Common Fixed Point Theorems for Weakly Compatible of Four Mappings in Generalized Fuzzy Metric Spaces

R. Muthuraj ${ }^{\dagger}$ and R. Pandiselvi ${ }^{\ddagger}{ }^{1}$
${ }^{\dagger} P G$ and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamil Nadu, India.
\ddagger Department of Mathematics, The Madura College, Madurai - 625 011, Tamil Nadu, India.

Abstract

In this paper, common fixed point theorems for weakly compatible maps in complete \mathcal{M}-fuzzy metric spaces is proved.

Keywords : Fuzzy contractive mapping, complete \mathcal{M}-fuzzy metric.
AMS Subject Classification : 54E40, 54E35, 54H25.

1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh 17 in 1965. Since, then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [2] and Kramosil and Michalek [5] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by E_{1} Naschie [1]. Many authors [2, 3, 5, 6] have proved fixed point theorem in fuzzy (probabilistic) metric spaces. One should there exists a space between spaces. And one such generalization is generalized metric space or D-metric space initiated by Dhage in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, Sedghi and Shobe [8 introduced D^{*} metric space, as a probable modification of the definition of D-metric.

Using D^{*}-metric concept, Sedghi and Shobe defined \mathcal{M}-fuzzy metric space and proved common fixed point theorem in it.

In this paper we prove common fixed point theorems in complete \mathcal{M}-fuzzy metric space.

Definition 1.1. A 3-tuple $(X, \mathcal{M}, *)$ is called \mathcal{M}-fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm, and \mathcal{M} is a fuzzy set on $X^{3} \times(0, \infty)$, satisfying the following conditions for each $x, y, z, a \in X$ and $t, s>0$.
(FM-1) $\mathcal{M}(x, y, z, t)>0$

[^0](FM-2) $\mathcal{M}(x, y, z, t)=1$ if and only if $x=y=z$
(FM-3) $\mathcal{M}(x, y, z, t)=\mathcal{M}(p\{x, y, z\}, t)$, where p is a permutation function.
(FM-4) $\mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \leq \mathcal{M}(x, y, z, t+s)$
$(F M-5) \mathcal{M}(x, y, z,):.(0, \infty) \rightarrow[0,1]$ is continuous
(FM-6) $\lim _{t \rightarrow \infty} \mathcal{M}(x, y, z, t)=1$.
Definition 1.2. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space and $\left\{x_{n}\right\}$ be a sequence in X
(a) $\left\{x_{n}\right\}$ is said to be converges to point $x \in X$ if $\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{1}, x_{1}, x_{n}, t\right)=1$ for all $t>0$
(b) $\left\{x_{n}\right\}$ is called Cauchy sequence if $\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{n+p}, x_{n+p}, x_{n}, t\right)=1$ for all $t>0$ and $p>0$
(c) A M-fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 1.3. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space. Then $\mathcal{M}(x, y, z, t)$ is non-decreasing with respect to t, for all x, y, z in X.

Definition 1.4. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space. \mathcal{M} is said to be continuous function on $X^{3} \times(0, \infty)$ if $\lim _{n \rightarrow \infty} \mathcal{M}\left(x_{n}, y_{n}, z_{n}, t_{n}\right)=\mathcal{M}(x, y, z, t)$, whenever a sequence $\left\{\left(x_{n}, y_{n}, z_{n}, t_{n}\right)\right\}=$ in $X^{3} \times$ $(0, \infty)$ converges to a point $(x, y, z, t) \in X^{3} \times(0, \infty)$. i.e., $\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} z_{n}=z$ and $\lim _{n \rightarrow \infty} \mathcal{M}\left(x, y, z, t_{n}\right)=\mathcal{M}(x, y, z, t)$.

Lemma 1.5. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space. Then \mathcal{M} is continuous function on $X^{3} \times(0, \infty)$.
Definition 1.6. Let A and S be mappings from a \mathcal{M}-fuzzy metric space ($X, \mathcal{M}, *$) into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, $A x=S x$ implies that $A S x=S A x$.

Definition 1.7. Let A and S be mappings from a \mathcal{M}-fuzzy metric space $(X, \mathcal{M}, *)$ into itself. Then the mappings are said to be compatible if $\lim _{n \rightarrow \infty} \mathcal{M}\left(A S x_{n}, S A x_{n}, S A x_{n}, t\right)=1$ for all $t>0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=x \in X$.

Lemma 1.8. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space. If we define $E_{\lambda} \mathcal{M}: X^{3} \rightarrow \mathcal{R}^{+} \cup\{0\}$ by $E_{\lambda, \mathcal{M}}(x, y, z)=\inf \{t>0: \mathcal{M}(x, y, z, t)>1-\lambda\}$ for every $\lambda \in(0,1)$, then
(1) for each $\mu \in(0,1)$ there exists $\lambda \in(0,1)$ such that $E_{\mu, \mathcal{M}}\left(x_{1}, x_{1}, x_{n}\right) \leq E_{\lambda, \mathcal{M}}\left(x_{1}, x_{2}, x_{2}\right)$ $+E_{\lambda, \mathcal{M}}\left(x_{2}, x_{2}, x_{3}\right)+\cdots+E_{\lambda, \mathcal{M}}\left(x_{n-1}, x_{n-1}, x_{n}\right)$ for any $x_{1}, x_{2}, \ldots, x_{n} \in X$.
(2) The sequence $\left\{x_{n}\right\} n \in N$ is convergent in \mathcal{M}-fuzzy metric space $(X, \mathcal{M}, *)$ if and only if $E_{\lambda, \mathcal{M}}\left(x_{n}, x_{n}, x\right) \rightarrow 0$. Also the sequence $\left\{x_{n}\right\}, n \in \mathcal{N}$ is Cauchy sequence if and only if it is Cauchy with $E_{\lambda, \mathcal{M}}$.

