Volume 3, Issue 1 (2015), 39-47.

ISSN: 2347-1557

Common Fixed Point Theorems for Weakly Compatible of Four Mappings in Generalized Fuzzy Metric Spaces

R. Muthuraj † and R. Pandiselvi ‡,1

† PG and Research Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamil Nadu, India.

‡ Department of Mathematics, The Madura College, Madurai - 625 011, Tamil Nadu, India.

Abstract: In this paper, common fixed point theorems for weakly compatible maps in complete \mathcal{M} -fuzzy metric spaces is proved.

Keywords: Fuzzy contractive mapping, complete \mathcal{M} -fuzzy metric.

AMS Subject Classification: 54E40, 54E35, 54H25.

1 Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [17] in 1965. Since, then to use this concept in topology and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [2] and Kramosil and Michalek [5] have introduced the concept of fuzzy topological spaces induced by fuzzy metric which have very important applications in quantum particle physics particularly in connections with both string and E-infinity theory which were given and studied by E_1 Naschie [1]. Many authors [2, 3, 5, 6] have proved fixed point theorem in fuzzy (probabilistic) metric spaces. One should there exists a space between spaces. And one such generalization is generalized metric space or D-metric space initiated by Dhage in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, Sedghi and Shobe [8] introduced D^* metric space, as a probable modification of the definition of D-metric.

Using D^* -metric concept, Sedghi and Shobe defined \mathcal{M} -fuzzy metric space and proved common fixed point theorem in it.

In this paper we prove common fixed point theorems in complete \mathcal{M} -fuzzy metric space.

Definition 1.1. A 3-tuple $(X, \mathcal{M}, *)$ is called \mathcal{M} -fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm, and \mathcal{M} is a fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each $x, y, z, a \in X$ and t, s > 0.

(FM-1) $\mathcal{M}(x, y, z, t) > 0$

 $^{^{1}}$ Corresponding author E-Mail: rpselvi@gmail.com (R. Pandiselvi)

- (FM-2) $\mathcal{M}(x, y, z, t) = 1$ if and only if x = y = z
- (FM-3) $\mathcal{M}(x,y,z,t) = \mathcal{M}(p\{x,y,z\},t)$, where p is a permutation function.
- (FM-4) $\mathcal{M}(x,y,a,t) * \mathcal{M}(a,z,z,s) \leq \mathcal{M}(x,y,z,t+s)$
- (FM-5) $\mathcal{M}(x,y,z,.):(0,\infty)\to[0,1]$ is continuous
- (FM-6) $\lim_{t\to\infty} \mathcal{M}(x,y,z,t) = 1.$

Definition 1.2. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space and $\{x_n\}$ be a sequence in X

- (a) $\{x_n\}$ is said to be converges to point $x \in X$ if $\lim_{n \to \infty} \mathcal{M}(x_1, x_1, x_n, t) = 1$ for all t > 0
- (b) $\{x_n\}$ is called Cauchy sequence if $\lim_{n\to\infty} \mathcal{M}(x_{n+p},x_{n+p},x_n,t)=1$ for all t>0 and p>0
- (c) A M-fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 1.3. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then $\mathcal{M}(x, y, z, t)$ is non-decreasing with respect to t, for all x, y, z in X.

Definition 1.4. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. \mathcal{M} is said to be continuous function on $X^3 \times (0, \infty)$ if $\lim_{n \to \infty} \mathcal{M}(x_n, y_n, z_n, t_n) = \mathcal{M}(x, y, z, t)$, whenever a sequence $\{(x_n, y_n, z_n, t_n)\} = in X^3 \times (0, \infty)$ converges to a point $(x, y, z, t) \in X^3 \times (0, \infty)$. i.e., $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} y_n = y$, $\lim_{n \to \infty} z_n = z$ and $\lim_{n \to \infty} \mathcal{M}(x, y, z, t_n) = \mathcal{M}(x, y, z, t)$.

Lemma 1.5. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then \mathcal{M} is continuous function on $X^3 \times (0, \infty)$.

Definition 1.6. Let A and S be mappings from a M-fuzzy metric space $(X, \mathcal{M}, *)$ into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, Ax = Sx implies that ASx = SAx.

Definition 1.7. Let A and S be mappings from a \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ into itself. Then the mappings are said to be compatible if $\lim_{n\to\infty} \mathcal{M}(ASx_n, SAx_n, SAx_n, t) = 1$ for all t > 0 whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = x \in X$.

