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Abstract : Let P be a subset of a Banach space E and P is normal and regular cone on E, we prove the

existence of the common fixed point for multivalued maps in cone metric spaces. Our results generalize

some well-known recent results in the literature.
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1 Introduction

Huang and Zhang [1] generalized the notion of metric space by replacing the set of real numbers by ordered

Banach space, defined a cone metric space, and obtained some fixed point theorems for contractive type

mappings in a normal cone metric space. Subsequently, several other authors [2], [8], [9], [10], [11]

studied the existence of common fixed point of mappings satisfying a contractive type condition in cone

metric spaces. Seong Hoon Cho and Mi Sun Kim [6] have proved certain fixed point theorems by

using multivalued mapping in the setting of contractive constant in metric spaces. In this paper we

obtain common fixed points for a pair of multivalued mappings satisfying a generalized contractive type

conditions in cone metric spaces. Recall the following definitions which are related to cone metric spaces

from [1].

Definition 1.1. Let E be a real Banach space and a subset P of E is said to be a cone if it satisfies that

following conditions,

(i) P is closed, non-empty, and P 6= {0},

(ii) ax+ by ∈ P, a, b > 0 and x, y ∈ P,

(iii) x ∈ P and −x ∈ P ⇒ x = 0⇔ P ∩ (−P ) = {0}.

The partial ordering 6 with respect to the cone P by x 6 y if and only if y−x ∈ P. If y−x ∈interior

of P , then it is denoted by x � y. The cone P is said to be normal if a number K > 0 such that,
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for all x, y ∈ E, 0 6 x 6 y implies ‖ x ‖6 K ‖ y ‖ . The cone P is called regular of every increasing

sequence which is bounded above is convergent and every decreasing sequence which is bounded below is

convergent. The least positive number K is called the normal constant of P . There are non normal cones

also. In the following, we always suppose E is a Banach space, P is a cone in E with Int P 6= φ and 6

is partial ordering with respect to P .

Definition 1.2. Let X be a non-empty set of E. Suppose that the map d : X ×X → E satisfies;

(i) 0 6 d (x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 1.3. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and d : X ×X → E defined by

d(x, y) = (|x− y|, α|x− y|),

where ∝≥ 0 is a constant. Then (X, d) is a cone metric space [1].

Definition 1.4. Let, (X, d) be a cone metric space,x ∈ X and {xn} a sequence in X. Then

(i) {xn} converges to x whenever for every c ∈ E with 0 � c, there is a natural number N such that

for all d(xn, x)� c for all n ≥ N .

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0� c, there is a natural number N such

that d(xn, xm)� c for all n,m ≥ N .

Definition 1.5. Let (X, d) is said to be a complete cone metric space, if every Cauchy sequence is

convergent in X.

Let (X, d) be a metric space. We denote by CB(X) the family of non-empty closed bounded subset

of X and let C(X) denote the set of all non-empty compact subsets of X. Let H(., .) be the Hausdorff

distance on CB(X). That is, for A,B ∈ CB(X), H(A,B) = max {Supa∈Ad(a,B), Supb∈Bd(A, b)}, where

d(a,B) = inf {d(a, b) : b ∈ B} is the distance from the point a to the subset B.

Theorem 1.6 ([7]). A multivalued mapping T : X → CB(X) is called a contraction mapping if there

exists k ∈ (0, 1) such that H(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ X and x ∈ X is said to be a fixed point of T if

x ∈ T (X).

2 Fixed Point

In this section, we shall give some results which generalize [7, 10, 11].

Theorem 2.1. Let (X, d) be a complete cone metric space and let mappings T1, T2 : X → C(X) satisfying

the following conditions;

(i) For each x ∈ X,T1(x), T2(x) ∈ CB(X),

(ii) H(T1(x), T2(y)) ≤∝ d(x, y) + β[d(x, T2(y)) + d(y, T1(x))]
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where ∝, β are non negative real numbers and ∝ +2β < 1. Then there exists p ∈ X such that p ∈

T1(x) ∩ T2(x).

