj) +
1

23k

(
−n2 + 8n− 11

) n∑
i=1;i 6=j

f
(

2k (xi + xj)
)
,
r

7

 ,

 ,

min

{
N

(
−

n∑
j=1

C (2xj) +
1

23k

n∑
j=1

f
(

2k2xj
)
,
r

7

)
,

}
,

min

{
N

(
−1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

C (xi) +
1

23k

(
n3 − 10n2 + 23n+ 2

2

) n∑
i=1

f
(

2kxi
)
,
r

7

)}
,

min

N
(

1

23k
f

(
2k

n∑
i=1

xi

))
+

1

23k

n∑
j=1

f

2k

−xj +
∑

i=1;i6=j

xi

− (n− 5)

23k

n∑
i=1;1≤i<k≤j≤n

f
(

2k (xi + xj + xk)
)

min

N
(
−n2 + 8n− 11

)
23k

∑
i=1;i 6=j

f
(

2k (xi + xj)
)

+
1

23k

n∑
j=1

f
(

2k.2xj
)
− 1

2

(
n3 − 10n2 + 23n+ 2

)
23k

n∑
i=1

f
(

2kxi
)
,
r

7


for all x1, x2, x3, ..., xn ∈ X and all r > 0. Using (37) and (F5) in (38), we arrive

N

C( n∑
i=1

xi

)
+

n∑
j=1

C

−xj +
∑

i=1;i6=j

xi

− (n− 5)
∑

1≤i<k≤j≤n

C((xi + xj + xk)



−N
((
−n2 + 8n− 11

)) ∑
i=1;i6=j

C (xi + xj) +N

(
n∑
j=1

C (2xj)−
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

C (xi), r

)

≥ min
{

1, 1, 1, 1, 1, 1, N
′ (
α
(

2kx1, 2
kx2, 2

kx3, ..., 2
kxn

)
, 23kr

)}
≥ N

′ (
α
(

2kx1, 2
kx2, 2

kx3, ..., 2
kxn

)
, 23kr

)
(38)

for all x1, x2, x3, ..., xn ∈ X and all r > 0. Letting K →∞ in (39) and using (22), we see that

N

C( n∑
i=1

xi

)
+

n∑
i=1;i 6=j

C

−xj +
∑

i=1;i 6=j

xi

− (n− 5)
∑

i=1;1≤i<k≤j≤n

C((xi + xj + xk)



−N

(−n2 + 8n− 11
) ∑
i=1;i 6=j

C (xi + xj) +

n∑
j=1

C (2xj)−
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

C (xi)

 = 1 (39)

for all x1, x2, x3, ..., xn ∈ X and all r > 0. Using (F2) in the above inequality gives

n∑
i=1

C (xi) +

n∑
j=1

C

−xj +
∑

i=1;i6=j

xi

 = (n− 5)
∑

1≤i<k≤j≤n

C((xi + xj + xk)

+
(
−n2 + 8n− 11

) ∑
i=1;i 6=j

C (xi + xj)−
n∑
j=1

C (2xj) +
1

2

(
n3 − 10n2 + 23n+ 2

) n∑
i=1

C (xi)

for all x1, x2, x3, ..., xn ∈ X. Hence C satisfies the cubic functional equation (11). In order to prove C (x) is unique, let

C
′
(x) be another cubic functional equation satisfies (11) and (25). Hence,

N
((
C (x)− C

′
(x)
)
, r
)

= N

(
C
(
2kx
)

23k
−
C
′ (

2kx
)

23k
, r

)
≥ min

{
N

(
C
(
2kx
)

23k
−
f
(
2kx
)

23k
,
r

2

)
, N

(
f
(
2kx
)

23k
−
C
′ (

2kx
)

23k
,
r

2

)}

≥ N
′
(
α
(

2kx, 0, 0, ..., 0
)
,
r23k

(
23 − d

)
2

)

≥ N
′
(
α (x, 0, 0, ..., 0) ,

r23k
(
23 − d

)
2dk

)
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for all x ∈ X and all r > 0. Since

lim
k→∞

r23k
(
23 − d

)
2dk

=∞

we obtain

lim
k→∞

N
′
(
α (x, 0, 0, ..., 0) ,

r23k
(
23 − d

)
2dk

)
= 1

Thus

N
(
C (x)− C

′
(x) , r

)
= 1

for all x ∈ X and all r > 0, hence C (x) = C
′
(x). Therefore C (x) is unique. For β = −1, we can prove the result by a

similar methods. This completes the proof of the theorem. From Theorem 4.1, we obtain the following corollary concerning

the generalized Hyers-Ulam Stability for the functional equation (11).

Corollary 4.2. Suppose that a function f : X → Y satisfies the inequality

N (Df (x1, x2, x3, ..., xn) , r) ≥


N
′
(ε, r)

N
′ (
ε
∑n
i=1 ‖xi‖

s , r
)
; s 6= 3

N
′ (
ε
(∏n

i=1 ‖xi‖
s +

∑n
i=1 ‖xi‖

ns) , r); s 6= 3
n

(40)

for all x1, x2, x3, ..., xn ∈ X and all r > 0, where ε, s are constants, there exists a unique cubic mapping C : X → Y such

that

N (f (x)− C (x) , r) ≥


N
′ (
ε, r
∣∣23 − 1

∣∣);
N
′ (
ε ‖xi‖s , r

∣∣23 − 2s
∣∣); s 6= 3

N
′ (
ε (‖xi‖ns) , r

∣∣23 − 2ns
∣∣); s 6= 3

n

(41)

for all x ∈ X and all r > 0.

5. Fuzzy Stability Results: Fixed Point Method

In this section, the authors presented the generalized Hyers-Ulam Stability of the functional equation(11) in Fuzzy normed

spaces using fixed point method,[12]. Now we recall the fundamental results in fixed point theory.

Theorem 5.1 ([23] The alternative of fixed point). Suppose that for a complete generalized metric space (X, d) and a

strictly contractive mapping T : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either

(B1) d
(
Tnx, Tn+1x

)
=∞, ∀n ≥ 0

(or)

(B2) there exists a natural number n0 such that:

(i) d
(
Tnx, Tn+1x

)
<∞ for all n ≥ n0

(ii) The sequence (Tnx) is convergent to a fixed point y∗ of T

(iii)y∗ is the unique fixed point of T in the set Y = {y ∈ X : d (Tn0x, y) <∞} ;

(iv)d (y∗, y) ≤ 1
1−Ld (y, Ty) for all y ∈ Y .

For to prove the stability result we define the following :
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δi is a constant such that

δi =


2 if i = 0

1
2

if i = 1

and Ω is the set such that

Ω = {g/g : X → Y, g (0) = 0} .

