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1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [I7] in 1965. Since, then to use this concept in
topology and analysis many authors have expansively developed the theory of fuzzy sets and application.
George and Veeramani [2] and Kramosil and Michalek [5] have introduced the concept of fuzzy topological
spaces induced by fuzzy metric which have very important applications in quantum particle physics
particularly in connections with both string and E-infinity theory which were given and studied by E;
Naschie [I]. Many authors [2] [3, 5l [6] have proved fixed point theorem in fuzzy (probabilistic) metric
spaces. One should there exists a space between spaces. And one such generalization is generalized
metric space or D-metric space initiated by Dhage in 1992. He proved some results on fixed points
for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades generalized
Dhage’s contractive condition by increasing the number of factors and proved the existence of unique
fixed point of a self-map in D-metric space. Recently, Sedghi and Shobe [8] introduced D* metric space,
as a probable modification of the definition of D-metric.

Using D*-metric concept, Sedghi and Shobe defined M-fuzzy metric space and proved common fixed
point theorem in it.

In this paper we prove common fixed point theorems in complete M-fuzzy metric space.

Definition 1.1. A 3-tuple (X, M, ) is called M-fuzzy metric space if X is an arbitrary non-empty set,
* s a continuous t-norm, and M is a fuzzy set on X3 x (0,00), satisfying the following conditions for

each x,y,z,a € X and t,s > 0.

(FM-1) M(x,y,z,t) >0
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(FM-2) M(x,y,z,t) =1 if and only if x =y = z

(FM-3) M(x,y,z,t) = M(p{z,y, z},t), where p is a permutation function.

(FM-4) M(z,y,a,t) * M(a, z,z,8) < M(z,y,z,t+ s)

(FM-5) M(x,y,z,.): (0,00) = [0,1] is continuous

(FM-6) tlir&./\/l(:r,y,z,t) =1

Definition 1.2. Let (X, M, *) be a M-fuzzy metric space and {z,} be a sequence in X

(a) {xn} is said to be converges to point x € X if nli_)néo./\/l(xl,xl, Tp,t) =1 for all t >0

(b) {zn} is called Cauchy sequence if nh_)rgoM(xn+p7xn+p7$n;t) =1forallt>0andp>0

(c) A M-fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 1.3. Let (X, M, *) be a M-fuzzy metric space. Then M(z,y, z,t) is non-decreasing with respect
to t, for all x,y,z in X.

Definition 1.4. Let (X, M,x*) be a M-fuzzy metric space. M is said to be continuous function on
X3 x (0,00) if lim M(Zp,Yn, 2n,tn) = M(z,y, 2,t), whenever a sequence {(Tn,Yn, 2n,tn)} = in X3 x
n—oo
(0,00) converges to a point (z,y,2,t) € X3 x (0,00). d.e., lim x, =z, lim y, =y, lim 2, = z and
n—oo n oo

1—> 00 n—
lim M(z,y,z,t,) = M(x,y,z,t).
n—oo
Lemma 1.5. Let (X, M, ) be a M-fuzzy metric space. Then M is continuous function on X3 x (0, 00).

Definition 1.6. Let A and S be mappings from a M-fuzzy metric space (X, M, *) into itself. Then the
mappings are said to be weak compatible if they commute at their coincidence point, that is, Axr = Sz

implies that ASx = SAx.

Definition 1.7. Let A and S be mappings from a M-fuzzy metric space (X, M, *) into itself. Then the
mappings are said to be compatible if im M(ASx,, SAx,,SAx,,t) =1 for allt > 0 whenever {x,} is
n— o0

a sequence in X such that lim Az, = lim Sx, =z € X.
n—oo n—oo

Lemma 1.8. Let (X, M, ) be a M-fuzzy metric space. If we define ExM : X3 — Rt U {0} by
Exm(z,y,z) =inf{t >0: M(z,y,z,t) >1— A} for every A € (0,1), then

(1) for each p € (0,1) there exists A € (0,1) such that Ey pm(x1, 21, 2n) < Ex m(21, 22, 22)
+ Ex m(T2, 02,23) + -+ + Ex m(Tn—1, Tp—1,Tn) for any x1,22,..., 2, € X.
(2) The sequence {x,}n € N is convergent in M-fuzzy metric space (X, M, ) if and only if

Ex m(xp, xp, ) —0. Also the sequence {x,},n € N is Cauchy sequence if and only if it is Cauchy

with E)\,M-

Lemma 1.9. Let (X, M, %) be a M-fuzzy metric space. If M(xp, Ty, Tpi1,t) > M(zo, z0, 1, k"t) for

some k > 1 and for every n € N. Then sequence {x,} is a cauchy sequence.