Lemma 1.9. Let $(X, \mathcal{M}, *)$ be a \mathcal{M}-fuzzy metric space. If $\mathcal{M}\left(x_{n}, x_{n}, x_{n+1}, t\right) \geq \mathcal{M}\left(x_{0}, x_{0}, x_{1}, k^{n} t\right)$ for some $k>1$ and for every $n \in \mathcal{N}$. Then sequence $\left\{x_{n}\right\}$ is a cauchy sequence.

2 The Main Results

A class of implicit relation

Let Φ denotes a family of mappings such that each $\phi \in \Phi, \phi:[0,1]^{3} \rightarrow[0,1]$ and ϕ is continuous and increasing in each co-ordinate variable. Also $\phi(s, s, s)>s$ for every $s \in[0,1)$.

Example 2.1. Let $\phi:[0,1]^{3} \rightarrow[0,1]$ be defined by
(1) $\phi\left(x_{1}, x_{2}, x_{3}\right)=\left(\min \left\{x_{i}\right\}\right)^{h}$ for some $0<h<1$.
(2) $\phi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{h}$ for some $0<h<1$.
(3) $\phi\left(x_{1}, x_{2}, x_{3}\right)=\max \left\{x_{1}^{\alpha_{1}}, x_{2}^{\alpha_{2}}, x_{3}^{\alpha_{3}}\right\}$, where $0<\alpha_{i}<1$ for $i=1,2,3$.

In this paper, p is a positive real number and $\phi^{3 p}(s, s, s)=[\phi(s, s, s)]^{3 p}$ for every $s \in[0,1)$. Also, $\mathcal{M}(S x, B y, B z, t) \vee \mathcal{M}(T y, A x, T y, t) \vee \mathcal{M}(T z, A x, T z, t)=\max \{\mathcal{M}(S x, B y, B z, t), \mathcal{M}(T y, A x, T y, t)$, $\max (T z, A x, T z, t)\}$. Our main result for a complete \mathcal{M}-fuzzy metric space X, as reads follows:

Theorem 2.1. Let A, B, S and T be self mappings of complete \mathcal{M}-fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the following conditions.
(1) (A, S) and (S, T) are weakly compatible pairs such that $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$ also $A(X)$ or $B(X)$ is a closed subset of X.
(2) There exists $\psi, Q \in \Phi$ such that for all $x, y, z \in X$.

$$
\begin{aligned}
\mathcal{M}^{3 p}(A x, B y, B z, t) & \geq a(s) \phi^{3 p}(\mathcal{M}(S x, T y, T z, k t), \mathcal{M}(A x, S x, S x, k t), \mathcal{M}(B y, T y, T z, k t) \\
& +b(s) \psi^{p}\left(\mathcal{M}^{3}(S x, T y, T z, k t), \mathcal{M}(S x, A x, A x, k t) \mathcal{M}(T y, B y, B y, k t)\right. \\
& \mathcal{M}(T z, B z, B z, k t), \mathcal{M}(S x, B y, B z, k t) \vee \mathcal{M}(T y, A x, T y, k t) \vee \mathcal{M}(T z, A x, T z, k t))
\end{aligned}
$$

for some $k>1$ where $a, b:[0,1] \rightarrow[0,1]$ are two continuous functions such that $a(s)+b(s)=1$ for every $S=\mathcal{M}(x, y, z, t)$. Then A, B and S, T have a unique common fixed point in X.

Proof. Let $x_{0} \in X$ an arbitrary point as $A(X) \subseteq T(X), B(X) \subseteq S(X)$ there exists $x_{1}, x_{2} \in X$ be $A x_{0}=T x_{1}, B x_{1}=S x_{2}$. Inductively, construct sequence $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$ in X such that $y_{3 n}=A x_{3 n}=$ $T x_{3 n+1}, y_{3 n+1}=B x_{3 n+1}=S x_{3 n+2}$, for $n=0,1,2, \ldots$. Now, we prove $\left\{y_{n}\right\}$ is a Cauchy sequence. For simplicity, we get $d_{n}(t)=\mathcal{M}\left(y_{n}, y_{n+1}, y_{n+1}, t\right), n=0,1,2, \ldots$. Then we have

