Matrix Representations of Group Algebras of General Metacyclic Groups

Kahtan H. Alzubaidy ${ }^{1}$ and Nabila M. Bennour ${ }^{1, *}$
1 Department of Mathematics, Faculty of Science, University of Benghazi, Libya.

Abstract

In [1], we have computed matrix representations of group algebras of split metacyclic groups. In this paper we extend the computation to include the case of non-split metacyclic group.

MSC: 16G99. Keywords: Group Algebra, Metacyclic Group, Circulant Matrix. (C) JS Publication.

1. Preliminaries

Let F be a field. A ring A is an algebra over F (briefly F-algebra) if A is a vector space over F and the following compatibility condition holds $(s a) . b=s(a . b)=a .(s b)$ for any $a, b \in A$ and any $s \in F . A$ is also called associative algebra (over F). The dimension of the algebra A is the dimension of A as a vector space over F.

Theorem 1.1 ([2]). Let A be a n-dimensional algebra over a field F. Then there is a one to one algebra homomorphism from A into $M_{n}(F)$, the algebra of n-matrices over F.

Let $G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$ be a finite group of order n and F a field. Define $F G=\left\{a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{n} g_{n}: a_{i} \in F\right\}$. $F G$ is n-dimensional vector space over F with basis G. Multiplication of G can be extended linearly to $F G$ by using group operation of G. Thus $F G$ becomes an algebra over F of dimension n. $F G$ is called group algebra. The following identifications should be realized.
(i). $0_{F} g_{G}=0_{F G}=0$.
(ii). $1_{F} g_{G}=g_{F G}=g$.
(iii). $a_{F} 1_{F}=a_{F G}$.

A group G is metacyclic if it has a cyclic normal subgroup N such that G / N is cyclic. Equivalently, G has cyclic subgroups H and K such that $H \triangleleft G$ and $G=H K$ [3]. If $H \cap K=\{1\}$ also, then G is called a split metacyclic group. Otherwise, it is called non-split. If G is a non-split metacyclic group, then G has a presentation of the following form [4]. $G=$ $\left\langle\alpha, \beta: \alpha^{n}=1, \beta^{m}=\alpha^{t}, \beta \alpha=\alpha^{r} \beta\right\rangle$, where $r^{m} \equiv 1(\bmod n)$ and $t r \equiv t(\bmod n) .|G|=n m$. The general element of G is of

[^0]the form $\alpha^{i} \beta^{j}$, where $0 \leq i \leq n-1$ and $0 \leq j \leq m-1$. If $t=0$, we get the presentation of a split metacyclic group $G=\left\langle\alpha, \beta: \alpha^{n}=\beta^{m}=1, \beta \alpha=\alpha^{r} \beta\right\rangle ; r^{m} \equiv 1(\bmod n)$. By direct substitution we have the following in G.

Lemma 1.2. $\beta^{v} \alpha^{u}=\alpha^{u r^{v}} \beta^{v}$, where u, v are integers.
A circulant matrix M on parameters $a_{0}, a_{1}, \ldots, a_{n-1}$ is defined as follows

$$
M\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left[\begin{array}{cccc}
a_{0} & a_{n-1} & \cdots & a_{1} \\
a_{1} & a_{0} & \cdots & a_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{0}
\end{array}\right]
$$

M is said to be circulant block matrix if it is of the form $M\left(M_{1}, M_{2}, \ldots, M_{n}\right)$. i.e. it is circulant blockwise on the blocks $M_{1}, M_{2}, \ldots, M_{n}$. Thus

$$
M=\left[\begin{array}{cccc}
M_{1} & M_{n} & \cdots & M_{2} \\
M_{2} & M_{1} & \cdots & M_{3} \\
\vdots & \vdots & \ddots & \vdots \\
M_{n} & M_{n-1} & \cdots & M_{1}
\end{array}\right]
$$

2. Main Result

The general element of the group algebra $F G$ is given by $w=w_{0}+w_{1}+\cdots+w_{m-1}$, where $w_{i}=\left(a_{0 i}+\right.$ $\left.a_{1 i} \alpha+\cdots+a_{n-1 i} \alpha^{n-1}\right) \beta^{i}$ for $i=0,1, \ldots, m-1$. We take the following natural basis of the group algebra FG. $B=\left\{1, \alpha, \ldots, \alpha^{n-1} ; \beta, \alpha \beta, \ldots, \alpha^{n-1} \beta ; \ldots ; \beta^{m-1}, \alpha \beta^{m-1}, \ldots, \alpha^{n-1} \beta^{m-1}\right\}$. This can be written as follows: $B=$ $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\} \beta^{0} \cup\left\{1, \alpha, \ldots, \alpha^{n-1}\right\} \beta \cup \cdots \cup\left\{1, \alpha, \ldots, \alpha^{n-1}\right\} \beta^{m-1}$. Briefly, $=B_{0} \cup B_{1} \cup \cdots \cup B_{m-1}$, where $B_{j}=$ $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\} \beta^{j}$. Let $T_{B}: F G \rightarrow M_{n}(F)$ be the linear transformation of our matrix representation relative to the basis B. Let $T_{B_{j}}=\left.T_{B}\right|_{B_{j}}$. By [1, Theorem 3] we have the following.

