

On Alpha Generalized Semi Closed Mappings in Intuitionistic Fuzzy Topological Space

M.Jeyaraman^{\ddagger}, A.Yuvarani^{\dagger ,1} and O.Ravi^{*}

[‡] Department of Mathematics, Raja Dorai Singam Govt. Arts College, Sivagangai, Tamil Nadu, India.

[†] Department of Mathematics, NPR college of Engineering and Technology, Natham, Tamil Nadu, India.

* Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract: In this paper we study the concepts of intuitionistic fuzzy alpha generalized semi-closed mappings in intuitionistic fuzzy topological space. We also study various properties and relations between the other existing intuitionistic fuzzy open and closed mappings.

Keywords : Intuitionistic fuzzy topology, Intuitionistic fuzzy α -generalized semi closed mapping, Intuitionistic fuzzy α -generalized semi open mapping.

AMS Subject Classification: 54A02, 54A40, 54A99, 03F55.

1 Introduction

Hakeem A.Othman and S.Latha[6] have introduced the concept of fuzzy α -open mapping. Intuitionistic fuzzy closed mapping was introduced by Jeon, Jun and Park [5] in 2005. In this paper, we study the concepts of Intuitionistic fuzzy alpha generalized semi-closed mappings as an extension of our work done in the paper [7]. We studied some of the basic properties and also some characterizations and preservation theorems with the help of intuitionistic fuzzy $\alpha_{\rm ga}$ T_{1/2} space.

2 Preliminaries

Definition 2.1 ([1]). Let X be a non empty fixed set. An intuitionistic fuzzy set(IFS in short) A in X is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in X \}$$

where the function $\mu_A(x) : X \to [0,1]$ denotes the degree of membership(namely $\mu_A(x)$) and the function $\nu_A(x) : X \to [0,1]$ denotes the degree of non-membership(namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. IFS(X) denote the set of all intuitionistic fuzzy sets in X.

¹Corresponding author E-Mail: yuvaranis@rediffmail.com (A.Yuvarani)

Definition 2.2 ([1]). Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle \mid x \in X\}$. Then

- (i) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,
- (ii) A = B if and only if $A \subseteq B$ and $B \subseteq A$,
- (iii) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle \mid x \in X \},\$
- (iv) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle \mid x \in X \},$
- $(v) \ A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle \mid x \in X \}.$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X \}.$

Definition 2.3 ([1]). The intuitionistic fuzzy sets $\theta_{\sim} = \{ \langle x, \theta, 1 \rangle : x \in X \}$ and $1_{\sim} = \{ \langle x, 1, \theta \rangle : x \in X \}$ are the empty set and the whole set of X respectively.

Definition 2.4 ([3]). An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

- (i) $\theta_{\sim}, \ 1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (iii) $\cup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space(IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set(IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set(IFCS in short) in X.

Definition 2.5 ([3]). Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and the intuitionistic fuzzy closure are defined as follows:

- (i) $int(A) = \bigcup \{ G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A \},$
- (ii) $cl(A) = \cap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Proposition 2.6 ([3]). For any IFSs A and B in (X, τ) , we have

- (i) $int(A) \subseteq A$,
- (ii) $A \subseteq cl(A)$,
- (iii) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$,
- (iv) int(int(A)) = int(A),
- $(v) \ cl(cl(A)) = cl(A),$
- $(vi) \ cl(A \cup B) = cl(A) \cup cl(B),$

(vii) $int(A \cap B) = int(A) \cap int(B)$.

Proposition 2.7 ([3]). For any IFS A in (X, τ) , we have

- (i) $int(\theta_{\sim}) = \theta_{\sim}$ and $cl(\theta_{\sim}) = \theta_{\sim}$,
- (ii) $int(1_{\sim}) = 1_{\sim}$ and $cl(1_{\sim}) = 1_{\sim}$,
- (iii) $(int(A))^c = cl(A^c),$
- $(iv) \ (cl(A))^c = int(A^c).$

Definition 2.8. An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy regular closed set(IFRCS in short) if A = cl(int(A)) [3],
- (ii) intuitionistic fuzzy α -closed set(IF α CS in short) if cl(int(cl(A))) \subseteq A [5],
- (iii) intuitionistic fuzzy semiclosed set(IFSCS in short) if $int(cl(A)) \subseteq A$ [3],
- (iv) intuitionistic fuzzy preclosed set(IFPCS in short) if $cl(int(A)) \subseteq A$ [3].