Proof. Let xo ∈ X,T1(x0) is a non-empty closed bounded subset of X. Choose x1 ∈ T1(x0), for this

x1 by the same reason mentioned above T 2(x1) is non-empty closed bounded subset of X. Since x1 ∈

T1(x0) and T1(x0) and T2(x1) are closed bounded subset of X,∃x2 ∈ T2(x1) such that d(x1, x2) ≤

H(T1(x0), T 2(x1)) + q, where q = max
{
∝+β
1−β ,

∝+β
1−β

}
d(x1, x2) ≤ H(T1(x0), T 2(x1)) + q

6∝ d(x0, x1) + β[d(x0, T 2(x1)) + d(x1,, T 1(x0))] + q

6∝ d(x0, x1) + β[d(x0, x2) + d(x1,, x1)] + q

6∝ d(x0, x1) + β[d(x0, x1) + d(x1,, x2)] + q

d(x1, x2) ≤ ∝ +β

1− β
d(x0, x1) + q

d(x1, x2) ≤ qd(x0, x1) + q

For this x2, T1(x2) is a non-empty closed bounded subset of X. Since x2 ∈ T2(x1) and T2(x1) and

T1(x2) are closed bounded subset of X,∃x3 ∈ T1(x2) such that

d(x2, x3) ≤ H(T1(x2), T 2(x1)) + q2

6∝ d(x2, x1) + β[d(x2, T 2(x1)) + d(x1, T 1(x2))] + q2

6∝ d(x1, x2) + β[d(x2, x2) + d(x1, x3)] + q2

6∝ d(x1, x2) + β[d(x1, x2) + d(x2, x3)] + q2

d(x2, x3) ≤ ∝ +β

1− β
d(x1, x2) + q2

≤ q {qd(x0, x1) + q}+ q2

≤ q2d(x0, x1) + 2q2

Continuing this process, we get a sequence {xn} such that xn+1 ∈ T2(xn) or xn+1 ∈ T1(xn) and d(xn+1, xn)

≤ qnd(x0, x1) + nqn.

Let 0 � c be given, choose a natural number N1 such that qnd(x0, x1) + nqn � c for all n ≥ N1 this

implies d(xn+1, xn)� c.

Therefore {xn} is a Cauchy sequence in (X, d) is a complete cone metric space, there exists p ∈ X such

that xn → p. Choose a natural number N2 such that

d(xn, p)�
c(1− β)

2m(1 + β)
and

d(xn−1, p)�
c(1− β)

2m(∝ +β)
for all n ≥ N2.

d(T1(p), p) ≤ d(p, xn) + d(xn, T1(p))

≤ d(p, xn) +H(T2(xn−1), T1(p))

≤ d(p, xn)+ ∝ d(xn−1, p) + β[d(xn−1, T1(p)) + d(p, T2(xn−1))]

≤ d(p, xn)+ ∝ d(xn−1, p) + β[d(xn−1, T1(p)) + d(p, xn)]

≤ d(p, xn)+ ∝ d(xn−1, p) + β[d(xn−1, p) + d(p, T1(p)) + d(p, xn)]

d(T1(p), p) ≤ ∝ +β

1− β
d(xn−1, p) +

1 + β

1− β
d(xn, p) for all n ≥ N2.
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d(T1(p), p)� c
m for all m ≥ 1, we get c

m−d(T1(p), p) ∈ P, and as m→∞, we get c
m → 0 and P is closed

−d(T1(p), p) ∈ P but d(T1(p), p) ∈ P. Therefore d(T1(p), p) = 0 and so p ∈ T1(p). Similarly it can be

established that p ∈ T2(p). Hence p ∈ T1(p) ∩ T2(p).

Corollary 2.2. Let (X, d) be a complete cone metric space and let mappings R,S : X → C(X) satisfying

the following conditions;

(i) For each x ∈ X,R(x), S(x) ∈ CB(X),

(ii) H(R(x), S(y)) ≤ ad(x, y) + bd(x, S(y)) + cd(y,R(x))

where a, b, c are non-negative real numbers and a + b + c < 1. Then there exists p ∈ X such that

p ∈ R(x) ∩ S(x).

Proof. The symmetric property of d and the above inequality imply that

H(R(x), S(y)) ≤ ad(x, y) +
b+ c

2
[d(x, S(y)) + d(y,R(x))]

By substituting R = T1, S = T2, a =∝, b+c2 = β in Theorem (2.1), we obtain the required result.