Lemma 1.8. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. If we define $E_{\lambda}\mathcal{M}: X^3 \to \mathcal{R}^+ \cup \{0\}$ by $E_{\lambda,\mathcal{M}}(x,y,z) = \inf\{t > 0 : \mathcal{M}(x,y,z,t) > 1 - \lambda\}$ for every $\lambda \in (0,1)$, then

- (1) for each $\mu \in (0,1)$ there exists $\lambda \in (0,1)$ such that $E_{\mu,\mathcal{M}}(x_1,x_1,x_n) \leq E_{\lambda,\mathcal{M}}(x_1,x_2,x_2) + E_{\lambda,\mathcal{M}}(x_2,x_2,x_3) + \cdots + E_{\lambda,\mathcal{M}}(x_{n-1},x_{n-1},x_n)$ for any $x_1,x_2,\ldots,x_n \in X$.
- (2) The sequence $\{x_n\}n \in \mathbb{N}$ is convergent in \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ if and only if $E_{\lambda, \mathcal{M}}(x_n, x_n, x) \to 0$. Also the sequence $\{x_n\}, n \in \mathcal{N}$ is Cauchy sequence if and only if it is Cauchy with $E_{\lambda, \mathcal{M}}$.

Lemma 1.9. Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. If $\mathcal{M}(x_n, x_n, x_{n+1}, t) \geq \mathcal{M}(x_0, x_0, x_1, k^n t)$ for some k > 1 and for every $n \in \mathcal{N}$. Then sequence $\{x_n\}$ is a cauchy sequence.

2 The Main Results

A class of implicit relation

Let Φ denotes a family of mappings such that each $\phi \in \Phi$, $\phi : [0,1]^3 \to [0,1]$ and ϕ is continuous and increasing in each co-ordinate variable. Also $\phi(s,s,s) > s$ for every $s \in [0,1)$.

Example 2.1. Let $\phi:[0,1]^3 \to [0,1]$ be defined by

- (1) $\phi(x_1, x_2, x_3) = (\min\{x_i\})^h$ for some 0 < h < 1.
- (2) $\phi(x_1, x_2, x_3) = x_1^h$ for some 0 < h < 1.
- (3) $\phi(x_1, x_2, x_3) = \max\{x_1^{\alpha_1}, x_2^{\alpha_2}, x_3^{\alpha_3}\}, \text{ where } 0 < \alpha_i < 1 \text{ for } i = 1, 2, 3.$

In this paper, p is a positive real number and $\phi^{3p}(s,s,s) = [\phi(s,s,s)]^{3p}$ for every $s \in [0,1)$. Also, $\mathcal{M}(Sx, By, Bz, t) \vee \mathcal{M}(Ty, Ax, Ty, t) \vee \mathcal{M}(Tz, Ax, Tz, t) = \max\{\mathcal{M}(Sx, By, Bz, t), \mathcal{M}(Ty, Ax, Ty, t), \max\{Tz, Ax, Tz, t\}\}$. Our main result for a complete \mathcal{M} -fuzzy metric space X, as reads follows:

Theorem 2.1. Let A, B, S and T be self mappings of complete \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ satisfying the following conditions.

- (1) (A, S) and (S, T) are weakly compatible pairs such that $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$ also A(X) or B(X) is a closed subset of X.
- (2) There exists $\psi, Q \in \Phi$ such that for all $x, y, z \in X$.

$$\mathcal{M}^{3p}(Ax, By, Bz, t) \ge a(s)\phi^{3p}(\mathcal{M}(Sx, Ty, Tz, kt), \mathcal{M}(Ax, Sx, Sx, kt), \mathcal{M}(By, Ty, Tz, kt)$$

$$+ b(s)\psi^{p}(\mathcal{M}^{3}(Sx, Ty, Tz, kt), \mathcal{M}(Sx, Ax, Ax, kt)\mathcal{M}(Ty, By, By, kt)$$

$$\mathcal{M}(Tz, Bz, Bz, kt), \mathcal{M}(Sx, By, Bz, kt) \vee \mathcal{M}(Ty, Ax, Ty, kt) \vee \mathcal{M}(Tz, Ax, Tz, kt))$$

for some k > 1 where $a, b : [0, 1] \to [0, 1]$ are two continuous functions such that a(s) + b(s) = 1 for every $S = \mathcal{M}(x, y, z, t)$. Then A, B and S, T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ an arbitrary point as $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$ there exists $x_1, x_2 \in X$ be $Ax_0 = Tx_1, Bx_1 = Sx_2$. Inductively, construct sequence $\{y_n\}$ and $\{x_n\}$ in X such that $y_{3n} = Ax_{3n} = Tx_{3n+1}, y_{3n+1} = Bx_{3n+1} = Sx_{3n+2}$, for $n = 0, 1, 2, \ldots$ Now, we prove $\{y_n\}$ is a Cauchy sequence. For simplicity, we get $d_n(t) = \mathcal{M}(y_n, y_{n+1}, y_{n+1}, t), n = 0, 1, 2, \ldots$ Then we have

$$d_{3n}^{3p}(t) = \mathcal{M}^{3p}(y_{3n}, y_{3n+1}, y_{3n+1}, t)$$

$$= \mathcal{M}^{3p}(Ax_{3n}, Bx_{3n+1}, Bx_{3n+1}, t)$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(Sx_{3n}, Tx_{3n+1}, Tx_{3n+1}, kt), \mathcal{M}(Ax_{3n}, Bx_{3n+1}, Bx_{3n+1}, kt),$$

