International Journal of Mathematics And its Applications Volume 3, Issue 1 (2015), 119–125. ISSN: 2347-1557

Decompositions of I- πg -continuity

O. Ravi †,1 , M. Meharin[‡] and K. M. Dharmalingam^{*}

[†] Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamil Nadu, India [‡]School of Youth Empowerment, Madurai Kamaraj University, Madurai, Tamil Nadu, India. ^{*}Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

Abstract : In this paper, we introduce the notions of \mathcal{I} - π -open sets, \mathcal{I} - πg -open sets, \mathcal{I} - $\pi g \alpha$ -open sets, \mathcal{I} - $\pi g p$ -open sets, \mathcal{I} - E_r -sets and \mathcal{I} - E_r^* -sets in ideal topological spaces and investigate some of their properties and using these notions we obtain three decompositions of \mathcal{I} - πg -continuity.

Keywords : \mathcal{I} - $\pi g \alpha$ -continuity, \mathcal{I} - $\pi g p$ -continuity, \mathcal{I} - E_r -continuity, \mathcal{I} - E_r^* -continuity and \mathcal{I} - πg -continuity.

AMS Subject Classification: 54A05.

1 Introduction and Preliminaries

In 1968, Zaitsev [12] introduced the concept of π -closed sets and in 1970, Levine [5] initiated the study of so called g-closed sets in topological spaces. The concept of g-continuity was introduced and studied by Balachandran et. al. in 1991 [1]. Dontchev and Noiri [2] defined the notions of πg -closed sets and πg continuity in topological spaces. Quite Recently Ravi et. al. [9] obtained three different decompositions of πg -continuity in topological spaces by providing two types of weaker forms of continuity, namely E_r -continuity and E_r^* -continuity and in [10], they also obtained three different decompositions of πg continuity via idealization.

Recently, Rajamani et. al. [7] introduced \mathcal{I} -g-open sets, \mathcal{I} -gp-open sets, \mathcal{I} -gs-open sets and obtained three different decompositions of \mathcal{I} -g-continuity and in [8], they also introduced \mathcal{I} -rg-open sets, \mathcal{I} -g α^{**} open sets, \mathcal{I} -gpr-open sets and obtained three different decompositions of \mathcal{I} -rg-continuity. In this paper, we introduce the notions of \mathcal{I} - π -open sets, \mathcal{I} - πg -open sets, \mathcal{I} - $\pi g \alpha$ -open sets, \mathcal{I} - $\pi g p$ -open sets, \mathcal{I} - E_r -sets and \mathcal{I} - E_r^* -sets to obtain three decompositions of \mathcal{I} - πg -continuity.

Let (X, τ) be a topological space. An ideal is defined as a nonempty collection \mathcal{I} of subsets of X satisfying the following two conditions:

- (i) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$
- (ii) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

¹Corresponding author E-Mail: siingam@yahoo.com (O. Ravi)

For a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X/U \cap A \notin \mathcal{I} \text{ for each neighborhood } U \text{ of } x\}$ is called the local function of A with respect to \mathcal{I} and τ [4]. We simply write A^* instead of $A^*(\mathcal{I})$ in case there is no chance for confusion. X^* is often a proper subset of X.

For every ideal topological space (X, τ, \mathcal{I}) there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generated by $\beta(\mathcal{I}, \tau) = \{U \setminus I : U \in \tau \text{ and } I \in \mathcal{I}\}$, but in general $\beta(\mathcal{I}, \tau)$ is not always a topology [11]. Also, $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$ [11].

Additionally, $\operatorname{cl}^*(A) \subseteq \operatorname{cl}(A)$ for any subset A of X [3]. Throughout this paper, X denotes the ideal topological space (X, τ, \mathcal{I}) and also $\operatorname{cl}(A)$ and $\operatorname{int}(A)$ denote the closure of A and the interior of A in (X, τ) , respectively. $\operatorname{int}^*(A)$ will denote the interior of A in (X, τ^*, \mathcal{I}) .

Definition 1.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (i) \mathcal{I} -pre-open [6] if $A \subseteq int^*(cl^*(A))$,
- (ii) \mathcal{I} - α -open [6] if $A \subseteq int^*(cl^*(int^*(A)))$,
- (iii) a \mathcal{I} -t-set [7] if $int^*(cl^*(A)) = int^*(A)$,
- (iv) an \mathcal{I} - α^* -set [7] if int^{*}($cl^*(int^*(A))$) = int^{*}(A),
- (v) \mathcal{I} -regular closed [8] if $A = cl^*(int^*(A))$.

The complement of \mathcal{I} -regular closed set is \mathcal{I} -regular open [8].