Theorem 5.2. Let f : X → Y be a mapping for which there exists a function α : Xn → Z with the condition,

lim
k→∞

N
′ (
α
(
δki x1, δ

k
i x2, δ

k
i x3, ..., δ

k
i xn

)
, δ3ki r

)
= 1 ∀x1, x2, x3, ..., xn ∈ X, r > 0 (42)

and satisfying the functional in equality

N (Df (x1, x2, x3, ..., xn) , r) ≥ N
′
(α (x1, x2, x3, ..., xn) , r) ∀x1, x2, x3, ..., xn ∈ X, r > 0 (43)

If there exists L = L(i) such that the function

x→ β (x) = α
(x

2
, 0, 0, ..., 0

)
, (44)

has the property

N
′
(
L

1

δ3i
β (δix) , r

)
= N

′
(β (x) , r) ,∀x ∈ X, r > 0 (45)

Then there exists unique cubic functions C : X → Y satisfies the functional equation (11) and

N (f (x)− c (x) , r) ≥ N
′
(
L1 − i
1− L β (x) , r

)
, ∀x ∈ X, r > 0 (46)

Proof. Let d be a general metric on Ω, such that d (g, h) = inf
{
K ∈ (0,∞) /N (g (x)− h (x) , r) ≥ N

′
(kβ (x) , r) , x ∈ X, r > 0

}
It is easy to see that (Ω, d) is complete. Define T : Ω→ Ω by Tg (x) = 1

δ3i
g (δix) , for all x ∈ X. For g, h ∈ Ω, we have

d (g, h) ≤ k ⇒ N (g (x)− h (x) , r) ≥ N
′
(kβ (x) , r)

⇒ N

(
g (δix)

δ3i
− h (δix)

δ3i
, r

)
≥ N

′
(
k

δ3i
β (δix) , r

)
⇒ N (Tg (x)− Th (x) , r) ≥ N

′
(kLβ (x) , r)

⇒ d (Tg (x) , Th (x)) ≤ KL

⇒ d (Tg, Th) ≤ Ld (g, h) (47)

for all g, h ∈ Ω. Therefore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x1, x2, x3, ..., xn) by

(x, 0, 0, ..., 0) in (44) we get

N (f (2x)− 8f (x) , r) ≥ N
′
(α (x, 0, 0, ..., 0) , r) (48)

for all x ∈ X, r > 0. Using (F3) in (48,) we arrive

N

(
f (2x)

23
− f (x) , r

)
> N

′
(

1

23
α (x, 0, 0, ..., 0) , r

)
(49)
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for all x ∈ X, r > 0., with the help of (45) when i = 0,it follows from(49), we get

⇒ N

(
f (2x)

23
− f (x) , r

)
≥ N

′
(Lβ (x) , r)

⇒ d (Tf, f) ≤ L = L1 = L1−i (50)

Replacing x by
(
x
2

)
in,(48) we obtain

N
(
f (x)− 8f

(x
2

)
, r
)
≥ N

′
(

1

23
α
(x

2
, 0, 0, ..., 0

)
, r

)
(51)

for all x ∈ X, r > 0, with the help of (45) when i = 1, it follows from (51), we get

⇒ N
(
f (x)− 8f

(x
2

)
, r
)
≥ N

′
(β (x) , r)

⇒ d (Tf, f) ≤ 1 = L0 = L1−i (52)

Then from (50) and (52), we can conclude,

d (Tf, f) ≤ L1−i <∞

Now from the fixed point alternative in both cases, it follows that there exists a fixed point C of T in Ω such that

C (x) = N − lim
k→∞

f
(
2kx
)

23k
∀x ∈ X, r > 0. (53)

Replacing (x1, x2, x3, ..., xn) by
(
δki x1, δ

k
i x2, δ

k
i x3, ..., δ

k
i xn

)
in (44),we arrive

N

(
1

δ3ki
Df

(
δki x1, δ

k
i x2, δ

k
i x3, ..., δ

k
i xn

)
, r

)
≥ N

′ (
α
(
δki x1, δ

k
i x2, δ

k
i x3, ..., δ

k
i xn

)
, δ3ki r

)
(54)

for all r > 0 and all x1, x2, x3, ..., xn ∈ X. By proceeding the same procedure as in the Theorem 4.1, we can prove the

function , C : X → Y satisfies the functional equation(11). By fixed point alternative, since C is unique fixed point of T in

the set ∆ = {f ∈ Ω/d (f, c) <∞}, therefore C is a unique function such that

N (f (x)− C (x) , r) ≥ N
′
(kβ (x) , r) (55)

for all x ∈ X and all r > 0 and k > 0. Again using the fixed point alternative, we obtain

d (f, C) ≤ 1

1− Ld (T, Tf)

⇒ d (f, C) ≤ L1−i

1− L

N (f (x)− C (x) , r) ≥ N
′
(
L1−i

1− Lβ (x) , r

)
(56)

for all x ∈ X and r > 0. This completes the proof of the theorem. From Theorem 5.2, we obtain the following corollary

concerning the stability for the functional equation(11).
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Corollary 5.3. Suppose that a function f : X → Y satisfies the inequality

N (Df (x1, x2, x3, ..., xn) , r) ≥


N
′
(ε, r)

N
′ (
ε
∑n
i=1 ‖xi‖

s , r
)

; s 6= 3

N
′ (
ε
(∏n

i=1 ‖xi‖
s) , r +

∑n
i=1 ‖xi‖

ns , r
)

; s 6= 3
n

(57)

for all x1, x2, x3, ..., xn ∈ X and r > 0, where ε, S are constants with ε > 0. There exists a unique cubic mapping C : X → Y

such that

N (f (x)− C (x) , r) ≥


N
′ (
ε, r
∣∣23 − 1

∣∣) ,
N
′ (
ε ‖x‖s , r

∣∣23 − 2s
∣∣) ,

N
′ (
ε ‖x‖ns , r

∣∣23 − 2ns
∣∣) ,

(58)

for all x ∈ X and all r > 0.

Proof. Setting

α (x1, x2, x3, ..., xn) =


ε,

ε
∑n
i=1 ‖xi‖

s,

ε
(∏n

i=1 ‖xi‖
s +

∑n
i=1 ‖xi‖

ns) ,
for all x1, x2, x3, ..., xn ∈ X. Then

N
′ (
α
(
δki x1, δ

k
i x2, δ

k
i x3, ..., δ

k
i xn

)
, δ3ki r

)
=


N
′ (
ε, δ3ki r

)
N
′
(
ε
∑n
i=1 ‖xi‖

s , δ
(3−s)k
i r

)
,

N
′
(
ε
(∏n

i=1 ‖xi‖
s, r
)

+
∑n
i=1 ‖xi‖

ns , δ
(3−ns)k
i r

)
,

=


→ 1 as k →∞

→ 1 as k →∞

→ 1 as k →∞

Thus, (33) is holds. But we have β (x) = α
(
x
2
, 0, 0, ..., 0

)
has the property N

′
(
L 1
δ3i
β (δix) , r

)
≥ N

′
(β (x) , r) ∀x ∈ X, r >

0. Hence

N
′
(β (x) , r) = N

′ (
α
(x

2
, 0, 0, ..., 0

)
,
)

=


N
′
(ε, r) ,

N
′ ( ε

2s
‖x‖s , r

)
,

N
′ ( ε

2ns
‖x‖ns , r

)
,

Now

N
′
(

1

δ3i
β (δix) , r

)
=


N
′
(
ε
δ3i
, r
)
,

N
′
(
ε
δ3i

(
1
2s

)
‖δix‖s , r

)
,

N
′
(
ε
δ3i

(
1

2ns

)
‖δix‖ns , r

)
,

=


N
′ (
δ−3
i β (x) , r

)
,

N
′ (
δs−3
i β (x) , r

)
,

N
′ (
δns−3
i β (x) , r

)
,
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Now from (36), we prove the following cases for conditions (i) and (ii).