Lemma 2.1. $T_{B_{0}}\left(w_{0}\right)=M\left(a_{00}, a_{10}, \ldots, a_{n-1,0}\right)$.
By Lemma 1.2, we have $B_{j, i}=\beta^{i}\left\{1, \alpha, \ldots, \alpha^{n-1}\right\} \beta^{j}=\left\{1, \alpha^{r^{i}}, \ldots, \alpha^{(n-1) r^{i}}\right\} \beta^{i+j}$. By division algorithm $i+j=q m+v$; $0 \leq v \leq m-1 ; \beta^{i+j}=\beta^{q m+v}=\left(\beta^{m}\right)^{q} \beta^{v}=\alpha^{q t} \beta^{v}$. Then $B_{j, i}=\left\{\alpha^{q t}, \alpha^{q t+r^{i}}, \ldots, \alpha^{q t+(n-1) r^{i}}\right\} \beta^{v}$. By construction of the linear transformation we get:

Lemma 2.2. $T_{B_{j}}\left(w_{i}\right)$ is obtained by columns interchange of $M\left(a_{0 i}, a_{1 i}, \ldots, a_{n-1, i}\right)$ according to the order of the elements $\alpha^{q t}, \alpha^{q t+r^{i}}, \ldots, \alpha^{q t+(n-1) r^{i}}$.

With notations as above and by the construction of the linear transformation T, we have the following main result.

Theorem 2.3. The matrix representation of $w=w_{0}+w_{1}+\cdots+w_{m-1}$ in $F G$ relative to the basis $B=B_{0} \cup B_{1} \cup \cdots \cup B_{m-1}$ is given by

$$
T_{B}(w)=\left[\begin{array}{cccc}
T_{B_{0}}\left(w_{0}\right) & T_{B_{1}}\left(w_{m-1}\right) & \cdots & T_{B_{m-1}}\left(w_{1}\right) \\
T_{B_{0}}\left(w_{1}\right) & T_{B_{1}}\left(w_{0}\right) & \cdots & T_{B_{m-1}}\left(w_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
T_{B_{0}}\left(w_{m-1}\right) & T_{B_{1}}\left(w_{m-2}\right) & \cdots & T_{B_{m-1}}\left(w_{0}\right)
\end{array}\right]
$$

Now, we discuss the special case of G when $t=0$. Thus $G=\left\langle\alpha, \beta: \alpha^{n}=\beta^{m}=1, \beta \alpha=\alpha^{r} \beta\right\rangle$, where $r^{m} \equiv 1(\bmod n)$. It is the split case.
Let $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}^{\beta^{j}} \equiv\left\{\beta^{j} 1 \beta^{-j}, \beta^{j} \alpha \beta^{-j}, \ldots, \beta^{j} \alpha^{n-1} \beta^{-j}\right\}$. Call the matrix obtained from the basis $\left\{1, \alpha, \ldots, \alpha^{n-1}\right\}^{\beta^{j}}$ by $M^{\beta^{j}}$.
By Lemma 2.2, $T_{B_{j}}\left(w_{i}\right)=M^{\beta^{j}}\left(a_{0 j}, a_{1 j}, \ldots, a_{n-1, j}\right)$. Thus we have

Corollary 2.4. Let F be a field and G a split metacyclic group as above. The representation of the general element $\sum_{j=0}^{m-1} \sum_{i=0}^{n-1} a_{i j} \alpha^{i} \beta^{j}$ in $F G$ is given by the circulant block matrix $M\left(M\left(a_{i 0}\right), M^{\beta}\left(a_{i 1}\right), \ldots, M^{\beta^{m-1}}\left(a_{i m-1}\right)\right) ; i=0,1, \ldots, n-1$. It is the same result of [1, Theorem 4].

3. Application

We compute matrix representations of $F D_{4}$ and $F Q_{4}$, where $D_{4}=\left\langle\alpha, \beta: \alpha^{4}=\beta^{2}=1, \beta \alpha=\alpha^{3} \beta\right\rangle$, the dihedral group and $Q_{4}=\left\langle\alpha, \beta: \alpha^{4}=1, \alpha^{2}=\beta^{2}, \beta \alpha=\alpha^{3} \beta\right\rangle$, the quaternion group. Q_{4} is a non-split metacyclic group.
Let $a 1+b \alpha+c \alpha^{2}+d \alpha^{3}+e \beta+f \alpha \beta+g \alpha^{2} \beta+h \alpha^{3} \beta$ be the general element of $F D_{4}$ and $B_{0}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ the natural basis of $F D_{4} . B_{1}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\} \beta, B_{0}^{\beta}=\left\{1, \alpha^{3}, \alpha^{2}, \alpha\right\}, B_{1}^{\beta}=\left\{1, \alpha^{3}, \alpha^{2}, \alpha\right\} \beta$.