$$\mathcal{M}(Bx_{3n+1}, Tx_{3n+1}, Tx_{3n+1}, kt) + b(s)\psi^{k}(\mathcal{M}^{3}(Sx_{3n}, Tx_{3n+1}, Tx_{3n+1}, kt), \mathcal{M}(Sx_{3n}, Ax_{3n}, Ax_{3n}, kt))$$

$$\mathcal{M}(Tx_{3n+1}, Bx_{3n+1}, Bx_{3n+1}, kt)\mathcal{M}(Bx_{3n+1}, Tx_{3n+1}, kt)\mathcal{M}(Sx_{3n}, Bx_{3n+1}, Bx_{3n+1}, kt)\vee$$

$$\mathcal{M}(Tx_{3n+1}, Ax_{3n}, Tx_{3n+1}, kt) \vee \mathcal{M}(Tx_{3n+1}, Ax_{3n}, Tx_{3n+1}, kt))$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(y_{3n-1}, y_{3n}, y_{3n}, kt), \mathcal{M}(y_{3n}, y_{3n+1}, y_{3n+1}, kt), \mathcal{M}(y_{3n+1}, y_{3n}, y_{3n}, kt)$$

$$+ b(s)\psi^{p}(\mathcal{M}^{3}(y_{3n-1}, y_{3n}, y_{3n}, kt), \mathcal{M}(y_{3n-1}, y_{n}, kt)\mathcal{M}(y_{n}, y_{3n+1}, y_{3n+1}, kt) \vee \mathcal{M}(y_{3n}, y_{3n}, kt) \vee \mathcal{M}(y_{3n}, y_{3n}, kt) \vee \mathcal{M}(y_{3n}, y_{3n}, y_{3n}, kt)).$$

We prove that $d_{3n}(t) \ge d_{3n-1}(t)$. Now, if $d_{3n}(t) < d_{3n-1}(t)$ for some $n \in N$. Since ϕ and ψ are increasing functions, then

$$d_{3n}^{3p}(t) \ge a(s)\phi^{3p}(d_{3n-1}(kt), d_{3n}(kt), d_{3n}(kt) + b(s)\psi^{p}(d_{3n-1}^{3}(kt), d_{3n-1}(kt)d_{3n}(kt)d_{3n}(kt), 1)$$

$$\ge a(s)\phi^{3p}(d_{3n}(kt), d_{3n}(kt), d_{3n}(kt)) + b(s)\psi^{p}(d_{3n}^{3}(kt), d_{3n}^{3}(kt), 1)$$

$$> a(s)d_{3n}^{3p}(kt) + b(s)d_{3n}^{3p}(kt)$$

$$= d_{3n}^{3p}(kt).$$

Hence we have $d_{3n}(t) > d_{3n}(kt)$ is a contradiction. Therefore $d_{3n}(t) \ge d_{3n-1}(t)$. Similarly, one can prove that $d_{3n+1}(t) \ge d_{3n}(t)$ for n = 0, 1, 2, ...

Consequently, $\{d_n(t)\}\$ is a $\{d_n(t)\}\$ is a increasing sequence of non-negative real. Thus,

$$d_{3n}^{3p}(t) \ge a(s)\phi^{3p}(d_{3n-1}(kt), d_{3n-1}(kt), d_{3n-1}(kt)) + b(s)\psi^{p}(d_{3n-1}^{3}(kt), d_{3n-1}^{3}(kt), 1)$$

$$\ge a(s)d_{3n-1}^{3p}(kt) + b(s)d_{3n-1}^{3p}(kt)$$

$$= d_{3n-1}^{3p}(kt).$$

That is $d_{3n}(t) \geq d_{3n-1}(kt)$, similarly we have $d_{3n+1}(t) \geq d_{3n}(kt)$. Thus $d_n(t) \geq d_{n-1}(kt)$. That is $\mathcal{M}(y_n, y_{n+1}, y_{n+1}, t) \geq \mathcal{M}(y_{n-1}, y_n, y_n, kt)$. So,

$$\mathcal{M}(y_n, y_{n+1}, y_{n+1}, t) \ge \mathcal{M}(y_{n-1}, y_n, y_n, kt) \ge \dots \ge \mathcal{M}(y_0, y_1, y_1, k^n t).$$

By Lemma 1.9 sequence $\{y_n\}$ is a Cauchy sequence, then it converges to $y \in X$. That is