Definition 2.9 ([9]). Let A be an IFS of an IFTS (X, τ) . Then

- (i) $\alpha cl(A) = \cap \{K \mid K \text{ is an } IF\alpha CS \text{ in } X \text{ and } A \subseteq K\},\$
- (ii) $\alpha int(A) = \bigcup \{ K \mid K \text{ is an } IF \alpha OS \text{ in } X \text{ and } K \subseteq A \}.$

Definition 2.10. An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy generalized closed set(IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [11],
- (ii) intuitionistic fuzzy alpha generalized closed set(IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X [9],
- (iii) intuitionistic fuzzy generalized semiclosed set(IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X [10],
- (iv) intuitionitic fuzzy alpha generalized semi-closed set(IF α GSCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFSOS in X [7].

The complements of the above mentioned intuitionistic fuzzy closed sets are called their respective intuitionistic fuzzy open sets.

Definition 2.11. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an

- (i) intuitionistic fuzzy closed mapping (IF closed map in short) if f(A) is an IFCS in (Y, σ) for every IFCS A of (X, τ) [8],
- (ii) intuitionistic fuzzy α -closed mapping (IF α closed map in short) if f(A) is an IF α CS in (Y, σ) for every IFCS A of (X, τ) [8],

- (iii) intuitionistic fuzzy pre closed mapping (IFP closed map in short) if f(A) is an IFPCS in (Y, σ) for every IFCS A of (X, τ) [8],
- (iv) intuitionistic fuzzy generalized semi-closed mapping (IFGS closed map in short) if f(A) is an IFGSC in (Y, σ) for every IFCS A of (X, τ) [8],
- (v) intuitionistic fuzzy α generalized closed mapping (IF α G closed map in short) if f(A) is an IF α GCS in (Y, σ) for every IFCS A of (X, τ) [9].

Definition 2.12 ([7]). An IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy $\alpha gaT_{1/2}$ (in short $IF_{\alpha ga}T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFCS in X,
- (ii) intuitionistic fuzzy $\alpha gbT_{1/2}$ (in short $IF_{\alpha gb}T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFGCS in X,
- (iii) intuitionistic fuzzy $\alpha gcT_{1/2}$ (in short $IF_{\alpha gc}T_{1/2}$)space if every $IF\alpha GSCS$ in X is an IFGSCS in X.

3 Intuitionistic Fuzzy α -generalized Semi Closed Mappings

In this section we introduce intuitionistic fuzzy α -generalized semi closed mapping and study some of its properties.

Definition 3.1. A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy α -generalized semi closed(IF α GS closed in short) if for every IFCS A of (X, τ) , f(A) is an IF α GSCS in (Y, σ) .

Example 3.2. Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.8, 0.9), (0.2, 0.1) \rangle$ and $G_2 = \langle y, (0.7, 0.8), (0.3, 0.2) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF α GS closed mapping.

Definition 3.3. A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy α -generalized semi open(IF α GS open in short) if for every IFOS A of (X, τ) , f(A) is an IF α GSOS in (Y, σ) .

Example 3.4. Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.9, 0.9), (0.1, 0.1) \rangle$ and $G_2 = \langle y, (0.6, 0.9), (0.3, 0.1) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF α GS open mapping.

Theorem 3.5. Every IF closed mapping is an $IF\alpha GS$ closed mapping but not conversely.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF closed mapping. Let A be an IFCS in X. Since f is an IF closed mapping, f(A) is an IFCS in Y. Since every IFCS is an IF α GSCS, f(A) is an IF α GSCS in Y. Hence f is an IF α GS closed mapping.

Example 3.6. IF αGS closed mapping \nrightarrow IF closed mapping

Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.2, 0.2), (0.8, 0.8) \rangle$ and $G_2 = \langle y, (0.2, 0.3), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $G_1' = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$ is IFCS in X, but $f(G_1') = \langle y, (0.8, 0.8), (0.2, 0.2) \rangle$ is not an IFCS in Y. Therefore f is an IF α GS closed mapping but not an IF closed mapping.

Theorem 3.7. Every IF α closed mapping is an IF α GS closed mapping but not conversely.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α closed mapping. Let A be an IFCS in X. Then by hypothesis f(A) is an IF α CS in Y. Since every IF α CS is an IF α GSCS, f(A) is an IF α GSCS in Y. Hence f is an IF α GSC closed mapping.