2 The Main Results

A class of implicit relation
Let ® denotes a family of mappings such that each ¢ € ®,¢ : [0,1]*> — [0,1] and ¢ is continuous and

increasing in each co-ordinate variable. Also ¢(s, s, s) > s for every s € [0, 1).
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Example 2.1. Let ¢ : [0,1]> — [0,1] be defined by

(1) ¢(x1,x9,73) = (min{z;})" for some 0 < h < 1.

(2) ¢(x1,29,73) = 2 for some 0 < h < 1.

(8) &(x1, 22, x3) = max{z]*, x5, x5%}, where 0 < o; < 1 fori=1,2,3.

In this paper, p is a positive real number and ¢P(s,s,s) = [¢(s,s,s)]?? for every s € [0,1). Also,
M(Sz, By, Bz,t) V M(Ty, Az, Ty, t) V M(Tz, Az, Tz,t) = max{M(Sz, By, Bz,t), M(Ty, Az, Ty, t),

max(Tz, Az, Tz,t)}. Our main result for a complete M-fuzzy metric space X, as reads follows:

Theorem 2.1. Let A, B, S and T be self mappings of complete M-fuzzy metric space (X, M, *) satisfying

the following conditions.

(1) (A, S) and (S,T) are weakly compatible pairs such that A(X) C T(X) and B(X) C S(X) also A(X)
or B(X) is a closed subset of X.

(2) There exists ¥, Q € ® such that for all x,y,z € X.
M3P(Az, By, Bz,t) > a(s)¢*?(M(Sz, Ty, Tz, kt), M(Ax, Sz, Sz, kt), M(By, Ty, Tz, kt)
+b(s)YP (M3 (Sz, Ty, Tz, kt), M(Sx, Az, Az, kt) M(Ty, By, By, kt)
M(Tz,Bz, Bz, kt), M(Sz, By, Bz, kt) V M(Ty, Az, Ty, kt) V M(Tz, Az, Tz, kt))
for some k > 1 where a,b: [0,1] — [0, 1] are two continuous functions such that a(s) + b(s) =1 for

every S = M(z,y, z,t). Then A, B and S,T have a unique common fized point in X.

Proof. Let xyp € X an arbitrary point as A(X) C T(X), B(X) C S(X) there exists x1,22 € X be
Azg = Tz, Bx1y = Szo. Inductively, construct sequence {y,} and {z,} in X such that y3, = Axs, =
Trs3n41,Ysnt1 = Brspy1 = Sxanye, for n =0,1,2,.... Now, we prove {y,} is a Cauchy sequence. For

simplicity, we get d,,(t) = M(Yn, Yn+1, Yn+1,t),n =0,1,2,.... Then we have

dsh (t) = M (Y, Ysni1: Ysnt1,t)
= M3?(Axs,, Bxs, i1, Brani1,t)
a(8)d P (M(Sx3n, Tx3n 41, T3011, kt), M(Ax3,,, B3y, Bra,y1, kt),
M(Bxspi1, Txsn i1, Toan i1, kt) + b(s)0F (M3 (Szan, Txan i1, TTany1, kt), M(S3p, Az, Az, kt)
M(Tz3p41, Bxsni1, Besny1, kt) M(Bxspt1, Txsnt1, kt)M(Sx3p, Brsp+1, Brani1, kt)V
M(Tx3n11, AT3n, Tx3p41, kt) V. M(Tx3041, A3, TT3n41, kt))
a($)0°P (M(Y3n—1, Ysn> Ysns k), M(Ysn, Ysnt1, Ysnt1, kt), M(Ysnt1, Ysn, Ysn, kt)
+ b)Y (M (y3n—1, Y3n Ysns kt), M(Yzn-1Yns Y KM (Y, Y31, Ysnr1, kt)
M(Ysn+1, Y3, Ysn: KOM(Ysn—1, Ysn+1, Ysnt1,k8) V- M(Yzn, Y3n, Ysn, k) V- M(Ysn, Yan, Yan, kt)).