Theorem 2.3. Let (X, d) be a complete cone metric space and let mappings T1, T2 : X → C(X) satisfying

the following conditions;

(i) For each x ∈ X,T1(x), T2(x) ∈ CB(X),

(ii) H(T1(x), T2(y)) ≤∝ d(x, y) + β[d(x, T1(x)) + d(y, T2(y))]

where ∝, β are non negative real numbers and ∝ +2β < 1. Then there exists p ∈ X such that p ∈

T1(x) ∩ T2(x).

Proof. Let x0 ∈ X,T1(x0) is a non-empty closed bounded subset of X. Choose x1 ∈ T1(x0), for this x1

by the same reason mentioned above T2(x1) is non-empty closed bounded subset of X.

Since x1 ∈ T1(x0) and T1(x0) and T2(x1) are closed bounded subset of X,∃x2 ∈ T2(x1) such that

d(x1, x2) ≤ H(T1(x0), T 2(x1)) + q,

where q = max
{
∝+β
1−β ,

∝+β
1−β

}
d(x1, x2) ≤ H(T1(x0), T 2(x1)) + q

6∝ d(x0, x1) + β[d(x0, T 1(x0)) + d(x1, T 2(x1))] + q

6∝ d(x0, x1) + β[d(x0, x1) + d(x1, x2)] + q

d(x1, x2) ≤ ∝ +β

1− β
d(x0, x1) + q

d(x1, x2) ≤ qd(x0, x1) + q

For this x2, T1(x2) is a non-empty closed bounded subset of X. Since x2 ∈ T2(x1) and T2(x1) and T1(x2)

are closed bounded subset of X,∃x3 ∈ T1(x2) such that

d(x2, x3) ≤ H(T1(x2), T 2(x1)) + q2

6∝ d(x1, x2) + β[d(x2, T 1(x2)) + d(x1, T 2(x1))] + q2

6∝ d(x1, x2) + β[d(x2, x3) + d(x1, x2)] + q2

d(x2, x3) ≤ ∝ +β

1− β
d(x1, x2) + q2

≤ q {qd(x0, x1) + q}+ q2 = q2d(x0, x1) + 2q2
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Continuing this process, we get a sequence {xn} such that xn+1 ∈ T2(xn) or xn+1 ∈ T 1(xn) and

d(xn+1, xn) ≤ qnd(x0, x1)+nqn. Let 0� c be given, choose a natural number N1 such that qnd(x0, x1)+

nqn � c for all n ≥ N1 this implies d(xn+1, xn) � c. Therefore {xn} is a Cauchy sequence in (X, d) is

a complete cone metric space, there exists p ∈ X such that xn → p. Choose a natural number N2 such

that

d(xn, p)�
c(1− β)

2m
and

d(xn−1, p)�
c(1− β)

2m ∝
for all n ≥ N2.

d(T1(p), p) ≤ d(p, xn) + d(xn, T1(p))

≤ d(p, xn) +H(T2(xn−1), T1(p))

≤ d(p, xn)+ ∝ d(xn−1, p) + β[d(xn−1, T2(xn−1)) + d(p, T1(p))]

≤ d(p, xn)+ ∝ d(xn−1, p) + β[d(xn−1, xn) + d(p, T1(p))]

d(T1(p), p) ≤ 1

1− β
d(xn, p) +

∝
1− β

d(xn−1, p) +
β

1− β
d(xn−1, xn) for all n ≥ N2.

d(T1(p), p)� c
m for all m ≥ 1, we get c

m −d(T1(p), p) ∈ P and as m→∞, we get c
m → 0 and P is closed

−d(T1(p), p) ∈ P, but d(T1(p), p) ∈ P. Therefore d(T1(p), p) = 0 and so p ∈ T1(p).

Similarly it can be established that p ∈ T2(p). Hence p ∈ T1(p) ∩ T2(p).

Corollary 2.4. Let (X, d) be a complete cone metric space and let mappings R,S : X → C(X) satisfying

the following conditions;

(i) For each x ∈ X,R(x), S(x) ∈ CB(X),

(ii) H(R(x), S(y)) ≤ ad(x, y) + bd(x,R(x)) + cd(y, S(y))

where a, b, c are non-negative real numbers and a + b + c < 1. Then there exists p ∈ X such that

p ∈ R(x) ∩ S(x).

Proof. Proof is similar to the proof of Corollary 2.4.
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