$$
\begin{aligned}
& d_{3 n}^{3 p}(t)= \mathcal{M}^{3 p}\left(y_{3 n}, y_{3 n+1}, y_{3 n+1}, t\right) \\
&= \mathcal{M}^{3 p}\left(A x_{3 n}, B x_{3 n+1}, B x_{3 n+1}, t\right) \\
& \geq a(s) \phi^{3 p}\left(\mathcal{M}\left(S x_{3 n}, T x_{3 n+1}, T x_{3 n+1}, k t\right), \mathcal{M}\left(A x_{3 n}, B x_{3 n+1}, B x_{3 n+1}, k t\right),\right. \\
& \mathcal{M}\left(B x_{3 n+1}, T x_{3 n+1}, T x_{3 n+1}, k t\right)+b(s) \psi^{k}\left(\mathcal{M}^{3}\left(S x_{3 n}, T x_{3 n+1}, T x_{3 n+1}, k t\right), \mathcal{M}\left(S x_{3 n}, A x_{3 n}, A x_{3 n}, k t\right)\right. \\
& \mathcal{M}\left(T x_{3 n+1}, B x_{3 n+1}, B x_{3 n+1}, k t\right) \mathcal{M}\left(B x_{3 n+1}, T x_{3 n+1}, k t\right) \mathcal{M}\left(S x_{3 n}, B x_{3 n+1}, B x_{3 n+1}, k t\right) \vee \\
&\left.\mathcal{M}\left(T x_{3 n+1}, A x_{3 n}, T x_{3 n+1}, k t\right) \vee \mathcal{M}\left(T x_{3 n+1}, A x_{3 n}, T x_{3 n+1}, k t\right)\right) \\
& \geq a(s) \phi^{3 p}\left(\mathcal{M}\left(y_{3 n-1}, y_{3 n}, y_{3 n}, k t\right), \mathcal{M}\left(y_{3 n}, y_{3 n+1}, y_{3 n+1}, k t\right), \mathcal{M}\left(y_{3 n+1}, y_{3 n}, y_{3 n}, k t\right)\right. \\
& \quad+b(s) \psi^{p}\left(\mathcal{M}^{3}\left(y_{3 n-1}, y_{3 n}, y_{3 n}, k t\right), \mathcal{M}\left(y_{3 n-1} y_{n}, y_{n}, k t\right) \mathcal{M}\left(y_{n}, y_{3 n+1}, y_{3 n+1}, k t\right)\right. \\
&\left.\quad \mathcal{M}\left(y_{3 n+1}, y_{3 n}, y_{3 n}, k t\right) \mathcal{M}\left(y_{3 n-1}, y_{3 n+1}, y_{3 n+1}, k t\right) \vee \mathcal{M}\left(y_{3 n}, y_{3 n}, y_{3 n}, k t\right) \vee \mathcal{M}\left(y_{3 n}, y_{3 n}, y_{3 n}, k t\right)\right) .
\end{aligned}
$$

We prove that $d_{3 n}(t) \geq d_{3 n-1}(t)$. Now, if $d_{3 n}(t)<d_{3 n-1}(t)$ for some $n \in N$. Since ϕ and ψ are increasing functions, then

$$
\begin{aligned}
d_{3 n}^{3 p}(t) & \geq a(s) \phi^{3 p}\left(d_{3 n-1}(k t), d_{3 n}(k t), d_{3 n}(k t)+b(s) \psi^{p}\left(d_{3 n-1}^{3}(k t), d_{3 n-1}(k t) d_{3 n}(k t) d_{3 n}(k t), 1\right)\right. \\
& \geq a(s) \phi^{3 p}\left(d_{3 n}(k t), d_{3 n}(k t), d_{3 n}(k t)\right)+b(s) \psi^{p}\left(d_{3 n}^{3}(k t), d_{3 n}^{3}(k t), 1\right) \\
& >a(s) d_{3 n}^{3 p}(k t)+b(s) d_{3 n}^{3 p}(k t) \\
& =d_{3 n}^{3 p}(k t)
\end{aligned}
$$

Hence we have $d_{3 n}(t)>d_{3 n}(k t)$ is a contradiction. Therefore $d_{3 n}(t) \geq d_{3 n-1}(t)$. Similarly, one can prove that $d_{3 n+1}(t) \geq d_{3 n}(t)$ for $n=0,1,2, \ldots$.
Consequently, $\left\{d_{n}(t)\right\}$ is a $\left\{d_{n}(t)\right\}$ is a increasing sequence of non-negative real. Thus,

$$
\begin{aligned}
d_{3 n}^{3 p}(t) & \geq a(s) \phi^{3 p}\left(d_{3 n-1}(k t), d_{3 n-1}(k t), d_{3 n-1}(k t)\right)+b(s) \psi^{p}\left(d_{3 n-1}^{3}(k t), d_{3 n-1}^{3}(k t), 1\right) \\
& \geq a(s) d_{3 n-1}^{3 p}(k t)+b(s) d_{3 n-1}^{3 p}(k t) \\
& =d_{3 n-1}^{3 p}(k t) .
\end{aligned}
$$

That is $d_{3 n}(t) \geq d_{3 n-1}(k t)$, similarly we have $d_{3 n+1}(t) \geq d_{3 n}(k t)$. Thus $d_{n}(t) \geq d_{n-1}(k t)$. That is $\mathcal{M}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) \geq \mathcal{M}\left(y_{n-1}, y_{n}, y_{n}, k t\right)$. So,

$$
\mathcal{M}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) \geq \mathcal{M}\left(y_{n-1}, y_{n}, y_{n}, k t\right) \geq \cdots \geq \mathcal{M}\left(y_{0}, y_{1}, y_{1}, k^{n} t\right)
$$