We prove that ds,(t) > dsn—1(t). Now, if ds,(t) < dsn—_1(t) for some n € N. Since ¢ and 1) are increasing

functions, then

a(s) %P (dzn_1(kt), dzn (kt), dzn (kt) + b(s)yP(d5,,_; (kt), dsp_1(kt)ds, (kt)ds, (kt), 1)
a(s)¢°P (dan (kt), dan (kt), dsy (kt)) 4 b(s)0P (d3,, (kt), d3,, (kt), 1)

> a(s)dsh (kt) + b(s)dsh (kt)

ds? (kt).

dap () >

| \/
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Hence we have ds,(t) > dsn(kt) is a contradiction. Therefore ds, (t) > ds,—1(t). Similarly, one can prove
that d3n+1(t) > dgn(t) for n = 0, 1, 2, e

Consequently, {d,(t)} is a {d,(t)} is a increasing sequence of non-negative real. Thus,

d3h (t) > a(s)¢° (dan—1(kt), dan—1(kt), dsn—1(kt)) + b(s)yP(d3, _, (kt),d3, _ (kt),1)
> a(s)dsh_ (kt) + b(s)dsh _, (kt)

= dgflfl(kt)‘

That is dsp(t) > dan—1(kt), similarly we have dgn41(t) > dsn(kt). Thus d,(t) > d,—1(kt). That is
M(Yns Yn+1, Ynt1,t) = M(Yn—1,Yn, Yn, kt). So,

M(yn7yn+1;yn+17t) Z M(ynflaynvyn7k)t) Z e Z M(y07y17y1)knt)'

By Lemma 1.9 sequence {y,} is a Cauchy sequence, then it converges to y € X. That is

lim y, = lim y3, = lim yz,41

= lim Axzs, = lim Bzg,41
n— o0 n— oo

= lim Sz3, = lim Tx3,11 =y.
n—oo n— o0

As B(X) C S(X), there exists u € X such that Su =y, we have

M?’p(Au, Bxsn41, Brspi1,t) > a(s)¢3p(M(Su, Tx3n+1, T3n41, kt), M(Au, Su, Su, kt),
M(Bzspi1, Trsng1, Trani1, kt)) + b(s)P (M3 (Su, Txspny1, TTan i1, kt),
M(Su, Au, Au, kt)M(Tx3p41, Brsn+1, Brani1, kt)
M(Tx3p41, Bxsnt1, Brspyt, kt)M(Su, Bxspy1, Brani1, kt)

\Y M(T$3n+1, Au, Txsn+1, k‘t) V M(T$3n+1, Au, Tx3n41, k?t)
By continuous M and ¢, on making n — oo the above inequality, we get

M (Au,y,y,t) > a(s)9*? (M(y,y,y, kt), M(Au, y, y, kt), M(y, y, y, kt)
+ b(s)YP (M3 (y, y, y, kt), M(y, Au, Au, kt) M(y, y, y, k)M (y, y, y, kt), M(y, y,y, kt)
V- M(y, Au,y, kt) V. M(y, Au, Ty, kt))

hence we have

MPP(Au,y,y,t) > a(s)¢*P (M(Au,y, y, kt), M(Au,y,y, kt), M(Au, y, y, kt)
+ ()PP (MP(Au, y, y, kt), M(Au, y, y, k)M (Au, y, y, kt) M(Au, y, y, kt), 1).

If Au # y, by above inequality we get

M (Au,y,y,t) > a(s)MP(Au, y, y, kt) + b(s) M (Au,y,y, kt)
= MSP(Au, y7 y’ kt)?

which is contradiction. Hence M(Au,y,y,t) = 1. Therefore Au = y. Thus Au = Su=y. As A(X) C
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T(X) there exists v € X, such that Tv = y, so,

M?3P(y, Bv, Bu,t) = M3P(Au, Bv, Bu, t)
a(s)$*P (M(Sv, Tv, Tv, kt), M(Au, Su, Su, kt), M(Bv, Tv, Tv, kt))
+ b(8)pP (M3 (Su, Tv, Tv, kt), M(Su, Av, Av, kt) M(Tv, Bv, Bv, kt)
M(Tw, Bv, Bv, xt)M(Su, Bv, Bv, kt) Vv M(Tv, Av, Tv,kt)V M(Tv, Au, Tv, kt))
= a(s)¢* (1,1, M(Buv,y,y, kt)) + b(s)yP(1,1,1).