case:1 L = 2−3 for s = 0 if i = 0

N (f (x)− C (x) , r) ≥ N
′
((

2−3
)1−0

1− 2−3
β (x) , r

)

= N
′
(
ε2−3 × 23

23 − 1
‖x‖s , r

)
= N

′ (
ε ‖x‖s , r

[
23 − 1

])
case:2 L = 23 for s = 0 if i = 1

N (f (x)− C (x) , r) ≥ N
′
((

23
)1−1

1− 23
β (x) , r

)

≥ N
′
(
ε

1

1− 23
‖x‖s , r

)
≥ N

′ (
ε ‖x‖s , r

[
1− 23])

case:3 L = 2s−3 for s > 3 if i = 0

N (f (x)− c (x) , r) ≥ N
′
(
ε

(
2s−3

)1−0

1− 2s−3
β (x) , r

)

≥ N
′
(

ε

23 − 2s
‖x‖s , r

)
≥ N

′ (
ε ‖x‖s , r

[
23 − 2s

])
case:4 L = 23−s for s < 3 if i = 1

N (f (x)− C (x) , r) ≥ N
′
(
ε
(
23−s)1−1

1− 23−s β (x) , r

)

≥ N
′
(
ε

1

2s − 23
‖x‖s , r

)
≥ N

′ (
ε ‖x‖s , r

[
2s − 23])

case:5 L = 23−ns for s < 3
n

if i = 1

N (f (x)− C (x) , r) ≥ N
′
(
ε

(
23−ns)1−1

1− 23−ns β (x) , r

)

≥ N
′
(
ε

1

2ns − 23
‖x‖s , r

)
≥ N

′ (
ε ‖x‖ns , r

[
2ns − 23])

N (f (x)− C (x) , r) ≥ N
′ (
ε ‖x‖ns , r

[
2ns − 23])

case:6 L = 2ns−3 for s > 3
n

if i = 0

N (f (x)− C (x) , r) ≥ N
′
(
ε

(
2ns−3

)1−0

1− 2ns−3
β (x) , r

)

≥ N
′
(
ε

1

23 − 2ns
‖x‖ns , r

)
≥ N

′ (
ε ‖x‖ns , r

[
23 − 2ns

])
Hence the Proof is complete.
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6. Preliminaries of Random Normed Space

In the sequel, we adopt the usual terminology,notations and conventions of the theory of random normed space as

in [32,36,38]. Throughout this paper, ∆+ is the space of distribution functions, that is, the space of all mappings

F : R ∪ {−∞,∞} → [0, 1], such that F is left continuous and non decreasing on R, F (0) = 0 and F (+∞) = 1, D+ is

a subset of ∆+ consisting of all functions F ∈ ∆+ for which l−F (+∞) = 1, where l−f (x) denotes the left limit of the

function f at the point x,that,l−f (x) = limt→x− f (t). The space ∆+ is partially ordered by the usual pointwise ordering of

functions, that is F ≤ G if and only if F (t) ≤ G (t) for all t ∈ <. The maximal element for ∆+ in this order the distribution

function ε0 given by

ε0 (t) =


0, ift ≤ 0

1, ift ≥ 0

(59)

Definition 6.1 ([53]). A mapping T : [0, 1]× [0, 1]→ [0, 1] is called a continuous triangular norm, if T satisfies the following

condition:

(a) T is commutative and associative;

(b) T is continuous

(c) T (a, 1) = a for all a ∈ [0, 1]

(d) T (a, b) ≤ T (c, d) when a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1]

Typical examples of continuous t-norms are Tp (a, b) = ab, Tm (a, b) = min (a, b) and TL (a, b) = max (a+ b− 1, 0) (The

Lukasiewicz t-norm). Recall (see[15,17]) that if T is a t-norm and xn is a given sequence of numbers in [0,1], then Tni=1xn+i

is defined recurrently by T
′
i=1xi = xi and Tni=1xi = T

(
Tn−1
i=1 xi, xn

)
for n ≥ 2, T∞i=1xi is defined as T∞i=1xn+i. It is known

[16] that, for the Lukasiewicz t-norm, the following implication holds:

lim
n→∞

(TL)∞i=1 xn+i = 1⇐⇒
∞∑
n=1

(1− xn) <∞ (60)

Definition 6.2. Shers A random normed space (briefly,RN-Space) is a triple (X,µ, T ), where X is a vector space. T is a

continuous t-norm and µ is a mapping from X into D+ satisfies the following conditions:

(RN1) µx (t) = ε0 (t) for all t > 0 if and only if x = 0

(RN2) µαx (t) = µx
(

t
|α|

)
for all x ∈ X, and α ∈ < with α 6= 0

(RN3) µx+y (t+ s) ≥ T (µx (t) , µy (s)) for all x, y ∈ X and T, s ≥ 0

Example 6.3. Every normed space (X, ‖.‖) defines a random normed space (X,µ, T ),where

µx (t) =
t

t+ ‖x‖

and T is the minimum T-norm. This space is called the induced random normed spaces.

Definition 6.4. Let (X,µ, T ) be a RN-space

(1) A Sequence {xn} in X is said to be convergent to a point x ∈ X if , for any ε > 0 and λ > 0, there exists a positive

integers N such that µxn−x (ε) > 1− λ for all n > N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for any ε > 0 and λ > 0, there exists a positive integer N such that

µxn−xm (ε) > 1− λ for all n ≥ m ≥ N .

(3) A RN-space (X,µ, T ) is said to be complete , if every cauchy sequence in X is convergent to a point in X.
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Theorem 6.5. If (X,µ, T ) is a RN-space and {xn} is a sequence in X such that xn → x, then limn→∞ µxn (t) = µx (t)

almost everywhere.

7. Random Stability Results: Direct Method

In this section, the generalized Ulam-Hyers Stability of the cubic functional equation (11) in RN-space is provided. Through

out this section, let us consider X be a linear space (Y, µ, T ) is a complete RN-space. The proof of the following theorem

and corollary is similar to that of results of section 4 and 5. Hence the detail of the proof are ommited.

Theorem 7.1. Let j = ±1 f : X → Y be a mapping for which there exists a function η : Xn → D+ with the condition.

lim
k→∞

T∞i=0 =
(
η2(k+i)x1,2(k+i)x2,2(k+i)x3,...,2(k+i)xn(23(k+i+1)jt)

)
= 1 (61)

= lim
k→∞

η2kjx1,2kjx2,2kjx3,...,2kjxn(23kjt) (62)

such that the functional inequality with f (0) = 0 such that

µDf(x1,x2,x1,...,xn) (t) ≥ η(x1,x2,x1,...,xn) (t) (63)

for all x1, x2, x3, ..., xn ∈ X and all t > 0. Then there exsits a unique cubic mapping C : X → Y satisfies the functional

equation (11) and

µc(x)−f(x) (t) ≥ T∞i=0

(
η2(i+1)jx,0,0,...,0(23(i+1)jt)

)
(64)

for all s ∈ X and all t > 0. The mapping C (x) is defined by

µc(x) (t) = lim
k→∞

µ
f(2kjx)

23kj

(t) (65)

for all x ∈ X and all t > 0.