By Lemma 1.9 sequence $\left\{y_{n}\right\}$ is a Cauchy sequence, then it converges to $y \in X$. That is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n} & =\lim _{n \rightarrow \infty} y_{3 n}=\lim _{n \rightarrow \infty} y_{3 n+1} \\
& =\lim _{n \rightarrow \infty} A x_{3 n}=\lim _{n \rightarrow \infty} B x_{3 n+1} \\
& =\lim _{n \rightarrow \infty} S x_{3 n}=\lim _{n \rightarrow \infty} T x_{3 n+1}=y
\end{aligned}
$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that $S u=y$, we have

$$
\begin{aligned}
\mathcal{M}^{3 p}\left(A u, B x_{3 n+1}, B x_{3 n+1}, t\right) & \geq a(s) \phi^{3 p}\left(\mathcal{M}\left(S u, T x_{3 n+1}, T x_{3 n+1}, k t\right), \mathcal{M}(A u, S u, S u, k t),\right. \\
& \left.\mathcal{M}\left(B x_{3 n+1}, T x_{3 n+1}, T x_{3 n+1}, k t\right)\right)+b(s) \psi^{p}\left(\mathcal{M}^{3}\left(S u, T x_{3 n+1}, T x_{3 n+1}, k t\right),\right. \\
& \mathcal{M}(S u, A u, A u, k t) \mathcal{M}\left(T x_{3 n+1}, B x_{3 n+1}, B x_{3 n+1}, k t\right) \\
& \mathcal{M}\left(T x_{3 n+1}, B x_{3 n+1}, B x_{3 n+1}, k t\right) \mathcal{M}\left(S u, B x_{3 n+1}, B x_{3 n+1}, k t\right) \\
& \vee \mathcal{M}\left(T x_{3 n+1}, A u, T x_{3 n+1}, k t\right) \vee \mathcal{M}\left(T x_{3 n+1}, A u, T x_{3 n+1}, k t\right) .
\end{aligned}
$$

By continuous \mathcal{M} and ϕ, on making $n \rightarrow \infty$ the above inequality, we get

$$
\begin{aligned}
& \mathcal{M}^{3 p}(A u, y, y, t) \geq a(s) \phi^{3 p}(\mathcal{M}(y, y, y, k t), \mathcal{M}(A u, y, y, k t), \mathcal{M}(y, y, y, k t) \\
&+b(s) \psi^{p}\left(\mathcal{M}^{3}(y, y, y, k t), \mathcal{M}(y, A u, A u, k t) \mathcal{M}(y, y, y, k t) \mathcal{M}(y, y, y, k t), \mathcal{M}(y, y, y, k t)\right. \\
&\vee \mathcal{M}(y, A u, y, k t) \vee \mathcal{M}(y, A u, T y, k t))
\end{aligned}
$$

hence we have

$$
\begin{aligned}
& \mathcal{M}^{3 p}(A u, y, y, t) \geq a(s) \phi^{3 p}(\mathcal{M}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t) \\
& \quad+b(s) \psi^{p}\left(\mathcal{M}^{3}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t) \mathcal{M}(A u, y, y, k t) \mathcal{M}(A u, y, y, k t), 1\right)
\end{aligned}
$$

If $A u \neq y$, by above inequality we get

$$
\begin{aligned}
\mathcal{M}^{3 p}(A u, y, y, t) & \geq a(s) \mathcal{M}^{3 p}(A u, y, y, k t)+b(s) \mathcal{M}^{3 p}(A u, y, y, k t) \\
& =\mathcal{M}^{3 p}(A u, y, y, k t)
\end{aligned}
$$

which is contradiction. Hence $\mathcal{M}(A u, y, y, t)=1$. Therefore $A u=y$. Thus $A u=S u=y$. As $A(X) \subseteq$ $T(X)$ there exists $v \in X$, such that $T v=y$, so,

$$
\begin{aligned}
\mathcal{M}^{3 p}(y, B v, B v, t)= & \mathcal{M}^{3 p}(A u, B v, B v, t) \\
\geq & a(s) \phi^{3 p}(\mathcal{M}(S v, T v, T v, k t), \mathcal{M}(A u, S u, S u, k t), \mathcal{M}(B v, T v, T v, k t)) \\
& +b(s) \psi^{p}\left(\mathcal{M}^{3}(S u, T v, T v, k t), \mathcal{M}(S u, A v, A v, k t) \mathcal{M}(T v, B v, B v, k t)\right. \\
& \mathcal{M}(T v, B v, B v, x t) \mathcal{M}(S u, B v, B v, k t) \vee \mathcal{M}(T v, A v, T v, k t) \vee \mathcal{M}(T v, A u, T v, k t)) \\
= & a(s) \phi^{3 p}(1,1, \mathcal{M}(B v, y, y, k t))+b(s) \psi^{p}(1,1,1)
\end{aligned}
$$

We claim that $B v=y$ for if $B v \neq y$, then $\mathcal{M}(B v, y, y, t)<1$. On the above inequality we get

$$
\begin{aligned}
\mathcal{M}^{3 p}(y, B v, B v, t) \geq & a(s) \phi^{3 p}(\mathcal{M}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t) \\
& +b(s) X^{p}\left(\mathcal{M}^{3}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t) \mathcal{M}(y, B v, B v, k t) \mathcal{M}(y, B v, B v, k t),\right. \\
& \mathcal{M}(y, B v, B v, k t) \vee \mathcal{M}(y, B v, B v, k t) \vee \mathcal{M}(y, B v, B v, k t)) \\
= & a(s) \mathcal{M}^{3 p}(y, B v, B v, k t)+b(s) \mathcal{M}^{3 p}(y, B v, B v, k t) \\
= & \mathcal{M}^{3 p}(y, B v, B v, k t) \text { a contradiction. }
\end{aligned}
$$