Also, we have \mathcal{I} - $\alpha int(A) = A \cap int^*(cl^*(int^*(A)))$ [6] and \mathcal{I} -pint(A) = A \cap int^*(cl^*(A)) [6], where \mathcal{I} - $\alpha int(A)$ denotes the \mathcal{I} - α -interior of A in (X, τ, \mathcal{I}) which is the union of all \mathcal{I} - α -open sets of (X, τ, \mathcal{I}) contained in A. \mathcal{I} -pint(A) has similar meaning.

2 \mathcal{I} - πg -open sets, \mathcal{I} - $\pi g \alpha$ -open sets and \mathcal{I} - $\pi g p$ -open sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (i) *I*-π-open if the finite union of *I*-regular open sets,
 The complement of *I*-π-open set is *I*-π-closed,
- (ii) \mathcal{I} - πg -open if $F \subseteq int^*(A)$ whenever $F \subseteq A$ and F is \mathcal{I} - π -closed in X,
- (iii) \mathcal{I} - $\pi g \alpha$ -open if $F \subseteq \mathcal{I}$ - $\alpha int(A)$ whenever $F \subseteq A$ and F is \mathcal{I} - π -closed in X,
- (iv) \mathcal{I} - πgp -open if $F \subseteq \mathcal{I}$ -pint(A) whenever $F \subseteq A$ and F is \mathcal{I} - π -closed in X.

Proposition 2.2. For a subset of an ideal topological space, the following hold:

- (i) Every \mathcal{I} - πg -open set is \mathcal{I} - $\pi g \alpha$ -open.
- (ii) Every \mathcal{I} - $\pi g \alpha$ -open set is \mathcal{I} - $\pi g p$ -open.
- (iii) Every \mathcal{I} - πg -open set is \mathcal{I} - πgp -open.

Proof.

- (i) Let A be an \mathcal{I} - πg -open. Then, for any \mathcal{I} - π -closed set F with $F \subseteq A$, we have $F \subseteq \operatorname{int}^*(A)$ $\subseteq \operatorname{int}^*((\operatorname{int}^*(A))^*) \cup \operatorname{int}^*(A) = \operatorname{int}^*((\operatorname{int}^*(A))^*) \cup \operatorname{int}^*(\operatorname{int}^*(A)) \subseteq \operatorname{int}^*((\operatorname{int}^*(A))^* \cup \operatorname{int}^*(A)) =$ $\operatorname{int}^*(\operatorname{cl}^*(\operatorname{int}^*(A)))$. That is, $F \subseteq A \cap \operatorname{int}^*(\operatorname{cl}^*(\operatorname{int}^*(A))) = \mathcal{I}$ - α int(A) which implies that A is \mathcal{I} - $\pi g\alpha$ -open.
- (ii) Let A be \mathcal{I} - $\pi g \alpha$ -open. Then, for any \mathcal{I} - π -closed set F with $F \subseteq A$, we have $F \subseteq \mathcal{I}$ - α int $(A) = A \cap$ int*(cl*(int*(A))) $\subseteq A \cap$ int*(cl*(A)) = \mathcal{I} -pint(A) which implies that A is \mathcal{I} - πgp -open.
- (iii) It is an immediate consequence of (i) and (ii).

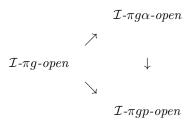
Remark 2.3. The converses of Proposition 2.2 are not true, in general.

Example 2.4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{a, b, d\}$ is \mathcal{I} - πgp -open set but not \mathcal{I} - $\pi g\alpha$ -open.

Example 2.5. In Example 2.4, $\{a, b, d\}$ is \mathcal{I} - πgp -open set but not \mathcal{I} - πg -open.

Example 2.6. Let $X = \{a, b, c, d, e\}, \tau = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}$ and $\mathcal{I} = \{\emptyset\}$. Clearly $\{a, c, d, e\}$ is \mathcal{I} - $\pi g \alpha$ -open set but not \mathcal{I} - πg -open.

Remark 2.7. By Proposition 2.2, we have the following diagram. In this diagram, there is no implication which is reversible as shown by examples above.



3 \mathcal{I} - E_r -sets and \mathcal{I} - E_r^* -sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (i) a \mathcal{I} - E_r -set if $A = U \cap V$, where U is \mathcal{I} - πg -open and V is a \mathcal{I} -t-set,
- (ii) a \mathcal{I} - E_r^* -set if $A = U \cap V$, where U is \mathcal{I} - πg -open and V is an \mathcal{I} - α^* -set.