Proof. Assume j = 1. Setting (x1, x2, x3, ..., xn) = (x, 0, 0, ..., 0) in (61), we get

µf(2x)−8(x) (t) ≥ ηx,0,0,...,0 (t) (66)

for all x ∈ X and all t > 0. It follows from (65) and (RN2), we have

µf 2x
23
−f(x) (t) ≥ ηx,0,0,...,0

(
23t
)

(67)

for all x ∈ X and all t > 0. Replacing x by 2kx in (66), we arrive

µf(2k+1x)

23(k+1)
−
f
(
2kx
)

23k
(t) ≥ η2kx,0,0,...,0

(
23(k+1)t

)
(68)

for all x ∈ X and all t > 0. The rest of the proof is similar to that of Theorem 4.1

The following corollary is an immediate consequence of Theorem 7.1, concerning the stability of (11).
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Corollary 7.2. Let ε and s be non-negative real numbers. Let a cubic functionf : X → Y satisfies the inequality

µDf(x1,x2,x3,...,xn) (t) ≥


ηε (t) ,

ηε
∑n
i=1 ‖xi‖

s (t) , s 6= 3

ηε
(∏n

i=1 ‖xi‖
s +

∑n
i=1 ‖xi‖

ns) (t) , s 6= 3
n

(69)

for all x1, x2, x3, ..., xn ∈ X and all t > 0. Then there exists a unique cubic function C : X → Y such that

µf(x)−c(x) (t) ≥



η ε

|23−1|
(t) ,

η ε‖x‖s

|23−2s|
(t) ,

η ε‖x‖ns

|23−2ns|
(t)

(70)

for all x ∈ X and all t > 0.

8. Random stability Results: Fixed Point Method.

In this section, the authors present the generalized Ulam-Hyers Stability of the functional equation (11),in Random normed

spaces using fixed point method.

Theorem 8.1. Let f : X → Y be a mapping for which there exists a function η : Xn → D+ with the condition

lim
k→∞

ηδki x1,δki x2,δki x3,...,δki xn

(
δ3ki t

)
= 1, ∀x1, x2, ..., xn ∈ X, t > 0 (71)

and satisfying the functional inequality

µDf(x1,x2,x3,...,xn) (t) ≥ ηx1,x2,x3,...,xn (t) ,∀x1, x2, x3, ..., xn ∈ X, t > 0 (72)

If there exists L = L (i) such that the function

x→ β (x, t) = η x
2
,0,0,...,0 (t) ,

has the property, that

β (x, t) ≤ L 1

δ3i
β (δix, t) , ∀x ∈ X, t > 0 (73)

Then there exists a unique cubic function C : X → Y satisfying the functional equation (11) and

µc(x)−f(x)

(
L1−i

1− Lt
)
≥ β (x, t) ,∀x ∈ X, t > 0 (74)

Proof. Let d be a general metric on Ω, such that d (g, h) = inf
{
k ∈ (0,∞) /µ(g(x)−h(x) (kt) ≥ β (x, t) , x ∈ X, t > 0

}
. It is

easy to see that (Ω, d) is complete. Define T : Ω→ Ω by Tg (x) = 1
δ3i
g (δix) , ∀x ∈ X. Now for g, h ∈ Ω, we have d (g, h) ≤ K

⇒µ(g(x)−h(x) (Kt) ≥ β (x, t)

⇒µ(Tg(x)−Th(x))
Kt

δ3i
≥ β (x, t)

⇒d (Tg (x) , Th (x)) ≤ KL

⇒d (Ts, Th) ≤ Ld (g, h) (75)
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for all g, h ∈ Ω. Therefore T is strictly contractive mapping on Ω with Lipschitz constant Constant L. The rest of the proof

is similar to that of Theorem 5.2. From the Theorem 8.1, we obtain the following corollary concerning the stability for the

functional equation(11).

Corollary 8.2. Suppose that a function f : X → Y satisfies the inequality

µDf(x1,x2,x3,..,xn) (t) ≥


ηε (t) ,

ηε
∑n
i=1 ‖xi‖

s (t) , s 6= 3

ηε
(∏n

i=1 ‖xi‖
s +

∑n
i=1 ‖xi‖

ns) , s 6= 3
n

(76)

for all x1, x2, x3, ..., xn ∈ X and t > 0, where ε, S are constants with ε > 0, then there exists a unique cubic mapping

C : X → Y such that

µf(x)−c(x) (t) ≥



η ε

|23−1| (t) ,

η ε‖x‖s

|23−2s| (t) ,

η ε

|23−2ns| (t) ,

for all x ∈ X and all t > 0.

Proof. Setting

ηDf(x1,x2,x3,..,xn) (t) ≥


ηε (t) ,

ηε
∑n
i=1 ‖xi‖

s (t) ,

ηε
(∏n

i=1 ‖xi‖
s +

∑n
i=1 ‖xi‖

ns) ,
for all x1, x2, x3, ..., xn ∈ X and all t > 0. The rest of the proof is similar that of Corollary 5.3.

9. Stability Result: Intuitionistic Fuzzy Normed Space

In this section, we give some basic definition and notations about intuitionistic fuzzy metric space introduced by J. H.

Park[40] and R. Saadati and J.H. Park[51,52].

Definition 9.1. Let µ and v be membership and non membership degree of an intutionistic fuzzy set from X × (0,+∞)

to [0,1] such that µx (t) + vx (t) ≤ 1 for all x ∈ X and all t > 0. The triple (X,Pµ,v,M) is said to be an intutionistic

fuzzy normed space (briefly IFN-space) if X is a vector space, M is a continuous t-representable and Pµ,v is a mapping

X × (0,+∞)→ L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(IFN1) Pµ,v (x, 0) = 0L∗ ;

(IFN2) Pµ,v (x, t) = 1L∗ ; if and only if x = 0

(IFN3) Pµ,v (αx, t) = Pu,v
(
x, t
|α|

)
for all α 6= 0;

(IFN4) Pµ,v (x+ y, t+ s) ≥L∗ M (Pµ,v (x, t) , Pµ,v (y, s)) ;

In this case Pµ,v is called intutionistic fuzzy norm. Here Pµ,v (x, t) = (µx (t) , vx (t)).

Example 9.2. Let (X, ‖.‖) be a normed space. Let T (a, b) = (a, bmin (a2 + b2, 1)) for all a = (a1, a2) , b = (b1, b2) ∈ L∗

and µ, v be membership degree of an intutionistic fuzzy set defined by

Pµ,v (x, t) = (µx (t) , vx (t)) =

(
t

t+ ‖x‖ ,
‖x‖

t+ ‖x‖

)
,∀t ∈ R+.

Then (X,Pµ,v, T ) is an IFN-space.
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Definition 9.3. A sequence {xn} in an IFN-space (x, Pu,v, T ) is called a Cauchy sequence if,for any ε > 0 and t > 0, there

exists n0 ∈ N such that Pu,v (xn − xm, t) >L∗ (Ns (ε) , ε) , ∀n,m ≥ n0, where Ns is the standard negator.