Hence $T v=B v=A v=S u=y$. Since (A, S) is weak compatible, we get that $A S U=S A U$, that is $A y=S y$. Since (B, T) is weak compatible. We get $T B v=B T v$, that is $T y=B y$. If $A y \neq y$, then $\mathcal{M}(A y, y, y, t)<1$ how ever

$$
\begin{aligned}
\mathcal{M}^{3 p}(A y, y, y, t)= & \mathcal{M}^{3 p}(A y, B v, B v, t) \\
\geq & a(s) \phi^{3 p}(S y, T v, T v, k t), \mathcal{M}(A y, S y, S y, k t), \mathcal{M}(B v, T v, T v, k t) \\
& +b(s) \psi^{p} \mathcal{M}^{3}(S y, T v, T v, k t), \mathcal{M}(S y, A y, A y, k t) \mathcal{M}(T v, B v, B v, k t) \mathcal{M}(T v, B v, B v, k t), \\
& \mathcal{M}(S y, B v, B v, k t) \vee \mathcal{M}(T v, A y, T v, k t) \vee \mathcal{M}(T v, A y, T v, k t)) \\
= & a(s) \phi^{3 p}(\mathcal{M}(A y, y, y, k t), 1,1)+b(s) \psi^{p}\left(\mathcal{M}^{3}(A y, y, y, k t), 1, \mathcal{M}(A y, y, y, k t)\right) \\
\geq & a(s) \phi^{3 p}(\mathcal{M}(A y, y, y, k t), \mathcal{M}(A y, y, y, k t), \mathcal{M}(A y, y, y, k t))+b(s) \psi^{p}\left(\mathcal{M}^{3}(A y, y, y, k t),\right. \\
& \left.\mathcal{M}^{3}(A y, y, y, k t), \mathcal{M}^{3}(A y, y, y, k t)\right) \\
> & a(s)\left(\mathcal{M}^{3 p}(A y, y, y, k t)\right)+b(s) \mathcal{M}^{3 p}(A y, y, y, k t) \\
= & \mathcal{M}^{3 p}(A y, y, y, k t), \text { a contradiction. }
\end{aligned}
$$

Thus $A y=y$, hence $A y=S y=y$. Similarly, we prove that $B y=y$, for if $B y \neq y$.
Then $\mathcal{M}(B y, y, y, k t)<1$, how ever,

$$
\begin{aligned}
\mathcal{M}^{3 p}(y, B y, B y, t)= & \mathcal{M}^{3 p}(A y, B y, B y, t) \\
\geq & \left.a(s) \phi^{3 p}(\mathcal{M}(S y, T y, T y, k t)), \mathcal{M}(A y, S y, S y, k t), \mathcal{M}(B y, T y, T y, k t)\right) \\
& \quad+b(s) \psi^{p}\left(\mathcal{M}^{3}(S y, T y, T y, k t), \mathcal{M}(S y, A y, A y, k t) \mathcal{M}(T y, B y, B y, k t)\right. \\
& \mathcal{M}(T y, B y, B y, k t), \mathcal{M}(S y, B y, B y, k t) \vee \mathcal{M}(T y, A y, T y, k t) \vee \mathcal{M}(T y, A y, T y, k t)) \\
= & a(s) \phi^{3 p}(\mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, y, y, k t), \mathcal{M}(B y, B y, B y, k t) \\
& \quad+b(s) \psi^{p}\left(\mathcal{M}^{3}(y, B y, B y, k t), 1, \mathcal{M}(y, B y, B y, k t)\right) \\
\geq & a(s) \phi^{3 p}(\mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, B y, B y, k t)) \\
& \quad+b(s) \psi^{p}\left(\mathcal{M}^{3}(y, B y, B y, k t), \mathcal{M}^{3}(y, B y, B y, k t), \mathcal{M}^{3}(y, B y, B y, k t)\right) \\
> & a(s) \mathcal{M}^{3 p}(y, B y, B y, k t)+b(s) \mathcal{M}^{3 p}(y, B y, B y, k t) \\
= & \mathcal{M}^{3 p}(y, B y, B y, k t), \text { a contradiction. }
\end{aligned}
$$

Therefore, $A y=B y=S y=T y=y$. That is y is a common fixed pint of A, B, S and T.
Uniqueness: Let w be another common fixed point of A, B, S and T. That is $w=A w=S w=B w=$ $T w$. If $\mathcal{M}(x, y, z, t)<1$, then