Example 3.8. IF α GS closed mapping \rightarrow IF α closed mapping

Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.1, 0.2), (0.9, 0.8) \rangle$ and $G_2 = \langle y, (0.1, 0.3), (0.8, 0.6) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $G_1' = \langle y, (0.9, 0.8), (0.1, 0.2) \rangle$ is IFCS in X, but $f(G_1')$ is not an IF α CS in Y. Therefore f is an IF α GS closed mapping but not an IF α closed mapping.

Remark 3.9. IFG closed mapping and $IF\alpha GS$ closed mapping are independent of each other.

Example 3.10. IF αGS closed mapping $\not\rightarrow$ IFG closed mapping.

Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.6, 0.8), (0.3, 0.2) \rangle$ and $G_2 = \langle y, (0.4, 0.7), (0.5, 0.3) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is IF α GS closed mapping but not IFG closed mapping. Since $G_1' = \langle x, (0.3, 0.2), (0.6, 0.8) \rangle$ is IFCS in X but $f(G_1') = \langle y, (0.3, 0.2), (0.6, 0.8) \rangle$ is not an IFGCS in Y.

Example 3.11. *IFG closed mapping* \rightarrow *IF* α *GS closed mapping.*

Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.3, 0.1), (0.7, 0.9) \rangle$ and $G_2 = \langle y, (0.6, 0.8), (0.4, 0.2) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is IFG closed mapping but not an IF α GS closed mapping. Since $G_1' = \langle x, (0.7, 0.9), (0.3, 0.1) \rangle$ is IFCS in X but $f(G_1') = \langle y, (0.7, 0.9), (0.3, 0.1) \rangle$ is not IF α GSCS in Y.

Theorem 3.12. Every $IF\alpha GS$ closed mapping is an IFGS closed mapping but not conversely.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS closed mapping. Let A be an IFCS in X. Then by hypothesis f(A) is an IF α GSCS in Y. Since every IF α GSCS is an IFGSCS, f(A) is an IFGSCS in Y. Hence f is an IFGS closed mapping.

Example 3.13. *IFGS closed mapping* \rightarrow *IF* α *GS closed mapping.*

Let $X = \{a, b\}, Y = \{u, v\}, G_1 = \langle x, (0.2, 0), (0.8, 0.8) \rangle$ and $G_2 = \langle y, (0.7, 0.2), (0.3, 0.1) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $G_1' = \langle x, (0.8, 0.8), (0.2, 0) \rangle$ is IFCS in X but $f(G_1')$ is not IF α GSCS in Y. Therefore f is an IFGS closed mapping but not an IF α GS closed mapping.

Remark 3.14. IFP closed mappings and $IF\alpha GS$ closed mappings are independent of each other.

Example 3.15. *IFP closed mapping* \rightarrow *IF* α *GS closed mapping*

Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.7, 0.8), (0.2, 0.1) \rangle$ and $G_2 = \langle y, (0.4, 0.3), (0.6, 0.5) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFP closed mapping but not IF αGS closed mapping. Since $G_1' = \langle x, (0.2, 0.1), (0.7, 0.8) \rangle$ is IFCS in X but $f(G_1')$ is IFPCS but not an IF $\alpha GSCS$ in Y. **Example 3.16.** *IF* α *GS closed mapping* \rightarrow *IFP closed mapping*

Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ and $G_2 = \langle y, (0.3, 0.4), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle x, (0.6, 0.5), (0.4, 0.5) \rangle$ is IFCS in X but f(A) is IF α GSCS in Y but not IFPCS in Y. Therefore f is an IF α GS closed mapping but not an IFP closed mapping.

Theorem 3.17. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping and let f(A) be an IFRCS in Y for every IFCS A in X. Then f is an IF α GS closed mapping.

Proof. Let A be an IFCS in X. Then f(A) is an IFRCS in Y. Since every IFRCS is an IF α GSCS, f(A) is an IF α GSCS in Y. Hence f is an IF α GS closed mapping.

Theorem 3.18. Every $IF\alpha GS$ closed mapping is an $IF\alpha G$ closed mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS closed mapping. Let A be an IFCS in X. Since f is an IF α GS closed mapping, f(A) is an IF α GSCS in Y. Since every IF α GSCS is an IF α GCS, f(A) is an IF α GCS in Y. Hence f is an IF α G closed mapping.