$$
\begin{array}{ll}
T_{B_{0}}\left(w_{0}\right)=M(a, b, c, d)=\left[\begin{array}{llll}
a & d & c & b \\
b & a & d & c \\
c & b & a & d \\
d & c & b & a
\end{array}\right], & T_{B_{0}}\left(w_{1}\right)=M^{\beta}(e, f, g, h)=\left[\begin{array}{llll}
e & f & g & h \\
f & g & h & e \\
g & h & e & f \\
h & e & f & g
\end{array}\right], \\
T_{B_{1}}\left(w_{0}\right)=M(a, b, c, d)=\left[\begin{array}{llll}
a & d & c & b \\
b & a & d & c \\
c & b & a & d \\
d & c & b & a
\end{array}\right], & T_{B_{1}}\left(w_{1}\right)=M^{\beta}(e, f, g, h)=\left[\begin{array}{llll}
e & f & g & h \\
f & g & h & e \\
g & h & e & f \\
h & e & f & g
\end{array}\right] .
\end{array}
$$

Then

$$
T_{B}(w)=\left[\begin{array}{ccc}
M(a, b, c, d) & \vdots & M^{\beta}(e, f, g, h) \\
\cdots \ldots & \vdots & \ldots . . \\
M^{\beta}(e, f, g, h) & \vdots & M(a, b, c, d)
\end{array}\right] \quad \text { by corollary } 2.4 \text {. }
$$

Thus $T_{B}(w)$ is given by the following 8 - square matrix.

$$
\left[\begin{array}{ccccccccc}
a & d & c & b & \vdots & e & f & g & h \\
b & a & d & c & \vdots & f & g & h & e \\
c & b & a & d & \vdots & g & h & e & f \\
d & c & b & a & \vdots & h & e & f & g \\
\cdots & \cdots \\
e & f & g & h & \vdots & a & d & c & b \\
f & g & h & e & \vdots & b & a & d & c \\
g & h & e & f & \vdots & c & b & a & d \\
h & e & f & g & \vdots & d & c & b & a
\end{array}\right]
$$

Now for $F Q_{4}$, let $w=w_{0}+w_{1} \in F Q_{4}$, where $w_{0}=a 1+b \alpha+c \alpha^{2}+d \alpha^{3}$ and $w_{1}=e \beta+f \alpha \beta+g \alpha^{2} \beta+h \alpha^{3} \beta . B=B_{0} \cup B_{1}$, where $B_{0}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}$ and $B_{1}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\} \beta . r=3, t=2$. Then $B_{0,0}=\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\}, B_{0,1}=\left\{1, \alpha^{3}, \alpha^{2}, \alpha\right\} \beta, B_{1,0}=$ $\left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\} \beta, B_{1,1}=\left\{\alpha^{2}, \alpha, 1, \alpha^{3}\right\}$. By Theorem 2.3

$$
T_{B}(w)=\left[\begin{array}{ccc}
T_{B_{0}}\left(w_{0}\right) & \vdots & T_{B_{1}}\left(w_{1}\right) \\
\ldots \ldots . & \vdots & \ldots \ldots . \\
T_{B_{0}}\left(w_{1}\right) & \vdots & T_{B_{1}}\left(w_{0}\right)
\end{array}\right]=\left[\begin{array}{ccc}
M^{B_{0,0}}(a, b, c, d) & \vdots & M^{B_{1,1}}(e, f, g, h) \\
\ldots \ldots & \vdots & \ldots \ldots . \\
M^{B_{0,1}}(e, f, g, h) & \vdots & M^{B_{1,0}}(a, b, c, d)
\end{array}\right]
$$

which is the following 8 -square matrix

$$
\left[\begin{array}{ccccccccc}
a & d & c & b & \vdots & g & h & e & f \\
b & a & d & c & \vdots & h & e & f & g \\
c & b & a & d & \vdots & e & f & g & h \\
d & c & b & a & \vdots & f & g & h & e \\
\cdots & \cdots \\
e & f & g & h & \vdots & a & d & c & b \\
f & g & h & e & \vdots & b & a & d & c \\
g & h & e & f & \vdots & c & b & a & d \\
h & e & f & g & \vdots & d & c & b & a
\end{array}\right]
$$

Note that the two matrix representations of $F D_{4}$ and $F Q_{4}$ are distinct.

References

[1] K. H. Alzubaidy and Nabila M. Bennour, Matrix Representations of Group Algebras of Split Metacyclic Groups, International Journal of Mathematical Archive, 12(5)(2021), 8-10.
[2] Nathan Jacobson, Basic Algebra I, $2^{\text {nd }}$ Edition, Freeman, New York, (1996).
[3] J. S. Rose, A course in Group Theory, Dover, New York, (1994).
[4] Hans J. Zassenhause, The Theory of groups, $2^{\text {nd }}$ Edition, Chelsea, New York, (1956).

[^0]: * E-mail: n.benour@yahoo.com