$$
\begin{aligned}
\mathcal{M}^{3 p}(y, w, w, t)= & \mathcal{M}^{3 p}(A y, B w, B w, t) \\
\geq & a(s) \phi^{3 p}(\mathcal{M}(S y, T w, T w, k t), \mathcal{M}(A y, S y, S y, k t) \mathcal{M}(B w, T w, T w, k t)) \\
& +b(s) \psi^{p}\left(\mathcal{M}^{3}(S y, T w, T w, k t), \mathcal{M}(S y, A y, A y, k t)\right. \\
& \mathcal{M}(T w, B w, B w, k t), \mathcal{M}(T w, B w, B w, k t), \mathcal{M}(S y, B w, B w, k t) \\
& \vee \mathcal{M}(T w, A y, T w, k t) \vee \mathcal{M}(T w, A y, A w, k t) \\
= & a(s) \phi^{3 p}(\mathcal{M}(y, w, w, k t), 1,1)+b(s) \psi^{p}\left(\mathcal{M}^{3}(y, w, w, k t), 1, \mathcal{M}(y, w, w, k t)\right) \\
\geq & a(s) \phi^{3 p}(\mathcal{M}(y, w, w, k t), \mathcal{M}(y, w, w, k t), \mathcal{M}(y, w, w, k t) \\
& +b(s) \psi^{p}\left(\mathcal{M}^{3}(y, w, w, k t), \mathcal{M}^{3}(y, w, w, k t), \mathcal{M}^{3}(y, w, w, k t)\right) \\
> & a(s) \mathcal{M}^{3 p}(y, w, w, k t)+b(s) \mathcal{M}^{3 p}(y, w, w, k t) \\
= & \mathcal{M}^{3 p}(y, w, w, k t), \text { a contradiction. }
\end{aligned}
$$

Therefore y is the unique common fixed point of self-maps A, B, S and T.
In the following theorem, function $\phi:[0,1]^{4} \rightarrow[0,1]$, is continuous and increasing in each co-ordinate variable. Also $\phi(s, s, s, s)>s$ for every $s \in[0,1)$.

Theorem 2.2. Let A, B, S and T be self-mappings of a complete \mathcal{M}-fuzzy metric space $(X, \mathcal{M}, *)$ satisfying that
(1) $A(X) \subseteq T(X), B(X) \subseteq S(X)$ and $A(X)$ or $B(X)$ is a complete subset of X.
(2) $\mathcal{M}(A x, B y, B z, t) \geq \phi(\mathcal{M}(S x, T y, T z, k t), \mathcal{M}(A x, S x, S x, k t), \mathcal{M}(B y, T y, T z, k t), \mathcal{M}(S x, B y, B z, k t)$ $\vee \mathcal{M}(T y, A x, T y, k t) \vee \mathcal{M}(T z, A x, T z, k t))$ for every x, y, z in $X, k>1$ and $\phi \in \Phi$.
(3) The pairs (A, S) and (B, T) are weakly compatible. Then A, B, S and T have a unique common fixed point in X.

Proof. Let $x_{0} \in X$ be an arbitrary point. As $A(X) \subseteq T(X), B(X) \subseteq S(X)$, there exist $x_{1}, x_{2} \in X$ such that $A x_{0}=A x_{1}, B x_{1}=S x_{2}$. Inductively, construct sequence $\left\{y_{n}\right\}$ and $\left\{x_{n}\right\}$ in X such that $y_{3 n}=A x_{3 n}=T x_{3 n+1}, y_{3 n+1}=B x_{3 n+1}=S x_{3 n+2}$ for $n=0,1,2, \ldots$

Now, we prove $\left\{y_{n}\right\}$ is a Cauchy sequence. Let $d_{m}(t)=\mathcal{M}\left(y_{m}, y_{m+1}, y_{m+1}, t\right), t>0$. We prove $\left\{d_{\mathcal{M}}(t)\right\}$ is increasing with respect to m. Let $m=3 n$, we have

$$
\begin{aligned}
& d_{3 n}(t)= \mathcal{M}\left(y_{3 n}, y_{3 n+1}, y_{3 n+1}, t\right) \\
&= \mathcal{M}\left(A x_{3 n}, B x_{3 n+1}, B x_{3 n+1}, t\right) \\
& \geq \phi\left(\mathcal{M}\left(s x_{3 n}, T x_{3 n+1}, T x_{3 n+1}, k t\right), \mathcal{M}\left(A x_{3 n}, S x_{3 n}, S x_{3 n}, k t\right), \mathcal{M}\left(B x_{3 n+1}, T x_{3 n+1}, T x_{3 n+1}, k t\right),\right. \\
&\left.\mathcal{M}\left(S x_{3 n}, B x_{3 n+1}, B x_{3 n+1}, k t\right) \vee \mathcal{M}\left(T x_{3 n+1}, A x_{3 n}, T x_{3 n+1}, k t\right) \vee \mathcal{M}\left(T x_{3 n+1}, A x_{3 n}, T x_{3 n+1}, k t\right)\right) \\
&= \phi\left(\mathcal{M}\left(y_{3 n-1}, y_{3 n}, y_{3 n}, k t\right), \mathcal{M}\left(y_{3 n}, y_{3 n-1}, y_{3 n-1}, k t\right), \mathcal{M}\left(y_{3 n+1}, y_{3 n}, y_{3 n}, k t\right),\right. \\
&\left.\mathcal{M}\left(y_{3 n-1}, y_{3 n+1}, y_{3 n+1}, k t\right) \vee \mathcal{M}\left(y_{3 n}, y_{3 n}, y_{3 n}, k t\right) \vee \mathcal{M}\left(y_{3 n}, y_{3 n}, y_{3 n}, k t\right)\right) \\
&= \phi\left(d_{3 n-1}(k t), d_{3 n-1}(k t), d_{3 n}(k t), 1\right) \\
& \geq \phi\left(d_{3 n-1}(k t), d_{3 n}(k t), 1\right) .
\end{aligned}
$$

