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Abstract: The hypothesis of partial differential equations (neighborhood and worldwide nearness, consistency, dispersing hypothesis)
is inconceivable and has been focused comprehensively by various makers. Only, the procedures became so far limit to

differential issues with basic data in issue, fundamentally because of the critical imagined by different arrangements in

the examination of partial differential directors. For a case of results and a lovely preface to the field, we propose the
partial differential equations. Right now, focus on the arrangement of partial differential equation. Generally speaking,

differential data in an adjustment space is more unpleasant than some random one of every a fragmentary potential space

and this low-consistency is charming when in doubt. The proposition of partial differential equations were exhibited by
Feichtinger during the 80s and have attested themselves recently as the right spaces in partial differential examination.

The current paper highlights the functions used for the solution of partial differential equation.
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1. Introduction

The collaboration of partial differential equation with molecule features in a couple of estimations is of both physical and

scientific interests. Such arrangements have been found in the numerical reenactments of the full Partial differential equation

framework with quick Kerr (or cubic) nonlinearity in two space estimations (2D). They are short partial arrangements that

spread without essentially changing shapes over a long detachment and have only a couple differential equations under their

envelopes. They have been found significant as information transporters in correspondence, as essentialness sources, switches

and method of reasoning entry ways in optical devices. In one space estimation (1D), the partial differential framework

displaying equations inciting in nonlinear equation surrenders partial differential equations as cautious arrangements, in

any case called the solitons. Or maybe, differential arrangements are progressively solid. The supposed arrangements

are of various scale equations with specific stage/bundle respectability and sufficiency components. Regardless of the way

that partial numerical propagations of the full partial differential equation framework are moving, asymptotic gauge is

essential for investigation in a couple of room estimations. The gauge of partial differential equation framework has been

comprehensively analyzed. Long equations are all around approximated through envelope surmise by the partial differential

equations. A connection between’s partial differential equation arrangements and those of an expanded equations in like

manner exhibited that the gauge works reasonably well on short stable partial differential framework. Scientific investigation

on the authenticity of partial differential equation estimation of numerical issues has been finished. In any case, in 2D, the

envelope gauge with the partial differential equation isolates, considering the way that fundamental breakdown of the

partial differential equation occurs in restricted time. On the other hand, due to the trademark physical segment or partial
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differential equation, this framework itself consistently continues fine past the issue. One case is the semi-customary two

level dissipationless partial differential equation framework where smooth arrangements proceed until the finish of time. It is

consequently an extraordinarily interesting request how to modify the partial differential equation to get the correct answers

for demonstrating the inducing and joint effort of numeric framework.

2. Applications of Partial Differential Equations

In this study, we consider the Spline method concerning the partial differential equations:

 i∂tu =
√

1−∆u+ F (u) in Rn × R, n ≥ 3

u(0) = ϕ
(1)

 ∂2
t u+ (1−∆)u = F (u) in Rn × R, n ≥ 3

u(0) = ϕ1, ∂tu(0) = ϕ2

(2)

The nonlinear part F (u) is of Spline type such that F (u) = Vγ(u)u where

Vγ(u)(x) = λ
(
| · |−γ ∗ |u|2

)
(x) = λ

∫
Rn

|u(y)|2

|x− y|γ dy

Here A is a non-zero real number and γ is a positive number less than the space dimension n. The equations (1) and (2)

can be rewritten in the form of the integral equations

u(t) = U(t)ϕ− i
∫ t

0

U
(
t− t′

)
F (u)

(
t′
)
dt′ (3)

u(t) = (cos tω)ϕ1 + ω−1(sin tω)ϕ2 −
∫ t

0

ω−1 (sin (t− t′)ω)F (u)dt′ (4)

where ω =
√

1−∆ and the associated unitary group U(t) is realized by the transform as

U(t)ϕ =
(
e−itωϕ

)
(x) ≡ 1

(2π)n

∫
Rn
eix·ξe−it

√
1+|ξ|2 ϕ̂(ξ)dξ

Where ĝ denotes the Fourier transform of g defined by

ĝ(ξ) =

∫
Rn
e−ix·ξg(x)dx

The operators cos tω and sin tω are defined by replacing e−it
√

1+|ξ|2 with cos(t
√

1 + |ξ|2) and sin(t
√

1 + |ξ|2), respectively.