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} y_{3n} = \lim_{n \to \infty} y_{3n+1}$$

$$= \lim_{n \to \infty} Ax_{3n} = \lim_{n \to \infty} Bx_{3n+1}$$

$$= \lim_{n \to \infty} Sx_{3n} = \lim_{n \to \infty} Tx_{3n+1} = y.$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that Su = y, we have

$$\mathcal{M}^{3p}(Au, Bx_{3n+1}, Bx_{3n+1}, t) \geq a(s)\phi^{3p}(\mathcal{M}(Su, Tx_{3n+1}, Tx_{3n+1}, kt), \mathcal{M}(Au, Su, Su, kt),$$

$$\mathcal{M}(Bx_{3n+1}, Tx_{3n+1}, Tx_{3n+1}, kt)) + b(s)\psi^{p}(\mathcal{M}^{3}(Su, Tx_{3n+1}, Tx_{3n+1}, kt),$$

$$\mathcal{M}(Su, Au, Au, kt)\mathcal{M}(Tx_{3n+1}, Bx_{3n+1}, Bx_{3n+1}, kt)$$

$$\mathcal{M}(Tx_{3n+1}, Bx_{3n+1}, Bx_{3n+1}, kt)\mathcal{M}(Su, Bx_{3n+1}, Bx_{3n+1}, kt)$$

$$\vee \mathcal{M}(Tx_{3n+1}, Au, Tx_{3n+1}, kt) \vee \mathcal{M}(Tx_{3n+1}, Au, Tx_{3n+1}, kt).$$

By continuous \mathcal{M} and ϕ , on making $n \to \infty$ the above inequality, we get

$$\mathcal{M}^{3p}(Au, y, y, t) \ge a(s)\phi^{3p}(\mathcal{M}(y, y, y, kt), \mathcal{M}(Au, y, y, kt), \mathcal{M}(y, y, y, kt)$$
$$+ b(s)\psi^{p}(\mathcal{M}^{3}(y, y, y, kt), \mathcal{M}(y, Au, Au, kt)\mathcal{M}(y, y, y, kt)\mathcal{M}(y, y, y, kt), \mathcal{M}(y, y, y, kt)$$
$$\vee \mathcal{M}(y, Au, y, kt) \vee \mathcal{M}(y, Au, Ty, kt))$$

hence we have

$$\mathcal{M}^{3p}(Au, y, y, t) \ge a(s)\phi^{3p}(\mathcal{M}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt))$$
$$+ b(s)\psi^{p}(\mathcal{M}^{3}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt))\mathcal{M}(Au, y, y, kt)\mathcal{M}(Au, y, y, kt), 1).$$

If $Au \neq y$, by above inequality we get

$$\mathcal{M}^{3p}(Au, y, y, t) \ge a(s)\mathcal{M}^{3p}(Au, y, y, kt) + b(s)\mathcal{M}^{3p}(Au, y, y, kt)$$
$$= \mathcal{M}^{3p}(Au, y, y, kt),$$

which is contradiction. Hence $\mathcal{M}(Au, y, y, t) = 1$. Therefore Au = y. Thus Au = Su = y. As $A(X) \subseteq$

T(X) there exists $v \in X$, such that Tv = y, so,

$$\mathcal{M}^{3p}(y,Bv,Bv,t) = \mathcal{M}^{3p}(Au,Bv,Bv,t)$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(Sv,Tv,Tv,kt),\mathcal{M}(Au,Su,Su,kt),\mathcal{M}(Bv,Tv,Tv,kt))$$

$$+b(s)\psi^{p}(\mathcal{M}^{3}(Su,Tv,Tv,kt),\mathcal{M}(Su,Av,Av,kt)\mathcal{M}(Tv,Bv,Bv,kt)$$

$$\mathcal{M}(Tv,Bv,Bv,xt)\mathcal{M}(Su,Bv,Bv,kt) \vee \mathcal{M}(Tv,Av,Tv,kt) \vee \mathcal{M}(Tv,Au,Tv,kt))$$

$$= a(s)\phi^{3p}(1,1,\mathcal{M}(Bv,y,y,kt)) + b(s)\psi^{p}(1,1,1).$$

We claim that Bv = y for if $Bv \neq y$, then $\mathcal{M}(Bv, y, y, t) < 1$. On the above inequality we get

$$\mathcal{M}^{3p}(y, Bv, Bv, t) \geq a(s)\phi^{3p}(\mathcal{M}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt))$$

$$+ b(s)X^{p}(\mathcal{M}^{3}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt)\mathcal{M}(y, Bv, Bv, kt)\mathcal{M}(y, Bv, Bv, kt)),$$

$$\mathcal{M}(y, Bv, Bv, kt) \vee \mathcal{M}(y, Bv, Bv, kt) \vee \mathcal{M}(y, Bv, Bv, kt))$$

$$= a(s)\mathcal{M}^{3p}(y, Bv, Bv, kt) + b(s)\mathcal{M}^{3p}(y, Bv, Bv, kt)$$

$$= \mathcal{M}^{3p}(y, Bv, Bv, kt) \text{ a contradiction.}$$

Hence Tv = Bv = Av = Su = y. Since (A, S) is weak compatible, we get that ASU = SAU, that is Ay = Sy. Since (B, T) is weak compatible. We get TBv = BTv, that is Ty = By. If $Ay \neq y$, then $\mathcal{M}(Ay, y, y, t) < 1$ how ever