Since ϕ is an increasing function. We claim that for every $n \in N, d_{3 n}(k t) \geq d_{3 n-1}(k t)$.
For if $d_{3 n}(k t)<d_{3 n-1}(k t)$. Then in inequality (2.1), we have

$$
\begin{aligned}
d_{3 n}(t) & \geq \phi\left(d_{3 n}(k t), d_{3 n}(k t), d_{3 n}(k t), d_{3 n}(k t)\right) \\
& >d_{3 n}(k t)
\end{aligned}
$$

That is $d_{3 n}(t)>d_{3 n}(k t)$ a contradiction. Hence $d_{3 n}(k t) \geq d_{3 n-1}(k t)$ for every $n \in N$ and for all $t>0$. Similarly, we have $d_{3 n+1}(k t) \geq d_{3 n}(k t)$. Thus, $\left\{d_{n}(t)\right\}$ is an increasing sequence in $[0,1]$. By inequality, (2.1) and $d_{n}(t)$ is an increasing sequence, we get,

$$
\begin{aligned}
d_{3 n}(t) & \geq \phi\left(d_{3 n-1}(k t), d_{3 n-1}(k t), d_{3 n-1}(k t), d_{3 n-1}(k t)\right) \\
& \geq d_{3 n-1}(k t)
\end{aligned}
$$

Similarly, we have $d_{3 n+1}(t) \geq d_{3 n}(k t)$. Thus $d_{n}(t) \geq d_{n-1}(k t)$. That is

$$
\begin{aligned}
\mathcal{M}\left(y_{n}, y_{n+1}, y_{n+1}, t\right) & \geq \mathcal{M}\left(y_{n-1}, y_{n}, y_{n}, k t\right) \geq \ldots \\
& \geq \mathcal{M}\left(y_{0}, y, y, k^{n} t\right)
\end{aligned}
$$

Hence by Lemma $1.9\left\{y_{n}\right\}$ is Cauchy and the completeness of $X,\left\{y_{n}\right\}$ converges of y in X. That is

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n} & =y \\
\Rightarrow \lim _{n \rightarrow \infty} y_{3 n} & =\lim _{n \rightarrow \infty} A x_{3 n}=\lim _{n \rightarrow \infty} T x_{3 n+1} \\
& =\lim _{n \rightarrow \infty} y_{3 n+1}=\lim _{n \rightarrow \infty} B x_{3 n+1}=\lim _{n \rightarrow \infty} S x_{3 n+1}=y
\end{aligned}
$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that $S u=y$. So we have

$$
\begin{aligned}
\mathcal{M}\left(A u, B x_{3 n+1}, B x_{3 n+1}, t\right) \geq \phi & \left(\mathcal{M}\left(S u, T x_{3 n+1}, T x_{3 n+1}, k t\right), \mathcal{M}(A u, S u, S u, k t),\right. \\
& \left.\mathcal{M}\left(B x_{3 n+1}, B x_{3 n+1}, B x_{3 n+1}, k t\right), \mathcal{M}\left(S u, B x_{3 n+1}, B x_{3 n+1}, k t\right)\right) \\
& \left.\vee \mathcal{M}\left(T x_{3 n+1}, A u, T x_{3 n+1}, k t\right) \vee \mathcal{M}\left(T x_{3 n+1}, A u, T x_{3 n+1}, k t\right)\right) .
\end{aligned}
$$

If $A u \neq y$, by continuous m and Φ, on making $n \rightarrow \infty$, the above inequality, we get

$$
\begin{aligned}
\mathcal{M}(A u, y, y, t) \geq & \phi(\mathcal{M}(y, y, y, k t), \mathcal{M}(A u, y, y, k t), \mathcal{M}(y, y, y, k t) \\
& \mathcal{M}(y, y, y, k t) \vee \mathcal{M}(y, A u, y, k t) \vee \mathcal{M}(y, A u, y, k t)) \\
\geq & \phi(\mathcal{M}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t), \mathcal{M}(A u, y, y, k t)) \\
> & \mathcal{M}(A u, y, y, k t) .
\end{aligned}
$$

That is $\mathcal{M}(A u, y, y, k t)>\mathcal{M}(A v, y, y, k t)$ which is a contradiction. Hence $\mathcal{M}(A v, y, y, t)=1$, i.e, $A v=y$. Thus, $A u=S u=y$. As $A(X) \subseteq T(X)$, there exists $v \in X$, such that $T v=y$. So,

$$
\begin{aligned}
\mathcal{M}(y, B v, B v, t)= & \mathcal{M}(A v, B v, B v, t) \\
\geq & \phi(\mathcal{M}(S u, T v, T v, k t), \mathcal{M}(A v, S v, S v, k t), \mathcal{M}(B v, T v, T v, k t), \mathcal{M}(S u, B v, B v, k t) \\
& \vee \mathcal{M}(T v, A u, T v, k t) \vee \mathcal{M}(T v, A u, T v, k t)) \\
= & \phi(1,1, \mathcal{M}(B v, y, y, k t), 1)
\end{aligned}
$$

We claim that $B v=y$. For if $B v \neq y$. Then $\mathcal{M}(B v, y, y, t)<1$. On the above inequality, we get

$$
\begin{aligned}
\mathcal{M}(y, B v, B v, t) & \geq \phi(\mathcal{M}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t), \mathcal{M}(y, B v, B v, k t)) \\
& >\mathcal{M}(y, B v, B v, k t) \text { a contradiction. }
\end{aligned}
$$