Definition 9.4. The sequence {xn} is said to be convergent to point x ∈ X (denoted by xn
Pu,v→ x) if Pu,v (xn − x, t)→ 1L∗

as n→∞ for every t > 0.

Definition 9.5. An IFN-space (X,Pµ,v, T ) is said be complete if every Cauchy sequence in X is convergent to a point

x ∈ X. Further details about IFN-space one can see ([4,7,8,12,24,29-33,35-36]). Throughout this section, let us consider

X, (z, pµ,v,M) and
(
y, P

′
µ,v,M

)
are linear space, intuitionistic fuzzy normed space and complete intuitionistic fuzzy normed

space.

Theorem 9.6. Let K ∈ {−1, 1} be fixed and let ε : Xn → Z be mapping such that for some b with 0 <
(
b
2

)k
< 1,

P
′
u,v

(
ε
(

2kx, 0, 0, .., 0
)
, r
)
≥L∗ P

′
u,v

(
bkε (x, 0, 0, .., 0) , r

)
(77)

for all x ∈ X and all r > 0, b > 0 and

lim
k→∞

P
′
u,v

(
ε
(

2kx1, 2
kx2, 2

kx3, .., 2
kxn

)
, 23kr

)
= 1L∗ (78)

for all x1, x2, x3, ..., xn ∈ X and all r > 0. Suppose that a function f : X → Y satisfying the inequality

Pu,v (Df (x1, x2, x3, ..., xn) , r) ≥L∗ P
′
u,v (ε (x1, x2, x3, ..., xn) , r) (79)

for all x1, x2, x3, ..., xn ∈ X and all r > 0. Then the limit

Pu,v

(
C (x)−

f
(
2kx
)

23k
, r

)
→ 1L∗asK →∞, r > 0 (80)

exists for all x ∈ X and the mapping C : X → Y is a unique cubic mapping satisfying (11) and

Pu,v (f (x)− C (x) , r) ≥L∗ P
′
u,v

(
ε (x, 0, 0, ..., 0) , r

(
23 − b

))
(81)

for all x ∈ X and all r > 0.

Proof. First assume k = 1. Replacing (x1, x2, x3, ..., xn) by (x, 0, 0, ..., 0) in(9.3),we arrive

Pu,v (f (2x)− 8f (x) , r) ≥L∗ P
′
u,v (ε (x, 0, 0, ..., 0) , r)

for all x ∈ X and all r > 0. Using (IFN3) in the above equation, we get

Pu,v

(
f (2x)

23
− f (x) , r

)
≥L∗ P

′
u,v (ε (x, 0, 0, ..., 0) , r) (82)

for all x ∈ X and all r > 0. Replacing x by 2kx in (81), we obtain

Pu,v

(
f
(
2k+1x

)
23(k+1)

− f
(

2kx
)
, r

)
≥L∗ P

′
u,v

(
ε
(

2kx, 0, 0, ..., 0
)
, r
)

(83)

for all x ∈ X and all r > 0. Using (76),(IFN3) in (82), we arrive

Pu,v

(
f
(
2k+1x

)
23(k+1)

− f
(

2kx
)
, r

)
≥L∗ P

′
u,v

(
ε (x, o, o, ..., 0) ,

r

bk

)
(84)

for all x ∈ X and all r > 0. The rest of the proof is similar to that of Theorem 4.1.
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Corollary 9.7. Let ε and S be an nonnegative real numbers. Let a cubic function f : X → Y satisfies the inequality

P
′
u,v (f (x1, x2, x3, ..., xn) , r) ≥L∗


P
′
u,v (ε, r)

P
′
u,v

(
ε
∑n
k=1 x

s
k, r
)
, s 6= 3

P
′
u,v

(
ε
(∑n

k=1 x
ns
k +

∏n
i=1 x

s
k

)
, r
)
, s 6= 3

n

for all x1, x2, x3, ..., xn ∈ X . Where ε, S are constant with ε > 0. Then there exists a unique cubic mapping C : X → Y

such that

Pu,v (f (x)− c (x) , r) ≥


P
′
u,v

(
ε,
∣∣23 − 1

∣∣) ,
P
′
u,v

(
εxsk, r

∣∣23 − 2s
∣∣) ,

P
′
u,v

(
εxnsk , r

∣∣23 − 2ns
∣∣) ,

(85)

for all x ∈ X and all r > 0.

10. Stability Results: Fixed Point Method

In this section, the authors investigate the generalized Ulam-Hyers Stability of the functional equation (11) in IFN-space

using fixed point method.

Theorem 10.1. Let f : X → Z be a mapping for which there exists a function ε : Xn → Y with the condition,

lim
k→∞

P
′
u,v

(
ε
(
aki x1, a

k
i x2, a

k
i x3, ..., a

k
i xn

)
, a3ki r

)
= 1L∗ (86)

for all x1, x2, x3, ..., xn ∈ X,and all r > 0,and satisfies the functional inequality

Pu,v (f (x1, x2, x3, ..., xn) , r) ≥L∗ P
′
u,v (ε (x1, x2, x3, ..., xn) , r) (87)

for all x1, x2, x3, ..., xn ∈ X,and all r > 0. If there exists L = L (i) such that the function x → ψ (x) = ε
(
x
2
, 0, 0, ..., 0

)
,has

the property,

P
′
u,v

(
L
ψ (aix)

a3i
, r

)
= P

′
u,v (ψ (x) , r) , (88)

for all x ∈ X and all r > 0. Then there exists a unique cubic function C : X → Y satisfying the functional equation(11),and

Pu,v (f (x)− c (x) , r) ≥L∗ P
′
u,v

(
ψ (x) ,

(
L1−i

1− Lr
))

(89)

for all x ∈ X and all r > 0.

Proof. Let d be the general metric on A, such that

d (g, h) = inf
{
K ∈ (0,∞) |Pu,v (g (x)− h (x)) ≥L∗ P

′
u,v (ψ (x) , kr) , x ∈ X, r > 0

}

It is easy to see that (A, d) is complete. Define T : A → A by Tg (x) = 1
a3i
g (aix) . for all x ∈ X. By [21], we see that T is

strictly contractive mapping A with Lipschitz constant L. It is follows from (38) that

Pu,v

(
f (2x)

23
− f (x) , r

)
≥L∗ P

′
u,v

(
ε (x, 0, 0, ..., 0) , 23r

)
, (90)
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for all x ∈ X and all r > 0. With the help of (87) when i = 1, it follows from (89), that

Pu,v

(
f (2x)

23
− f (x) , r

)
≥L∗ P

′
u,v

(
ψ (x) , 23r

)
,

⇒ d (Th, h) ≤ 1 = L0 = L1−i (91)

Replacing x by x
2

in (89), we obtain

Pu,v
(
f (x)− 23f

(x
2

)
, r
)
≥L∗ P

′
u,v

(
ε
(x

2
, 0, 0, ..., 0

)
, r
)

(92)

for all x ∈ X and all r > 0, with the help of (87) when i = 0, it follows from (91), that