If the solution u of (1) or (3) has a decay at infinity and smoothness, it satisfies two conservation laws:

‖u(t)‖L2 = ‖ϕ‖L2 ,

E1(u) ≡ K1(u) + V (u) = E1(ϕ)

K(u) =
1

2
〈
√

1−∆u, u〉, V (u) =
1

4
〈F (u), u〉

where 〈, 〉 is the complex inner product in L2. Also the solution of (2) or (4) or satisfies the conservation law:

E2 (u, ∂tu) ≡ K2 (u, ∂tu) + V (u) = E2 (ϕ1, ϕ2)
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K2 (u, ∂tu) =
1

2

(
〈∂tu, ∂tu) + 〈

√
1−∆u,

√
1−∆u〉

)
(5)

The main concern of this study is to establish the global well-posedness and scattering of radial solutions of the equations

(1) and (2). The study of the global well-posedness (GWP) and scattering for the semi-relativistic equation (1) has not been

long before. In (E. Lenzmann) GWP was considered with a three dimensional Coulomb type potential which corresponds

to γ = 1. The first and second authors of the present study showed GWP for 0 < γ ≤ 1 if n ≥ 2 and 0 < γ < 1 if n = 1

for 0 < γ < 2n
n+1

if n ≥ 2, and small data scattering for γ > 2 if n ≥ 3. In this study we tried to fill the gap 1 < γ ≤ 2 for

GWP under the assumption of radial symmetry. For further study like blowup of solutions, solitary waves, mean field limit

problem for semi-relativistic equation, see the references. The first result is on the GWP for radial solutions of ( 3)

Theorem 2.1. Let 1 < γ < 2
3

for n = 3 and 1 < γ < 2 for n ≥ 4.

Let ϕ ∈ H
1
2 be radially symmetric and assume that ‖ϕ‖L2 is sufficiently small if λ < 0. Then there exists a unique radial

solution u ∈ CbH
1
2 such that |x|−1u ∈ L2

locL
2 of (3) satisfying the energy and L2 conservations (5). We mean Hs

2 by Hs and

Ḣs
2 by Ḣs. Hereafter, the space LqT (B) denotes Lq(−T, T ;B) for T > 0 and ‖ · ‖Lq

T
B its norm for some Banach space B. If

T =∞, we use Lq(B) for Lq(R;B) with norm ‖ · ‖LqB , 1 ≤ q ≤ ∞, we also denote v ∈ LqT (B) for all T <∞ by v ∈ Lqloc(B).

The next result is on the small data scattering of radial solutions of (3) for n ≥ 4.

Theorem 2.2. Let 3
2
< γ < 2 for n = 3 and 3

2
< γ ≤ 2 for n ≥ 4. Then there is a real number S and ε such that

1

2
< s <

γ

2
, 0 < ε < min

(
γ

2
− s, s− 1

2

)
, 1 + s− ε < γ < 1 + s+ ε (6)

For fixed such s and ε, let (ϕ1, ϕ2) ∈ Ds+ε,s+ε × Ds+ε−1,s+ε be radially symmetric data. Then if ‖ϕ1‖D2+ε,α+ε
+

‖ϕ2‖D2+ε−1,..+ε is sufficiently small, then there exists a unique radial solution u ∈ CbH
s− 1

2
+ε ∩ L2Ws,ε to (4). More-

over, there exist radial functions ϕ±1 ∈ Hs− 1
2
+ε and ϕ±2 ∈ Hs− 3

2
+ε such that

∥∥u(t)− u±(t)
∥∥
H
∞− 1

2
+c → 0 as t→ ±∞

where u± is the solutions to the Cauchy problem ∂2
t u
± + (1−∆)u± = 0

u±(0) = ϕ±1 , ∂tu
±(0) = ϕ±2

(7)

In the definition of initial data space Dα, β the space L
2n

n+2−2β can be slightly weakened by the homogeneous Sobolev space

Ḣ−(1−β). In fact, L
2n

n+2−2β ↪→ Ḣ−(1−β) for 0 < β < 1. Let D̃α,β be the weakened space Hα− 1
2 ∩ Ḣ−(1−β). Then one

can easily show that the solution u ∈ Cb
(
R; Ḣ−(1−(s−ε))

)
and then the existence of scattering operator of (2) on a small

neighborhood of the origin in D̃s+ε,s−ε × D̃s+ε−1,s−ε. For details see Remark below.

The lower bound 3
2

of γ is caused by the condition which follows |x|−a and the L2 estimate of Bessel from the relation

between the weight function such that ∫ ∞
0

r1−2a
∣∣∣Jn−2

2
(r)
∣∣∣2 dr <∞

For the finiteness, the assumption 1
2
< a < n

2
is inevitable because Jn−2

2
(r) = O

(
r
n−2
2

)
as r → 0 and

Jn−2
2

(r)

2
= O

(
r−

1
2

)
as r →∞. For more explicit formula, see the identity below. Hence for the present it seems hard to improve the range of γ

for the small data scattering. From the perspective of negative result for the scattering, it will be very interesting to show

the scattering up to the value of γ greater than 1.
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3. Conclusion

In the last few years another numerical technique has been increasingly used to solve mathematical models in engineering

research, the spline Method. The spline Method has a few distinct advantages over the Finite Element and Finite Difference

Methods. The advantage over the Finite Difference Method is that the spline Collocation Method provides a piecewise-

continuous, closed form solution. An advantage over the Finite Element Method is that the spline collocation method

procedure is simpler and easy to apply many problems involving differential equations. Our experimental results nicely

confirm the excellent numerical approximation properties of Spline and their unique combination of high computational

efficiency and low memory consumption, thereby showing huge improvements over standard finite-element methods.
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