We claim that Bv =y for if Bv # y, then M(Bwv,y,y,t) < 1. On the above inequality we get

M?(y, Bv, Bu,t) > a(s)¢** (M(y, Bv, Bv, kt), M(y, Bv, Bv, kt), M(y, Bv, Bu, kt)
+ b(s) XP(M?3(y, Bu, Bu, kt), M(y, Bv, Bv, kt) M(y, Bv, Bv, kt)M(y, Bv, Bv, kt),
M(y, Bv, Bv, kt) V M(y, Bv, Buv, kt) V M(y, Bv, Bv, kt))
= a(s)M®(y, Bv, Bv, kt) + b(s)M?" (y, Bv, Bv, kt)
= M3P(y, Bv, Bu, kt) a contradiction.
Hence Tv = Bv = Av = Su = y. Since (4, S5) is weak compatible, we get that ASU = SAU, that is
Ay = Sy. Since (B,T) is weak compatible. We get TBv = BTw, that is Ty = By. If Ay # y, then
M(Ay,y,y,t) <1 how ever
MPP(Ay,y,y,t) = M3 (Ay, Bv, Bu,t)
a(s)$3F (Sy, T, Tv, kt), M(Ay, Sy, Sy, kt), M(Bv, Tv, Tv, kt)
+ b(s)ypP M3 (Sy, Tw, T, kt), M(Sy, Ay, Ay, kt)M(Tv, Bv, Bv, kt)M(Tv, Bv, Bv, kt),
M(Sy, Bv, Bv, kt) V. M(Tv, Ay, Tv,kt)V M(Tv, Ay, Tv, kt))
= ()¢ (M(Ay,y, y, kt),1,1) + b(s)? (M (Ay, y, y, kt), 1, M(Ay, y, y, kt))
> a(s)¢™ (M(Ay,y.y. kt), M(Ay, y,y, kt), M(Ay,y.y. kt)) + b(s)p" (M (Ay, y, y, kt),
M (Ay,y,y, kt), MP(Ay,y,y, kt))
a(s) (M (Ay, y,y, kt)) + b(s) M (Ay, y, y, kt)
= M3P(Ay,y,y, kt), a contradiction.
Thus Ay =y, hence Ay = Sy = y. Similarly, we prove that By = y, for if By # y.
Then M(By,y,y, kt) < 1, how ever,
M?P(y, By, By, t) = M?(Ay, By, By, 1)
> a(s)¢°"(M(Sy, Ty, Ty, kt)), M(Ay, Sy, Sy, kt), M(By, Ty, Ty, kt))
+ b(s)pP (M?(Sy, Ty, Ty, kt), M(Sy, Ay, Ay, kt)M(Ty, By, By, kt)
M(Ty, By, By, kt), M(Sy, By, By, kt) V M(Ty, Ay, Ty, kt) V M(Ty, Ay, Ty, kt))
= a(s)¢"" (M(y, By, By, kt), M(y,y,y, kt), M(By, By, By, kt)
+b(s)y? (M®(y, By, By, kt), 1, M(y, By, By, kt))
a(s)¢*P (M M(

( kt),

(y, By, By, kt),

+ b(s)y? (M?(y, By, By, kt), M*(y, By, By, kt), M®(y, By, By, kt))
)

y, By, By, kt), M(y, By, By, kt))

a(s)M?®P(y, By, By, kt) + b(s) M (y, By, By, kt)

= MSp(y» By, By, kt), a contradiction.



44 Int. J. Math. And Its App. Vol.3 No.1 (2015)/ R.Muthuraj and R. Pandiselvi

Therefore, Ay = By = Sy =Ty = y. That is y is a common fixed pint of A, B, S and T.
Uniqueness: Let w be another common fixed point of A, B, S and T. That is w = Aw = Sw = Bw =

Tw. If M(z,y,z2,t) <1, then

MPP(y,w,w,t) = M*(Ay, Bw, Bw,t)
> a(s)p*P (M(Sy, Tw, Tw, kt), M(Ay, Sy, Sy, kt) M (Bw, Tw, Tw, kt))
+ b(s)pP (M3 (Sy, Tw, Tw, kt), M(Sy, Ay, Ay, kt)
M(Tw, Bw, Bw, kt), M(Tw, Bw, Bw, kt), M(Sy, Bw, Bw, kt)
VvV M(Tw, Ay, Tw, kt) v M(Tw, Ay, Aw, kt)
= a(s)¢* (M(y, w,w, kt), 1, 1) + b(s)pP (M (y, w, w, kt), 1, M(y, w, w, kt))
> a(s)¢*" (M(y, w, w, kt), M(y, w, w, kt), M(y, w, w, kt)
+b(8)yP (M (y, w, w, kt), MP(y, w, w, kt), MP (y, w, w, kt))
> a(s)MPP(y, w,w, kt) + b(s) M3 (y, w, w, kt)

= M3 (y,w,w, kt), a contradiction.
Therefore y is the unique common fixed point of self-maps A, B, S and T. O

In the following theorem, function ¢ : [0, 1]* — [0, 1], is continuous and increasing in each co-ordinate

variable. Also ¢(s,s,s,s) > s for every s € [0,1).