Pu,v
(
f (x)− 23f

(x
2

)
, r
)
≥L∗ P

′
u,v (ψ (x) , Lr) , ∀x ∈ X, r > 0

⇒ d (f, Th) ≤ L = L1 = L1−i (93)

Then from (90) and (92), we conclude d (f, Th) ≤ L1−i <∞. Now from the fixed point alternative in both cases,it follows

that there exists a fixed point C of T in A such that

lim
k→∞

Pu,v

(
f
(
aki x

)
a3ki

− C (x) , r

)
→ 1L∗ , ∀x ∈ X, r > 0. (94)

Replacing (x1, x2, x3, ..., xn) by
(
aki x1, a

k
i x2, a

k
i x3, ..., a

k
i xn

)
in (86), we arrive

Pu,v

(
1

a3ki
Df

(
aki x1, a

k
i x2, a

k
i x3, ..., a

k
i xn

)
, r

)
≥L∗ P

′
u,v

(
ε
(
aki x1, a

k
i x2, a

k
i x3, ..., a

k
i xn

)
, a3kr

)

for all x1, x2, x3, ..., xn ∈ X and all r > 0. By proceeding the same procedure in the Theorem 9.1, we can prove the

function , C : X → Y is cubic and it satisfies the functional equation (11), since C is Unique fixed point of T in the set

B = {f ∈ A|d (f, c) <∞}, such that

Pu,v (f (x)− c (x) , r) ≥L∗ P
′
u,v (ψ (x) , kr) , ∀x ∈ X, r > 0 (95)

Again using the fixed point alternative,we obtain

d (f, c) ≤ 1

1− Ld (f, Tf)→ d (f, c) ≤ L1−i

1− L

Hence we have

Pu,v (f (x)− c (x) , r) ≥L∗ P
′
u,v

(
ψ (x) ,

(
L1−i

1− Lr
))

, ∀x ∈ X, r > 0 (96)

This complete the proof of the theorem.

From Theorem 10.1, we obtain the following corollary concerning the stability for the functional equation(11).
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Proof. Suppose that a function f : X → Y satisfies the inequality

Pu,v (Df (x1, x2, x3, ..., xn) , r) ≥L∗


P
′
u,v (ε, r) ,

P
′
u,v

(
ε
∑n
i=1 x

s
i , r
)
, s 6= 3;

P
′
u,v

(
ε
(∏n

i=1 x
s
i +

∑n
i=1 x

ns
i

)
, r
)
, s 6= 3

n

(97)

for all x1, x2, x3, ..., xn ∈ X and all r > 0, where ε, S are constants with ε > 0. Then there exists a Unique cubic mapping

C : X → Y such that

Pu,v (f (x)− c (x) , r) ≥L∗



P
′
u,v

(
ε,
(

8
|7|r
))

;

P
′
u,v

(
ε ‖x‖s , 23+s

|2s−23|

)
;

P
′
u,v

(
ε ‖x‖ns , 23+s

|2ns−23|

)
;

(98)

for all x ∈ X and all r > 0.

Proof. The Proof follows by replacing L = 23 for i = 0 and L = 2−3 for i = 1; L = 23−s for s > 3, i = 0 and L = 2s−3 for

s < 3, i = 1; L = 23−ns for s > 3
n
, i = 0 and L = 2ns−3 for s < 3

n
, i = 1. Hence the proof is complete.

11. Stability Results: Felbin’s type Spaces

In this, we give some basic definition and notations about Felbin’s type spaces using direct Method.

Definition 11.1 ([8]). A fuzzy subset η on R is called a fuzzy real number, whose α-level set is denoted by [η]α

ie., [η]α = {t : η (t) ≥ α} ,

if it is satisfies two axioms:

• There exists t0 ∈ R such that η (t0) = 1

• For each α ∈ (0, 1] , [η]α =
[
η−α , η

+
α

]
where −∞ < η−α ≥ η+α < +∞.

The set of all fuzzy real numbers denoted by

F (R). If η ∈ F (R) and η (t) = 0

Whenever t < 0, then η is called a non-negative fuzzy real number and F ∗ [R] denotes the set of all non-negative fuzzy real

numbers. The numbers 0 stands for the fuzzy real number as:

0 =


t, t = 0

0, t 6= 0

Clearly,0 ∈ F ∗ [R] . Also the set of real numbers can be embedded in F (R) because if r ∈ (−∞,∞) , then r− ∈ F (R) satisfies

r− (t) = O (t− r).

Definition 11.2 ([3]). Fuzzy arithmetic operations ⊕, !,⊗,% on F (R)× F (R) can be defined as:

• (η ⊕ δ) (t) = Sups∈R {η (s) ∧ δ (t− s)} ; t ∈ R

• (η!δ) (t) = Sups∈R {η (s) ∧ δ (s− t)} ; t ∈ R

• (η ⊗ δ) (t) = Sups∈R {η (s) ∧ δ (t/s)} ; t ∈ R

• (η%δ) (t) = Sups∈R {η (s) ∧ δ (s)} ; t ∈ R

The additive and multiplicative identities in F (R) are 0 and T, respectively. Let ! η be defined as 0!η. It is clear that

η!δ = η ⊕ (!δ) .
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Definition 11.3 ([3]). For k ∈ P , fuzzy scalar multiplication Keeta is defined as (keη) (t) = η (t/k) and oeη is denoted to

be 0.

Lemma 11.4. Let η, δ be fuzzy real numbers. Then ∀t ∈ R. η (t) = δ (t)⇔ ∀a ∈ (0, 1] , [η]α = [δ]α.

Lemma 11.5. Let η, δ ∈ F (R) and [η]α =
[
η−a , η

+
a

]
, [δ]α =

[
δ−a , δ

+
a

]
. Then

• [η ⊕ δ]α =
[
η−α + δ+a , η

+
α + δ+a

]
,

• [η!δ]α =
[
η−α − δ+a , η+α − δ+a

]
,

• [η ⊗ δ]α =
[
η−α δ

+
a , η

+
α δ

+
a

]
, η, δ ∈ F ∗ [R]

• [η%δ]α =
[
1/δ+a , 1/δ

−
a

]
, δ−α > 0.

Definition 11.6 ([3]). Define a partial ordering ≤ in F (R) by n ≤ s if and only if η−α ≤ δ−a and η+α ≤ δ+a for all α ∈ (0, 1].

The Strict inequality in F (R) is defined by n < s if and only if η−α < δ−a and η+α < δ+a for all α ∈ (0, 1].

Definition 11.7 ([58]). Let X be a real linear space, L and R (respectively, left norm, right norm) be symmetric and non-

decreasing mapping from [0, 1] × [0, 1] → [0, 1] satisfying L (0, 0) = 0, R (1, 1) = 1. Then ‖.‖ is called a fuzzy norm and

(X, ‖.‖ , L,R) is a fuzzy normed linear space (abbreviated to FNLS) if the mapping ‖.‖ : X → F ∗ (R) satisfies the following

axioms, where [‖x‖]α =
[
‖x‖−a , ‖x‖

+
a

]
for x ∈ X and α ∈ (0, 1]:

• ‖x‖ = 0 if and only if x = 0,

• ‖ra‖ = |r| e ‖x‖ for all x ∈ X and r ∈ (−∞,∞) ,

• For all x, y ∈ X, if s ≤ ‖x‖−1 , t ≤ ‖y‖
−
1 and s+ t ≥ ‖x+ y‖−1 ,then, ‖x+ y‖ (s+ t) ≥ L (‖x‖ (s) , ‖y‖ (t)),if s ≥ ‖x‖−1 , t ≥

‖y‖−1 and s+ t ≥ ‖x+ y‖−1 , then ‖x+ y‖ (s+ t) ≤ L (‖x‖ (s) , ‖y‖ (t)).