$$\begin{split} \mathcal{M}^{3p}(Ay,y,y,t) &= \mathcal{M}^{3p}(Ay,Bv,Bv,t) \\ &\geq a(s)\phi^{3p}(Sy,Tv,Tv,kt), \mathcal{M}(Ay,Sy,Sy,kt), \mathcal{M}(Bv,Tv,Tv,kt) \\ &\quad + b(s)\psi^p \mathcal{M}^3(Sy,Tv,Tv,kt), \mathcal{M}(Sy,Ay,Ay,kt) \mathcal{M}(Tv,Bv,Bv,kt) \mathcal{M}(Tv,Bv,Bv,kt), \\ &\quad \mathcal{M}(Sy,Bv,Bv,kt) \vee \mathcal{M}(Tv,Ay,Tv,kt) \vee \mathcal{M}(Tv,Ay,Tv,kt)) \\ &= a(s)\phi^{3p}(\mathcal{M}(Ay,y,y,kt),1,1) + b(s)\psi^p(\mathcal{M}^3(Ay,y,y,kt),1,\mathcal{M}(Ay,y,y,kt)) \\ &\geq a(s)\phi^{3p}(\mathcal{M}(Ay,y,y,kt),\mathcal{M}(Ay,y,y,kt),\mathcal{M}(Ay,y,y,kt)) + b(s)\psi^p(\mathcal{M}^3(Ay,y,y,kt), \\ &\quad \mathcal{M}^3(Ay,y,y,kt), \mathcal{M}^3(Ay,y,y,kt)) \\ &\geq a(s)(\mathcal{M}^{3p}(Ay,y,y,kt)) + b(s)\mathcal{M}^{3p}(Ay,y,y,kt) \\ &= \mathcal{M}^{3p}(Ay,y,y,kt), \text{ a contradiction.} \end{split}$$

Thus Ay = y, hence Ay = Sy = y. Similarly, we prove that By = y, for if $By \neq y$. Then $\mathcal{M}(By, y, y, kt) < 1$, how ever,

$$\mathcal{M}^{3p}(y, By, By, t) = \mathcal{M}^{3p}(Ay, By, By, t)$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(Sy, Ty, Ty, kt)), \mathcal{M}(Ay, Sy, Sy, kt), \mathcal{M}(By, Ty, Ty, kt))$$

$$+ b(s)\psi^{p}(\mathcal{M}^{3}(Sy, Ty, Ty, kt), \mathcal{M}(Sy, Ay, Ay, kt)\mathcal{M}(Ty, By, By, kt)$$

$$\mathcal{M}(Ty, By, By, kt), \mathcal{M}(Sy, By, By, kt) \vee \mathcal{M}(Ty, Ay, Ty, kt) \vee \mathcal{M}(Ty, Ay, Ty, kt))$$

$$= a(s)\phi^{3p}(\mathcal{M}(y, By, By, kt), \mathcal{M}(y, y, y, kt), \mathcal{M}(By, By, By, kt)$$

$$+ b(s)\psi^{p}(\mathcal{M}^{3}(y, By, By, kt), \mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt))$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt))$$

$$+ b(s)\psi^{p}(\mathcal{M}^{3}(y, By, By, kt), \mathcal{M}^{3}(y, By, By, kt), \mathcal{M}^{3}(y, By, By, kt))$$

$$> a(s)\mathcal{M}^{3p}(y, By, By, kt), a \text{ contradiction.}$$

Therefore, Ay = By = Sy = Ty = y. That is y is a common fixed pint of A, B, S and T.

Uniqueness: Let w be another common fixed point of A, B, S and T. That is w = Aw = Sw = Bw = Tw. If $\mathcal{M}(x, y, z, t) < 1$, then

$$\mathcal{M}^{3p}(y,w,w,t) = \mathcal{M}^{3p}(Ay,Bw,Bw,t)$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(Sy,Tw,Tw,kt),\mathcal{M}(Ay,Sy,Sy,kt)\mathcal{M}(Bw,Tw,Tw,kt))$$

$$+b(s)\psi^{p}(\mathcal{M}^{3}(Sy,Tw,Tw,kt),\mathcal{M}(Sy,Ay,Ay,kt)$$

$$\mathcal{M}(Tw,Bw,Bw,kt),\mathcal{M}(Tw,Bw,Bw,kt),\mathcal{M}(Sy,Bw,Bw,kt)$$

$$\vee \mathcal{M}(Tw,Ay,Tw,kt) \vee \mathcal{M}(Tw,Ay,Aw,kt)$$

$$= a(s)\phi^{3p}(\mathcal{M}(y,w,w,kt),1,1) + b(s)\psi^{p}(\mathcal{M}^{3}(y,w,w,kt),1,\mathcal{M}(y,w,w,kt))$$

$$\geq a(s)\phi^{3p}(\mathcal{M}(y,w,w,kt),\mathcal{M}(y,w,w,kt),\mathcal{M}(y,w,w,kt))$$

$$+b(s)\psi^{p}(\mathcal{M}^{3}(y,w,w,kt),\mathcal{M}^{3}(y,w,w,kt),\mathcal{M}^{3}(y,w,w,kt))$$

$$> a(s)\mathcal{M}^{3p}(y,w,w,kt) + b(s)\mathcal{M}^{3p}(y,w,w,kt)$$

$$= \mathcal{M}^{3p}(y,w,w,kt), \text{ a contradiction.}$$

Therefore y is the unique common fixed point of self-maps A, B, S and T.