Theorem 2.2. Let A, B,S and T be self-mappings of a complete M-fuzzy metric space (X, M, *) satis-
fying that

(1) A(X)CT(X),B(X) CS(X) and A(X) or B(X) is a complete subset of X.

(2) M(Az, By, Bz,t) > ¢(M(Sx, Ty, Tz, kt), M(Azx, Sz, Sz, kt), M(By, Ty, Tz, kt), M(Sz, By, Bz, kt)
VM(Ty, Az, Ty, kt) vV M(Tz, Ax, Tz, kt)) for every x,y,z in X,k > 1 and ¢ € P.

(3) The pairs (A, S) and (B,T) are weakly compatible. Then A, B, S and T have a unique common fized
point in X.

Proof. Let xyp € X be an arbitrary point. As A(X) C T(X),B(X) C S(X), there exist x1,x5 € X
such that Axzg = Axzy,Bx; = Szo. Inductively, construct sequence {y,} and {z,} in X such that
Ysn = Axsn = TT3041, Ysnt1 = BTsnt1 = STapge forn=10,1,2,....

Now, we prove {y,} is a Cauchy sequence. Let d,,(t) = M(Ym,Ym+1,Ym+1,t), t > 0. We prove

{dm(t)} is increasing with respect to m. Let m = 3n, we have

d3n(t) = M(Y3n: Y3n+1, Ysnt1,t)
= M(Axsy,, Bxsni1, Branyi,t)
> p(M(sz3n, TT3ns1, TT3n11, kt), M(Axsy, ST3n, STan, kt), M(Bxspi1, Tant1, TTans1, kt),
M(Sz3p, Brspi1, Brany1, kt) V. M(Txspi1, Axsn, Tesnyt, kt) V M(Txsn41, ATsn, Tx3n41, kt))
= ¢(M(Y3n—1,Y3n, Ysn, k), M(Yan, Ysn—1, Y3n—1, kt), M(Y3n+1, Ysn, Yan, kt),
M(Y3n—1,Y3n+1: Ysn+1, k) V M(Y3n: Ysns Ysn, kt) V M(Yzn, Y3n: Ysn. kt))
= ¢(dsp—1(kt), dsn—1(kt), dsn(kt), 1)
> P(dsn—1(kt), dsn(kt), 1).
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Since ¢ is an increasing function. We claim that for every n € N, ds, (kt) > ds,—1(kt).
For if ds,, (kt) < d3n—1(kt). Then in inequality (2.1), we have

d3n(t) = ¢(d3n(kt), d3n(kt), dsn(kt), dsn (k)
> dgn(kt)
That is ds,(t) > ds,(kt) a contradiction. Hence ds, (kt) > ds,,—1(kt) for every n € N and for all ¢ > 0.
Similarly,we have dg,t1(kt) > ds,(kt). Thus, {d,(t)} is an increasing sequence in [0,1]. By inequality,
(2.1) and d,(t) is an increasing sequence, we get,
dan(t) > ¢(dzn—1(kt), dsn—1(kt), dsn—1(kt), dsn—1(kt))

> dgn—1(kt).
Similarly, we have ds,,11(t) > ds,(kt). Thus d,,(t) > d,,—1(kt). That is

M(Yn, Ynt15 Ynt1,t) = M(Yn—1,Yn, Yn, kt) > ...