Theorem 11.8 ([51]). . Let (X, ‖.‖ , L,R) be an FNLS and limα→0+ R (a, a) = 0. Then (X, ‖.‖ , L,R) is a Hausdorff

topological vector space, whose neighbourhood base of origin is {N (ε, a) ; ε > 0, α ∈ (0, 1]}, where N (ε, α) =
{
x : ‖x‖+α ≤ ε

}
.

Definition 11.9. Let (X, ‖.‖ , L,R) be an FNLS. A sequence {xn}∞n=1 ⊆ X converges to x ∈ X, if limn→∞ ‖xn − x‖−α , for

every α ∈ (0, 1] denoted by limn→∞ xn = x.

Definition 11.10. Let (X, ‖.‖ , L,R) be an FNLS. A sequence {xn}∞n=1 ⊆ X is called a Cauchy sequence if

limm,n→∞ ‖xm − xn‖+α = 0 for every α ∈ (0, 1].

Definition 11.11. Let (X, ‖.‖ , L,R) be an FNLS. A sequence A ⊆ X is said to be complete if every Cauchy sequence in

A, converges in A. The fuzzy normed space (X, ‖.‖ , L,R) is said to be a fuzzy Banach space if it is complete.

Theorem 11.12. Let j = ±1. Let φ : Un → F ∗ (R) be a function such that
∑∞
l=0

1
23lj

φ
(
2ljx

)+
α

converges and

lim
l→∞

1

23lj
φ
(

2ljx
)+
α

= 0 (99)

for all x ∈ Un,and let f : U → V be a function satisfying the inequality

∥∥D+ (x)
∥∥+
α
≤ (x)+α (100)

for all x ∈ Un. Then there exists a Unique cubic function C : U → V such that

‖f (x)− c (x)‖+α ≤
1

23
e
∑

k= 1−j
2

(
2kjx

)+
α

23kj
(101)

for all x ∈ U . The function C (x) is defined by

C (x) = lim
l→∞

f
(
2ljx

)
23lj

, ∀x ∈ U. (102)
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Proof. Assume j=1. Replacing (x1, x2, x3, ..., xn) by (x, 0, 0, ..., 0) in (99), we get

‖f (2x)− 8f (x)‖+α ≤ eφ (x, 0, 0, ..., 0) (103)

for all x ∈ U . Dividing 23, we obtain ∥∥∥∥f (2x)

8
− f (x)

)
|+α ≤

1

23
eφ (x, 0, 0, ..., 0) (104)

for all x ∈ U . Let φ (x)+α = φ (x, 0, 0, ..., 0) in (10.6), we arrive∥∥∥∥f (2x)

23
− f (x)

)
|+α ≤

1

23
eφ (x)+α (105)

for all x ∈ U . Now replacing x by 2x and dividing by 23 in (104) and adding the resultant inequality with (104), we obtain

∥∥∥∥f (2x)

23
− f (x)

)
|+α ≤

1

23
eφ

[
φ (x)+α +

φ (2x)+α
23

]
(106)

for all x ∈ U . In general for any positive integer l, we have∥∥∥∥∥f
(
2lx
)

23l
− f (x)

)
|+α ≤

1

23
e

l−1∑
k=0

φ
(
2kx
)

23k

≤ 1

23
e

∞∑
k=0

φ
(
2kx
)

23k
(107)

for all x ∈ U In order to prove the convergence of the sequence

{
f(2lx)

23l

}
, replace x by 2mx and dividing by 23m in (106),

for any m, l > 0, we arrive ∥∥∥∥∥f
(
2l+m

)
23(l+m)

− f (2mx)

23m

∥∥∥∥∥
+

α

=
1

23m
e

∥∥∥∥∥f
(
2l.2mx

)
23l

− f (2mx)

∥∥∥∥∥
+

α

nonumber (108)

≤ 1

23
e

l−1∑
k=0

φ
(
2k+mx

)+
α

23(k+m)

≤ 1

23
e

∞∑
k=0

φ
(
2k+mx

)+
α

23(k+m)
(109)

→ 0 as m → ∞ for all x ∈ U . Hence the sequence

{
f(2lx)

23l

}
is a Cauchy sequence. Since V is complete,there exists a

mapping C : V → V such that

C (x) = lim
l→∞

f
(
2lx
)

23l
, ∀x ∈ U

Letting l → ∞ in (107), we see that (100) holds for x ∈ U . To prove C satisfies (11), replacing x by 2lx and divided by23l

in (99), we arrive, 1
23l
e
∥∥Df (2lx)∥∥+

α
≤ 1

23l
eφ
(
2lx
)+
α

forall x ∈ Un. Letting l→∞ and in the above in equality, we see that

‖DC (x)‖+α = 0. Hence C satisfies (11) for all x1, x2, x3, ..., xn ∈ U. To prove C is unique, let B (x) be the another Cubic

mapping satisfying (11) and (100). Then

‖C (x)−B (x)‖+α =
1

23l

{∥∥∥C (2lx
)
−B

(
2lx
)∥∥∥+

α

}
≤ 1

23l
e

{∥∥∥C (2lx
)
− f

(
2lx
)∥∥∥+

α
⊕
∥∥∥f (2l

)
−B

(
2lx
)∥∥∥+

α

}
≤ 1

23l
e
∞∑
k=0

φ
(
2k+lx

)+
α

23(k+l)

→ 0 as l → ∞ for all x ∈ U . Hence C is Unique. For j = −1, we can prove of the similar type of stability result. This

completes the proof of the theorem.
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The following corollary is a immediate consequence of Theorem 10.1 concerning the stability of (11).

Corollary 11.13. Let λ and S be a non-negative real numbers. If a function f : U → V satisfying the inequality

‖Df (x)‖+α ≤


λ,

λ
∑n
l=1

(
‖xl‖+α

)s
, s 6= 3

λ
(∑n

l=1

(
‖xl‖+α

)ns ⊕∏n
l=1

((
‖xl‖+α

)s))
, s 6= 3

n

(110)

for all x1, x2, x3, ..., xn ∈ Un, then there exists a Unique Cubic function C : U → V such that

‖f (x)− c (x)‖+α ≤



λ
|7| ,

λ
|8−2s|e ‖x‖

s ,

λ
|8−2ns|e ‖x‖

ns ,

(111)

for all x ∈ U .

12. Fixed Point Stability Results

In this section, the authors proved the generalized Ulam-Hyers Stability of the n-dimensional cubic functional equation (11)

in Felbin’s type spaces with the help of the fixed point method.