Example 3.19. IF αG closed mapping \nrightarrow IF αGS closed mapping

Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$ and $G_2 = \langle y, (0.1, 0.3), (0.7, 0.6) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle y, (0.3, 0.4), (0.6, 0.5) \rangle$ is IFCS in X, f(A) is IF α GCS in Y but not IF α GSCS in Y. Therefore f is an IF α G closed mapping but not an IF α GS closed mapping.

Remark 3.20. We obtain the following diagram from the results we discussed above.

None of the reverse implications are not true.

Theorem 3.21. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS closed mapping. Then f is an IF closed mapping if Y is an IF $_{\alpha ga}T_{1/2}$ space.

Proof. Let A be an IFCS in X. Then f(A) is an IF α GSCS in Y, by hypothesis. Since Y is an IF $_{\alpha ga}T_{1/2}$ space, f(A) is an IFCS in Y. Hence f is an IF closed mapping.

Theorem 3.22. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an $IF_{\alpha ga}T_{1/2}$ space.

- (i) f is an $IF\alpha GS$ open mapping.
- (ii) If A is an IFOS in X then f(A) is an IF α GSOS in Y.
- (iii) $f(int(A)) \subseteq int(cl(int(f(A))))$ for every IFS A in X.

Proof.

(i) \Rightarrow (ii): is obviously true.

(ii) \Rightarrow (iii): Let A be any IFS in X. Then int(A) is an IFOS in X. Then $f(int(A) \text{ is an IF}\alpha GSOS$ in Y. Since Y is an IF $_{\alpha ga}T_{1/2}$ space, f(int(A)) is an IFOS in Y. Therefore $f(int(A)) = int(f(int(A))) \subseteq int(cl(int(f(A))))$.

(iii) \Rightarrow (i): Let A be an IFOS in X. By hypothesis, $f(int(A)) \subseteq int(cl(int(f(A))))$. This implies $f(A) \subseteq int(cl(int(f(A))))$. Hence f(A) is an IF α OS in Y. Since every IF α OS is an IF α GSOS, f(A) is an IF α GSOS in X. Hence f is an IF α GS open mapping.

Theorem 3.23. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF α GS closed mapping. Then f is an IFG closed mapping if Y is an IF $_{\alpha gb} T_{1/2}$ space.

Proof. Let A be an IFCS in X. Then f(A) is an IF α GSCS in Y, by hypothesis. Since Y is an IF $_{\alpha gb}T_{1/2}$ space, f(A) is an IFGCS in Y. Hence f is an IFG closed mapping.

Theorem 3.24. Let $f:(X, \tau) \to (Y, \sigma)$ be an IF closed mapping and $g:(Y, \sigma) \to (Z,\eta)$ is an IF αGS closed mapping. Then $g \circ f: (X, \tau) \to (Z,\eta)$ is an IF αGS closed mapping.

Proof. Let A be an IFCS in X. Then f(A) is an IFCS in Y, by hypothesis. Since g is an IF α GS closed mapping, g(f(A)) is an IF α GSCS in Z. Hence gof is an IF α GS closed mapping.

Theorem 3.25. If $f: X \to Y$ is a mapping, then the following are equivalent if Y is an $IF_{\alpha qa}T_{1/2}$ space:

- (i) f is an $IF\alpha GS$ closed mapping.
- (ii) $f(int(A)) \subseteq \alpha int(f(A))$ for each IFS A of X.

(iii) $int(f^{-1}(B)) \subseteq f^{-1}(\alpha int(B))$ for every IFS B of Y.

Proof. (i) \Rightarrow (ii): Let f be an IF α GS closed mapping. Let A be any IFS in X. Then int(A) is an IFOS in X. By hypothesis, f(int(A)) is an IF α GSOS in Y. Since Y is an IF $_{\alpha ga}T_{1/2}$ space, f(int(A)) is an IFOS in Y. We know that every IFOS is an IF α OS, f(int(A)) is an IF α OS in Y. Therefore α int(f(int(A)) = f(int(A)). Hence f(int(A)) = α int(f(int(A)) \subseteq α int(f(A)).

(ii) \Rightarrow (iii): Let B be any IFS in Y. Then $f^{-1}(B)$ is an IFS in X. By hypothesis, $f(int(f^{-1}(B)) \subseteq \alpha int(f(f^{-1}(B)) \subseteq \alpha int(f^{-1}(B)) \subseteq f^{-1}(\alpha int(B))$.