> M(yOa Y. Y, knt)
Hence by Lemma 1.9 {y,} is Cauchy and the completeness of X, {y,} converges of y in X. That is

lim Yn =Y

n—oo

= lim y3, = lim Azs, = lim Tx3,41
n— o0 n—00 n—00

= lim y3p41 = lim Brg,y1 = lim Sz3,401 =y

As B(X) C S(X), there exists u € X such that Su = y. So we have

M(Au, Bxgpi1, Braps1,t) > ¢(M(Su, Trgni1, TTant1, kt), M(Au, Su, Su, kt),
M(B*/'E?)’nﬁ‘rl; B$3n+1, Bm3n+17 kt)v M(SU, Bx3n+17 Bx3n+17 kt))

V M(Tx3n+1, Au, T$3n+1, kt) \Y M(TﬁL’gnJrl, A’LL, T$3n+1, kt))
If Au # y, by continuous m and ®, on making n — oo, the above inequality, we get

M(Au,y,y,t) = d(M(y, y, y, kt), M(Au,y,y, kt), M(y, y,y, kt)
M(y.y,y,kt) vV M(y, Au,y, kt) vV M(y, Au,y, kt))
> ¢(M(Au,y,y, kt), M(Au, y, y, kt), M(Au,y,y, kt), M(Au, y,y, kt))
> M(Au,y,y, kt).
That is M(Au,y,y, kt) > M(Av,y,y, kt) which is a contradiction. Hence M(Av,y,y,t) =1, i.e, Av = y.
Thus, Au = Su =vy. As A(X) C T(X), there exists v € X, such that Tv = y. So,
M(y, Bv, Bu,t) = M(Av, Bv, Bu,t)
> ¢(M(Su, Tv, Tv, kt), M(Av, Sv, Sv, kt), M(Bv, Tv, Tv, kt), M(Su, Bv, Bv, kt)
V M(Tv, Au, Tv, kt) vV M(Tv, Au, T, kt))

= d)(la 17 M(B’U, Y Y, kt)a 1)
We claim that Bv = y. For if Bv # y. Then M(Bwv,y,y,t) < 1. On the above inequality, we get

M(y, Bv, Bu,t) > ¢(M(y, Bv, Bv, kt), M(y, Bv, Buv, kt), M(y, Bv, Bv, kt), M(y, Bv, Bv, kt))

> M(y, Bv, Bu, kt) a contradiction.
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Hence Tv = Bv = Av = Su = y. Since (A, S) is weakly compatible, we get that ASU = SAU, that is
Ay = Sy. Since (B, T) is weakly compatible, we get that TBv = BTw that is Ty = By. If Ay # y, then
M(Ay,y,y,t) < 1. However,

M(Ay,y,y,t) = M(Ay, Bv, Bu, 1)
> ¢(M(Sy, T, Tv, kt), M(Ay, Sy, Sy, kt), M(Bv, Tv, T, kt), M(Sy, Bv, Bv, kt)
VvV M(Tv, Ay, Tv, kt) v M(Tv, Ay, Tv, kt))
> p(M(Ay,y,y, kt), 1,1, M(y, Ay, y, kt))
> p(M(Ay,y,y, kt), M(Ay, y,y, kt), M(Ay, y,y, kt), M(Ay, y, y, kt))
> M(Ay,y,y, kt)) a contradiction.

Thus Ay = y, hence Ay = Sy = y. Similarly, we prove that By = y. For if By # y. Then M(By,y,y,t) <

1, how ever

M(y, By, By, t) = M(Ay, By, By, )
> ¢(M(Sy, Ty, Ty, kt), M(Ay, Sy, Sy, kt), M(By, Ty, Ty, kt), M(Sy, By, By, kt)
VvV M(Ty, Ay, Ty, kt) v M(Ty, Ay, Ty, kt))
> ¢(M(y, By, By, kt), M(y, By, By, kt), M(y, By, By, kt), M(y, By, By, By, kt))
> M(y, By, By, kt) a contradiction.
Therefore, Ay = By = Sy =Ty =y, ie., y is a common fixed point of A, B, S and T.
Uniqueness Let w be another common fixed point of A, B, S and T
That is w = Bw = Aw = Sw = Tw. If M(x,y,z2,t) <1, then
My, w,w,t) = M(Ay, Bw, Bw,t)
> ¢(M(Sy, Tw, Tw, kt), M(Ay, Sy, Sy, kt), M(Bw, Tw, Tw, kt), M(Sy, Bw, Bw, kt)
V M(Tw, Ay, Tw, kt) vV M(Tw, Ay, Tw, kt))
= ¢(M(y, w,w, kt), 1,1, M(y,w,w, kt) V. M(w,y, w,kt) V. M(w,y,w,kt))
> o(M(y, w,w, kt), M(y, w, w, kt), M(y, w, w, kt), M(y, w, w, kt))

> M(y,w,w, kt) a contradiction.

Therefore y is the unique common fixed point of self-maps A, B, S and T. O
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