In the following theorem, function $\phi: [0,1]^4 \to [0,1]$, is continuous and increasing in each co-ordinate variable. Also $\phi(s,s,s,s) > s$ for every $s \in [0,1)$.

Theorem 2.2. Let A, B, S and T be self-mappings of a complete \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$ satisfying that

- (1) $A(X) \subseteq T(X), B(X) \subseteq S(X)$ and A(X) or B(X) is a complete subset of X.
- (2) $\mathcal{M}(Ax, By, Bz, t) \ge \phi(\mathcal{M}(Sx, Ty, Tz, kt), \mathcal{M}(Ax, Sx, Sx, kt), \mathcal{M}(By, Ty, Tz, kt), \mathcal{M}(Sx, By, Bz, kt)$ $\vee \mathcal{M}(Ty, Ax, Ty, kt) \vee \mathcal{M}(Tz, Ax, Tz, kt))$ for every x, y, z in X, k > 1 and $\phi \in \Phi$.
- (3) The pairs (A, S) and (B, T) are weakly compatible. Then A, B, S and T have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point. As $A(X) \subseteq T(X)$, $B(X) \subseteq S(X)$, there exist $x_1, x_2 \in X$ such that $Ax_0 = Ax_1, Bx_1 = Sx_2$. Inductively, construct sequence $\{y_n\}$ and $\{x_n\}$ in X such that $y_{3n} = Ax_{3n} = Tx_{3n+1}, y_{3n+1} = Bx_{3n+1} = Sx_{3n+2}$ for $n = 0, 1, 2, \ldots$

Now, we prove $\{y_n\}$ is a Cauchy sequence. Let $d_m(t) = \mathcal{M}(y_m, y_{m+1}, y_{m+1}, t), t > 0$. We prove $\{d_{\mathcal{M}}(t)\}$ is increasing with respect to m. Let m = 3n, we have

$$\begin{split} d_{3n}(t) &= \mathcal{M}(y_{3n}, y_{3n+1}, y_{3n+1}, t) \\ &= \mathcal{M}(Ax_{3n}, Bx_{3n+1}, Bx_{3n+1}, t) \\ &\geq \phi(\mathcal{M}(sx_{3n}, Tx_{3n+1}, Tx_{3n+1}, kt), \mathcal{M}(Ax_{3n}, Sx_{3n}, Sx_{3n}, kt), \mathcal{M}(Bx_{3n+1}, Tx_{3n+1}, Tx_{3n+1}, kt), \\ \mathcal{M}(Sx_{3n}, Bx_{3n+1}, Bx_{3n+1}, kt) \vee \mathcal{M}(Tx_{3n+1}, Ax_{3n}, Tx_{3n+1}, kt) \vee \mathcal{M}(Tx_{3n+1}, Ax_{3n}, Tx_{3n+1}, kt)) \\ &= \phi(\mathcal{M}(y_{3n-1}, y_{3n}, y_{3n}, kt), \mathcal{M}(y_{3n}, y_{3n-1}, y_{3n-1}, kt), \mathcal{M}(y_{3n+1}, y_{3n}, y_{3n}, kt), \\ \mathcal{M}(y_{3n-1}, y_{3n+1}, y_{3n+1}, kt) \vee \mathcal{M}(y_{3n}, y_{3n}, y_{3n}, kt) \vee \mathcal{M}(y_{3n}, y_{3n}, y_{3n}, kt)) \\ &= \phi(d_{3n-1}(kt), d_{3n-1}(kt), d_{3n}(kt), 1) \\ &\geq \phi(d_{3n-1}(kt), d_{3n}(kt), 1). \end{split}$$

Since ϕ is an increasing function. We claim that for every $n \in N$, $d_{3n}(kt) \ge d_{3n-1}(kt)$.

For if $d_{3n}(kt) < d_{3n-1}(kt)$. Then in inequality (2.1), we have

$$d_{3n}(t) \ge \phi(d_{3n}(kt), d_{3n}(kt), d_{3n}(kt), d_{3n}(kt))$$

> $d_{3n}(kt)$.