(iii) \Rightarrow (i): Let us assume that A be an IFOS in X. Then int(A) = A and f(A) is an IFS in Y. Then $int(f^{-1}f(A)) \subseteq f^{-1}(\alpha int(f(A)))$, by hypothesis. Now $A = int(A) \subseteq int(f^{-1}f(A)) \subseteq f^{-1}(\alpha int(f(A)))$. Therefore $f(A) \subseteq f(f^{-1}(\alpha int(f(A)))) \subseteq \alpha int(f(A)) \subseteq f(A).\alpha int(f(A)) = f(A)$ is an IF α OS in Y. Hence f(A) is an IF α GSOS in Y. Therefore f is an IF α GS closed mapping.

Theorem 3.26. If $f:(X, \tau) \to (Y, \sigma)$ be an IF αGS closed mapping and Y is an IF $_{\alpha gc} T_{1/2}$ space, then f is an IFGS closed mapping.

Proof. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping and let A be an IFCS in X. Then by hypothesis f(A) is an IF α GSCS in Y. Since Y is an IF $_{\alpha gc}T_{1/2}$ space, f(A) is an IFGSCS in Y. This implies f is an IFGS closed mapping.

Theorem 3.27. A mapping $f:X \to Y$ is an $IF\alpha GS$ open mapping if $f(\alpha int(A)) \subseteq \alpha int(f(A))$ for every $A \subseteq X$.

Proof. Let A be an IFOS in X. Then int(A) = A. Now $f(A) = f(int(A)) \subseteq f(\alpha int(A)) \subseteq \alpha int(f(A))$, by hypothesis. But $\alpha int(f(A)) \subseteq f(A)$. Hence $\alpha int(f(A)) = f(A)$. That is f(A) is an IF α OS in X. This implies f(A) is an IF α GSOS in X. Hence f is an IF α GS open mapping.

Theorem 3.28. Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if Y is an $IF_{\alpha ga}T_{1/2}$ space.

- (i) f is an IF αGS closed mapping.
- (ii) $cl(int(cl((f(A))) \subseteq f(cl(A))))$ for every IFS A in X.

Proof. (i) ⇒ (ii): Let A be an IFS in X. Then cl(A) is an IFCS in X. By hypothesis, f(cl(A)) is an IFαGSCS in Y. Since Y is an IF_{αga}T_{1/2} space, f(cl(A)) is an IFCS in Y. Therefore cl(f(cl(A))) = f(cl(A)). Now clearly cl(int(cl(f(A)))) ⊆ cl(f(cl(A))) = f(cl(A)). Hence cl(int(cl(f(A)))) ⊆ f(cl(A)).

(ii) \Rightarrow (i): Let A be an IFCS in X. By hypothesis $cl(int(cl(f(A)))) \subseteq f(cl(A)) = f(A)$. This implies f(A) is an IF α CS in Y and hence f(A) is an IF α GSCS in Y. That is f is an IF α GS closed mapping. \Box

Definition 3.29. A mapping $f: X \to Y$ is said to be an intuitionistic fuzzy i-alpha generalized semi closed mapping(IFi α GS closed mapping in short) if f(A) is an IF α GSCS in Y for every IF α GSCS A in X.

Example 3.30. Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.6, 0.7), (0.4, 0.3) \rangle$ and $G_2 = \langle y, (0.5, 0.6), (0.5, 0.4) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFi α GS closed mapping.

Theorem 3.31. Every IFi α GS closed mapping is an IF α GS closed mapping but not conversely.

Proof. Assume that the mapping $f: X \to Y$ be an IFi α GS closed mapping. Let A be an IFCS in X. Then A is an IF α GSCS in X. By hypothesis, f(A) is an IF α GSCS in Y. Hence f is an IF α GS closed mapping. \Box

Example 3.32. IF αGS closed mapping \rightarrow IFi αGS closed mapping.

Let $X = \{a, b\}$, $Y = \{u, v\}$, $G_1 = \langle x, (0.3, 0.2), (0.7, 0.8) \rangle$ and $G_2 = \langle y, (0.6, 0.7), (0.4, 0.3) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f:(X, \tau)$ $\rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Since the IFS $A = \langle x, (0.8, 0.9), (0.2, 0.1) \rangle$ is an IF α GSCS in X but $f(A) \langle y, (0.8, 0.9), (0.2, 0.1) \rangle$ is not an IF α GSCS in Y. Therefore f is an IF α GS closed mapping but not an IFi α GS closed mapping.