Theorem 12.1. Let f : U → V be a mapping for which there exists a function φ : Un → F ∗ (R) with the condition

lim
k→∞

φ
(
εki x
)+
α

ε3ki
= 0 (112)

for all x ∈ U , satisfying the functional inequality

‖Df (x)‖+α ≤ φ (x)+α (113)

for all x1, x2, x3, ..., xn ∈ Un, and α ∈ (0, 1]. If there exists L = L (i) < 1 such that the function

x→ φ (x)+α = eφ
(x

2
, 0, 0, ..., 0

)
,

has the property

1

ε3i
eφ (εix)+α ≤ Leφ (x)+α (114)

for all x ∈ U . Then there exists a Unique Cubic function C : U → V satisfying the functional equation (1) and (11)

‖f (x)− c (x)‖+α ≤
L1−i

1− Leφ (x)+α ,∀x ∈ U (115)

Proof. Let d be the general metric on Ω, such that

d (f, s) = inf
{
k ∈ (0,∞) ; ‖f (x)− g (x)‖+α ≤ keφ (x)+α , x ∈ U

}
.
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It is easy to see that (Ω, d) is complete. Define G : Ω → Ω by Gf (x) = 1
ε3i
f (εix), for all x ∈ U . For f, g ∈ Ω and x ∈ U ,

we have

d (f, g) = k ⇒ ‖f (x)− g (x)‖+α ≤ keφ (x)+α

⇒
∥∥∥∥f (εix)

ε3i
− g (εix)

ε3i

∥∥∥∥ ≤ 1

ε3i
keφ (εix)+α

⇒ ‖Gf (x)−Gg (x)‖+α ≤
1

ε3i
keφ (x)+α

⇒ d (Gf (x) , Gg (x)) ≤ KL

d (Gf,Gg) ≤ Ld (f, g)

Therefore G is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x1, x2, x3, ..., xn) by (x, 0, 0, ..., 0) in

(111), we get

‖f (2x)− 8f (x)‖ ≤ eφ (x, 0, 0, ..., 0) (116)

for all x ∈ U . Using the definition φ (x)+α in the above equation and for i = 0, we have

∥∥∥∥f (2x)

8
− f (x)

∥∥∥∥+
α

≤ 1

8
eφ (x)+α

ie., ‖Gf (x)− f (x)‖ ≤ Leφ (x)+α

for all x ∈ U . Hence, we arrive

d (Gf (x) , f (x)) ≤ L = L1−i (117)

for all x ∈ U . Replacing x by x
2

in (114), we obtain

∥∥∥f (x)− 8f
(x

2

)∥∥∥+
α
≤ eφ

(x
2
, 0, 0, ..., 0

)
(118)

for all x ∈ U . Using definition of φ (x)+α in the above equation and for i = 1, we have

∥∥∥f (x)− 8f
(x

2

)∥∥∥+
α
≤ φ (x)+α

ie.,‖f (x)−Gf (x)‖+α ≤ φ (x)+α for all x ∈ U . Hence, we arrive

d (f (x) , Gf (x)) ≤ 1 = L1−i (119)

for all x ∈ U . From (115) and (117), we can conclude

d (f (x) , Gf (x)) ≤ L1−i <∞ (120)

for all x ∈ U . Now from the fixed point alternative in both cases, it follows that there exists a fixed point C of G in Ω such

that

C (x) = lim
k→∞

f
(
εki x
)

ε3ki
, ∀x ∈ U (121)

In order to prove C : U → V satisfies the functional equation (11), replace x by εki x and divide by ε3ki in (111), we get

∥∥∥∥ 1

ε3ki
Df (εix)

∥∥∥∥+
α

≤ 1

ε3ki
eφ (x)+α (122)
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for all x ∈ U . Letting K →∞ in the above in equality and using the choice of C and φ, we conclude C satisfies the functional

equation (11). Since C is Unique fixed point of G in the set ∆ = {f ∈ Ω/d (f, c) <∞} , therefore C is Unique function such

that

‖f (x)− C (x)‖+α ≤ Keφ (x)+α (123)

for all x ∈ U . Again using the fixed point alternative, we obtain

d (f, c) ≤ 1

1− Ld (f,Gf)

ie., d (f, c) ≤ L1−i

1− L

ie., ‖f (x)− c (x)‖+α ≤
L1−i

1− Leφ (x)+α (124)

for all x ∈ U . This completes the proof of the theorem.

The following corollary is immediate consequence of Theorem 11.1 concerning the stability of (11).

Corollary 12.2. Suppose that a function f : U → V satisfies the inequality

‖Df (x)‖+α ≤


ε,

ε
∑n
l=1

(
‖xi‖+α

)s
, s 6= 3

ε
(∑n

l=1

(
‖xi‖+α

)ns ⊕∏n
l=1

(
‖xi‖+α

)s)
, s 6= 3

n

for all x1, x2, x3, .., xn ∈ Un, where ε > 0. Then there exists a Unique cubic mapping C : U → V such that



ε
|7| ,

ε
|8−2s|e ‖x‖

s ,

ε
|8−2ns|e ‖x‖

ns

for all x ∈ U .

Proof. Let φ (x)+α = ε
n∑
l=1

(
‖xl‖+α

)s
for all x1, x2, x3, ..., xn ∈ Un. Then for s < 3, i = 0, and for S > 3, i = 1, we arrive

1

ε3ki
eφ
(
εki x
)+
α

=
1

ε3ki
eφ
(
εki x1, ε

k
i x2, ε

k
i x3, .., ε

k
i xn

)+
α

= εε
(s−3)k
i e

n∑
l=1

(
‖xl‖+α

)s
→ 0 as k →∞. Thus, (110) is holds. But we have φ (x)+α = eφ

(
x
2
, 0, 0, .., 0

)
has the property

1

ε3i
eφ (εix)+α = Leφ (x)+α , ∀x ∈ U.

Hence φ (x)+α = εe ‖x‖s = ε
2s
e ‖x‖s for all x ∈ U . Replacing x by εix and divide by ε3i in above inequality, we get

1

ε3i
eφ (εix)+α =

ε

2sε3i
e
(
‖εix‖+α

)s
= εs−3

i

ε

2s
e
(
‖εix‖+α

)s
= εs−3

i eφ (x)+α
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for all x ∈ U . Hence the inequality (112) holds when, L == εs−3
i , that is

L =


2s−3 for i = 0; s < 3

23−s for i = 1; s > 3

Now from (113), we prove the following cases:

Case:1 2s−3 for s < 3 if i = 0;

‖f (x)− c (x)‖+α ≤
2s−3

1− 2s−3

ε

2s
e
(
‖x‖+α

)s
=

ε

|8− 2s|e
(
‖x‖+α

)s
Case:2 23−s for s > 3; if i = 1

‖f (x)− c (x)‖+α ≤
(
23−s)1−1

1− 23−s
ε

2s
e
(
‖x‖+α

)s
=

ε

|2s − 8|e
(
‖x‖+α

)s

From the above two cases we arrive (113) for φ (x)+α = ε
n∑
l=1

(
‖xl‖+α

)s
. Proceding in the similar mannar one can prove the

results for

φ (x)+α = ε and φ (x)+α = ε

(
n∑
l=1

(
‖xl‖+α

)ns ⊕ n∏
l=1

(
‖xl‖+α

)s)
. Hence the proof is complete.
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