Hence $T v=B v=A v=S u=y$. Since (A, S) is weakly compatible, we get that $A S U=S A U$, that is $A y=S y$. Since (B, T) is weakly compatible, we get that $T B v=B T v$ that is $T y=B y$. If $A y \neq y$, then $\mathcal{M}(A y, y, y, t)<1$. However,

$$
\begin{aligned}
\mathcal{M}(A y, y, y, t) & =\mathcal{M}(A y, B v, B v, t) \\
& \geq \phi(\mathcal{M}(S y, T v, T v, k t), \mathcal{M}(A y, S y, S y, k t), \mathcal{M}(B v, T v, T v, k t), \mathcal{M}(S y, B v, B v, k t) \\
& \vee \mathcal{M}(T v, A y, T v, k t) \vee \mathcal{M}(T v, A y, T v, k t)) \\
& \geq \phi(\mathcal{M}(A y, y, y, k t), 1,1, \mathcal{M}(y, A y, y, k t)) \\
& \geq \phi(\mathcal{M}(A y, y, y, k t), \mathcal{M}(A y, y, y, k t), \mathcal{M}(A y, y, y, k t), \mathcal{M}(A y, y, y, k t)) \\
& >\mathcal{M}(A y, y, y, k t)) \text { a contradiction. }
\end{aligned}
$$

Thus $A y=y$, hence $A y=S y=y$. Similarly, we prove that $B y=y$. For if $B y \neq y$. Then $\mathcal{M}(B y, y, y, t)<$ 1, how ever

$$
\begin{aligned}
\mathcal{M}(y, B y, B y, t)= & \mathcal{M}(A y, B y, B y, t) \\
\geq & \phi(\mathcal{M}(S y, T y, T y, k t), \mathcal{M}(A y, S y, S y, k t), \mathcal{M}(B y, T y, T y, k t), \mathcal{M}(S y, B y, B y, k t) \\
& \vee \mathcal{M}(T y, A y, T y, k t) \vee \mathcal{M}(T y, A y, T y, k t)) \\
\geq & \phi(\mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, B y, B y, k t), \mathcal{M}(y, B y, B y, B y, k t)) \\
> & \mathcal{M}(y, B y, B y, k t) \text { a contradiction. }
\end{aligned}
$$

Therefore, $A y=B y=S y=T y=y$, ie., y is a common fixed point of A, B, S and T.
Uniqueness Let w be another common fixed point of A, B, S and T.
That is $w=B w=A w=S w=T w$. If $\mathcal{M}(x, y, z, t)<1$, then

$$
\begin{aligned}
\mathcal{M}(y, w, w, t)= & \mathcal{M}(A y, B w, B w, t) \\
\geq & \phi(\mathcal{M}(S y, T w, T w, k t), \mathcal{M}(A y, S y, S y, k t), \mathcal{M}(B w, T w, T w, k t), \mathcal{M}(S y, B w, B w, k t) \\
& \vee \mathcal{M}(T w, A y, T w, k t) \vee \mathcal{M}(T w, A y, T w, k t)) \\
= & \phi(\mathcal{M}(y, w, w, k t), 1,1, \mathcal{M}(y, w, w, k t) \vee \mathcal{M}(w, y, w, k t) \vee \mathcal{M}(w, y, w, k t)) \\
\geq & \phi(\mathcal{M}(y, w, w, k t), \mathcal{M}(y, w, w, k t), \mathcal{M}(y, w, w, k t), \mathcal{M}(y, w, w, k t)) \\
> & \mathcal{M}(y, w, w, k t) \text { a contradiction. }
\end{aligned}
$$

Therefore y is the unique common fixed point of self-maps A, B, S and T.

References

[1] M.S. El Naschie, On the uncertainty of Cantorian geometry and the two slit experiment, Chaos Solitons Fractals, 9(3)(1998), 517-529.
[2] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets System, 64(1994), 395-399.
[3] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and System, 125(2002), 245-252.
[4] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227-238.
[5] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
[6] D. Mihet, A banach contraction theorem in fuzzy metric spaces, Fuzzy Sets System, 144(2004), 431439.
[7] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27(2006), 331-344.
[8] R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commuting maps in fuzzy metric spaces, $6^{\text {th }}$ Iranian Conference on Fuzzy Systems (2006), 387-391.
[9] S. Sedghi, N. Shobe and M. A. Selahshoor, A common fixed point theorem for Four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics, 1(1)(2006).
[10] S. Sedghi, D. Turkoglu and N. Shobe, Generalization common fixed point theorem in complete fuzzy metric spaces, Journal of Computational Analysis and Applications, 9(3)(2007), 337-348.
[11] B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica, 1(1988), 5-17.
[12] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301(2)(2005), 439-448.
[13] G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets Sys.,135(2003), 409-413.
[14] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30(1999), 419-423.
[15] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets System, 135(2003), 409-413.
[16] T. Veerapandi, M. Jeyaraman and J. Paul raj Joseph, Some fixed point and coincident point theorem in generalized \mathcal{M}-fuzzy metric space, Int. Journal of Math. Analysis, 3(2009), 627-635.
[17] L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.

[^0]: ${ }^{1}$ Corresponding author E-Mail: rpselvi@gmail.com (R. Pandiselvi)