That is $d_{3n}(t) > d_{3n}(kt)$ a contradiction. Hence $d_{3n}(kt) \ge d_{3n-1}(kt)$ for every $n \in N$ and for all t > 0. Similarly,we have $d_{3n+1}(kt) \ge d_{3n}(kt)$. Thus, $\{d_n(t)\}$ is an increasing sequence in [0,1]. By inequality, (2.1) and $d_n(t)$ is an increasing sequence, we get,

$$d_{3n}(t) \ge \phi(d_{3n-1}(kt), d_{3n-1}(kt), d_{3n-1}(kt), d_{3n-1}(kt))$$

$$\ge d_{3n-1}(kt).$$

Similarly, we have $d_{3n+1}(t) \ge d_{3n}(kt)$. Thus $d_n(t) \ge d_{n-1}(kt)$. That is

$$\mathcal{M}(y_n, y_{n+1}, y_{n+1}, t) \ge \mathcal{M}(y_{n-1}, y_n, y_n, kt) \ge \dots$$
$$\ge \mathcal{M}(y_0, y, y, k^n t).$$

Hence by Lemma 1.9 $\{y_n\}$ is Cauchy and the completeness of $X, \{y_n\}$ converges of y in X. That is

$$\lim_{n \to \infty} y_n = y$$

$$\Rightarrow \lim_{n \to \infty} y_{3n} = \lim_{n \to \infty} Ax_{3n} = \lim_{n \to \infty} Tx_{3n+1}$$

$$= \lim_{n \to \infty} y_{3n+1} = \lim_{n \to \infty} Bx_{3n+1} = \lim_{n \to \infty} Sx_{3n+1} = y$$

As $B(X) \subseteq S(X)$, there exists $u \in X$ such that Su = y. So we have

$$\mathcal{M}(Au, Bx_{3n+1}, Bx_{3n+1}, t) \ge \phi(\mathcal{M}(Su, Tx_{3n+1}, Tx_{3n+1}, kt), \mathcal{M}(Au, Su, Su, kt),$$

$$\mathcal{M}(Bx_{3n+1}, Bx_{3n+1}, Bx_{3n+1}, kt), \mathcal{M}(Su, Bx_{3n+1}, Bx_{3n+1}, kt))$$

$$\vee \mathcal{M}(Tx_{3n+1}, Au, Tx_{3n+1}, kt) \vee \mathcal{M}(Tx_{3n+1}, Au, Tx_{3n+1}, kt)).$$

If $Au \neq y$, by continuous m and Φ , on making $n \to \infty$, the above inequality, we get

$$\mathcal{M}(Au, y, y, t) \ge \phi(\mathcal{M}(y, y, y, kt), \mathcal{M}(Au, y, y, kt), \mathcal{M}(y, y, y, kt))$$

$$\mathcal{M}(y, y, y, kt) \lor \mathcal{M}(y, Au, y, kt) \lor \mathcal{M}(y, Au, y, kt))$$

$$\ge \phi(\mathcal{M}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt), \mathcal{M}(Au, y, y, kt))$$

$$> \mathcal{M}(Au, y, y, kt).$$

That is $\mathcal{M}(Au, y, y, kt) > \mathcal{M}(Av, y, y, kt)$ which is a contradiction. Hence $\mathcal{M}(Av, y, y, t) = 1$, i.e, Av = y. Thus, Au = Su = y. As $A(X) \subseteq T(X)$, there exists $v \in X$, such that Tv = y. So,

$$\mathcal{M}(y, Bv, Bv, t) = \mathcal{M}(Av, Bv, Bv, t)$$

$$\geq \phi(\mathcal{M}(Su, Tv, Tv, kt), \mathcal{M}(Av, Sv, Sv, kt), \mathcal{M}(Bv, Tv, Tv, kt), \mathcal{M}(Su, Bv, Bv, kt)$$

$$\vee \mathcal{M}(Tv, Au, Tv, kt) \vee \mathcal{M}(Tv, Au, Tv, kt))$$

$$= \phi(1, 1, \mathcal{M}(Bv, y, y, kt), 1).$$

We claim that Bv = y. For if $Bv \neq y$. Then $\mathcal{M}(Bv, y, y, t) < 1$. On the above inequality, we get

$$\mathcal{M}(y, Bv, Bv, t) \ge \phi(\mathcal{M}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt), \mathcal{M}(y, Bv, Bv, kt))$$

> $\mathcal{M}(y, Bv, Bv, kt)$ a contradiction.