Theorem 3.33. If $f: X \to Y$ be an bijective mapping then the following are equivalent:

- (i) f is an IFi α GS closed mapping.
- (ii) f(A) is an IF α GSCS in Y for every IF α GSCS A in X.

(iii) f(A) is an IF α GSOS in Y for every IF α GSOS A in X.

Proof. (i) \Rightarrow (ii): It is obviously true.

(ii) \Rightarrow (iii): Let A be an IF α GSOS in X. Then A^c is an IF α GSCS in X. By hypothesis, f(A^c) is an IF α GSCS in Y. That is f(A)^c is an IF α GSCS in Y. That is f(A)^c is an IF α GSCS in Y. Hence f(A) is an IF α GSOS in Y. (iii) \Rightarrow (i): Let A be an IF α GSCS in X. Then A^c is an IF α GSOS in X. By hypothesis, f(A^c) is an IF α GSOS in Y. Hence f(A) is an IF α GSCS in Y. Thus f is an IFi α GSOS closed mapping. \Box

Theorem 3.34. If $f:X \to Y$ be a mapping where X and Y are $IF_{\alpha ga}T_{1/2}$ space, then the following are equivalent:

- (i) f is an IFi α GS closed mapping.
- (ii) f(A) is an IF α GSOS in Y for every IF α GSOS A in X.
- (iii) $f(\alpha int(B)) \subseteq \alpha int(f(B))$ for every IFS B in X.
- (iv) $\alpha cl(f(B)) \subseteq f(\alpha cl(B))$ for every IFS B in X.

Proof. (i) ⇒ (ii): It is obviously true. (ii) ⇒ (iii): Let B be any IFS in X. Since α int(B) is an IFαOS, it is an IFαGSOS in X. Then by hypothesis, $f(\alpha$ int(B)) is an IFαGSOS in Y. Since Y is an IF_{αga}T_{1/2} space and every IFOS is an IFαOS, $f(\alpha$ int(B)) is an IFαOS in Y. Therefore $f(\alpha$ int(B)) ⊆ α int($f(\alpha$ int(B))) ⊆ α int(f(B)). (iii) ⇒ (iv): It can be proved by taking complement in (3). (iv) ⇒ (i): Let A be an IFαGSCS in X. By hypothesis, α cl(f(A)) ⊆ $f(\alpha$ cl(A)). Since X is an IF_{αga}T_{1/2} space and every IFCS is an IFαCS, A is an IFαCS in X. Therefore α cl(f(A)) ⊆ $f(\alpha$ cl(A)) = $f(A) ⊆ \alpha$ cl(f(A)). Hence f(A) is an IFαCS in Y. This implies f(A) is an IFαGSCS in Y. Thus f is an IFiαGS closed mapping.

4 Conclusion

In this paper we have introduced intuitionistic fuzzy alpha generalized semi-closed mappings and studied some of its basic properties. Also we have studied the relationship between intuitionistic fuzzy open and some of the intuitionistic fuzzy closed mappings already exist.

References

- [1] K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
- [2] C.Chang, Fuzzy topological spaces, J. Math.Anal.Appl., 24(1968), 182-190.
- [3] D.Coker, An introduction to fuzzy topological spaces, Fuzzy sets and systems, 88(1997), 81-89.
- [4] H.Gurcay, D.Coker and Es.A.Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, Jour. of Fuzzy Math., 5(1997), 365-378.
- [5] K.Hur and Y.B.Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. Jour., 25(2003), 131-139.

- [6] Hakeem A. Othman and S.Latha, New results of fuzzy open sets and fuzzy alpha continuous mappings, Int.Jour.Contempt. Math.Sci., 4(2009), 1415-1422.
- [7] M.Jeyaraman, A.Yuvarani and O.Ravi, Intuitionistic fuzzy α-generalized semi continuous and irresolute mappings, International Journal of Analysis and Applications, 3(2)(2013), 93-103.
- [8] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19(2005), 3091-3101.
- [9] R.Santhi and K.Sakthivel, Alpha generalized closed mappings in intuitionistic fuzzy topological spaces, Far East Journal of Mathematical Sciences, 43(2010), 265-275.
- [10] R.Santhi and K.Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.
- [11] S.S.Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, 16(2008), 559-572.
- [12] L.A.Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.