Hence Tv = Bv = Av = Su = y. Since (A, S) is weakly compatible, we get that ASU = SAU, that is Ay = Sy. Since (B, T) is weakly compatible, we get that TBv = BTv that is Ty = By. If $Ay \neq y$, then $\mathcal{M}(Ay, y, y, t) < 1$. However,

$$\mathcal{M}(Ay, y, y, t) = \mathcal{M}(Ay, Bv, Bv, t)$$

$$\geq \phi(\mathcal{M}(Sy, Tv, Tv, kt), \mathcal{M}(Ay, Sy, Sy, kt), \mathcal{M}(Bv, Tv, Tv, kt), \mathcal{M}(Sy, Bv, Bv, kt))$$

$$\vee \mathcal{M}(Tv, Ay, Tv, kt) \vee \mathcal{M}(Tv, Ay, Tv, kt))$$

$$\geq \phi(\mathcal{M}(Ay, y, y, kt), 1, 1, \mathcal{M}(y, Ay, y, kt))$$

$$\geq \phi(\mathcal{M}(Ay, y, y, kt), \mathcal{M}(Ay, y, y, kt), \mathcal{M}(Ay, y, y, kt), \mathcal{M}(Ay, y, y, kt))$$

$$> \mathcal{M}(Ay, y, y, kt)) \text{ a contradiction.}$$

Thus Ay = y, hence Ay = Sy = y. Similarly, we prove that By = y. For if $By \neq y$. Then $\mathcal{M}(By, y, y, t) < 1$, how ever

$$\mathcal{M}(y, By, By, t) = \mathcal{M}(Ay, By, By, t)$$

$$\geq \phi(\mathcal{M}(Sy, Ty, Ty, kt), \mathcal{M}(Ay, Sy, Sy, kt), \mathcal{M}(By, Ty, Ty, kt), \mathcal{M}(Sy, By, By, kt)$$

$$\vee \mathcal{M}(Ty, Ay, Ty, kt) \vee \mathcal{M}(Ty, Ay, Ty, kt))$$

$$\geq \phi(\mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt), \mathcal{M}(y, By, By, kt))$$

$$> \mathcal{M}(y, By, By, kt) \text{ a contradiction.}$$

Therefore, Ay = By = Sy = Ty = y, ie., y is a common fixed point of A, B, S and T.

Uniqueness Let w be another common fixed point of A, B, S and T.

That is
$$w = Bw = Aw = Sw = Tw$$
. If $\mathcal{M}(x, y, z, t) < 1$, then

$$\mathcal{M}(y, w, w, t) = \mathcal{M}(Ay, Bw, Bw, t)$$

$$\geq \phi(\mathcal{M}(Sy, Tw, Tw, kt), \mathcal{M}(Ay, Sy, Sy, kt), \mathcal{M}(Bw, Tw, Tw, kt), \mathcal{M}(Sy, Bw, Bw, kt)$$

$$\vee \mathcal{M}(Tw, Ay, Tw, kt) \vee \mathcal{M}(Tw, Ay, Tw, kt))$$

$$= \phi(\mathcal{M}(y, w, w, kt), 1, 1, \mathcal{M}(y, w, w, kt) \vee \mathcal{M}(w, y, w, kt) \vee \mathcal{M}(w, y, w, kt))$$

$$\geq \phi(\mathcal{M}(y, w, w, kt), \mathcal{M}(y, w, w, kt), \mathcal{M}(y, w, w, kt), \mathcal{M}(y, w, w, kt))$$

$$> \mathcal{M}(y, w, w, kt) \text{ a contradiction.}$$

Therefore y is the unique common fixed point of self-maps A, B, S and T.

References

[1] M.S. El Naschie, On the uncertainty of Cantorian geometry and the two slit experiment, Chaos Solitons Fractals, 9(3)(1998), 517–529.

- [2] A. George and P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets System, 64(1994), 395–399.
- [3] V. Gregori and A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets and System, 125(2002), 245–252.
- [4] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29(3)(1998), 227–238.

- [5] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326–334.
- [6] D. Mihet, A banach contraction theorem in fuzzy metric spaces, Fuzzy Sets System, 144(2004), 431–439
- [7] R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27(2006), 331–344.
- [8] R. Saadati and S. Sedghi, A common fixed point theorem for R-weakly commuting maps in fuzzy metric spaces, 6th Iranian Conference on Fuzzy Systems (2006), 387–391.
- [9] S. Sedghi, N. Shobe and M. A. Selahshoor, A common fixed point theorem for Four mappings in two complete fuzzy metric spaces, Advances in Fuzzy Mathematics, 1(1)(2006).
- [10] S. Sedghi, D. Turkoglu and N. Shobe, Generalization common fixed point theorem in complete fuzzy metric spaces, Journal of Computational Analysis and Applications, 9(3)(2007), 337–348.
- [11] B. Schweizer, H. Sherwood and R. M. Tardiff, Contractions on PM-space examples and counterexamples, Stochastica, 1(1988), 5–17.
- [12] B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301(2)(2005), 439–448.
- [13] G. Song, Comments on "A common fixed point theorem in a fuzzy metric spaces", Fuzzy Sets Sys.,135(2003), 409–413.
- [14] R. Vasuki, Common fixed points for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30(1999), 419–423.
- [15] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets System, 135(2003), 409–413.
- [16] T. Veerapandi, M. Jeyaraman and J. Paul raj Joseph, Some fixed point and coincident point theorem in generalized M-fuzzy metric space, Int. Journal of Math. Analysis, 3(2009), 627–635.
- [17] L. A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338–353.