We have the following proposition:

Proposition 3.2. For a subset of an ideal topological space, the following hold:

- (i) Every \mathcal{I} -t-set is an \mathcal{I} - α^* -set [7] and a \mathcal{I} - E_r -set.
- (ii) Every \mathcal{I} - α^* -set is a \mathcal{I} - E_r^* -set.
- (iii) Every \mathcal{I} - E_r -set is a \mathcal{I} - E_r^* -set.
- (iv) Every \mathcal{I} - πg -open set is both \mathcal{I} - E_r -set and \mathcal{I} - E_r^* -set.

From Proposition 3.2, We have the following diagram.

Remark 3.3. The converses of implications in Diagram II need not be true as the following examples show.

Example 3.4. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{a, b\}$ is \mathcal{I} - E_r -set but not a \mathcal{I} -t-set.

Example 3.5. In Example 3.4, $\{b, c, d\}$ is \mathcal{I} - E_r -set but not an \mathcal{I} - πg -open set.

Example 3.6. In Example 2.4, $\{a, b, d\}$ is \mathcal{I} - E_r^* -set but not a \mathcal{I} - E_r -set.

Example 3.7. In Example 3.4, $\{a, b\}$ is \mathcal{I} - E_r^* -set but not an \mathcal{I} - α^* -set.

Example 3.8. In Example 2.4, $\{b\}$ is \mathcal{I} - α^* -set but not a \mathcal{I} -t-set.

Proposition 3.9. A subset A of X is \mathcal{I} - πg -open if and only if it is both \mathcal{I} - πgp -open and a \mathcal{I} - E_r -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is \mathcal{I} - πgp -open and a \mathcal{I} - E_r -set in X. Let $F \subseteq A$ and F is \mathcal{I} - π -closed in X. Since A is a \mathcal{I} - E_r -set in X, $A = U \cap V$, where U is \mathcal{I} - πg -open and V is a \mathcal{I} -t-set. Since A is \mathcal{I} - πgp -open, $F \subseteq \mathcal{I}$ - $pint(A) = A \cap int^*(cl^*(A)) = (U \cap V) \cap int^*(cl^*(U) \cap V)) \subseteq (U \cap V) \cap int^*(cl^*(U)) = (U \cap V) \cap int^*(cl^*(U)) \cap int^*(cl^*(V))$. This implies $F \subseteq int^*(cl^*(V)) = int^*(V)$ since V is a \mathcal{I} -t-set. Since F is \mathcal{I} - π -closed, U is \mathcal{I} - πg -open and $F \subseteq U$, we have $F \subseteq int^*(U)$. Therefore, $F \subseteq int^*(U) \cap int^*(V) = int^*(U \cap V) = int^*(A)$. Hence A is \mathcal{I} - πg -open in X. \Box

Corollary 3.10. A subset A of X is \mathcal{I} - πg -open if and only if it is both \mathcal{I} - $\pi g \alpha$ -open and a \mathcal{I} - E_r -set in X.

Proof. This is an immediate consequence of Proposition 3.9.

Proposition 3.11. A subset A of X is \mathcal{I} - πg -open if and only if it is both \mathcal{I} - $\pi g \alpha$ -open and a \mathcal{I} - E_r^* -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is *I*-πgα-open and a *I*-E^{*}_r-set in X. Let $F \subseteq A$ and F is *I*-π-closed in X. Since A is a *I*-E^{*}_r-set in X, $A = U \cap V$, where U is *I*-πg-open and V is an *I*-α^{*}-set. Now since F is *I*-π-closed, $F \subseteq U$ and U is *I*-πg-open, $F \subseteq int^*(U)$. Since A is *I*-πgα-open, $F \subseteq I$ -αint(A) = A ∩ int^*(cl^*(int^*(A))) = (U ∩ V) ∩ int^*(cl^*(int^*(U ∩ V))) = (U ∩ V) ∩ int^*(cl^*(int^*(U) ∩ int^*(V))) \subseteq (U ∩ V) ∩ int^*(cl^*(int^*(V))) = (U ∩ V) ∩ int^*(cl^*(int^*(U))) ∩ int^*(cl^*(int^*(V))) = (U ∩ V) ∩ int^*(cl^*(int^*(V))) = (U ∩ V) ∩ int^*(cl^*(int^*(U))) ∩ int^*(Cl^*(int^*(V))) = (U ∩ V) ∩ int^*(cl^*(int^*(V))) = (U ∩ V) ∩ int^*(cl^*(int^*(U))) ∩ int^*(V), since V is an *I*-α^{*}-set. This implies $F \subseteq int^*(V)$. Therefore, $F \subseteq int^*(U) ∩ int^*(V) = int^*(U ∩ V) = int^*(A)$. Hence A is *I*-πg-open in X. \Box

Remark 3.12.

(i) The concepts of \mathcal{I} - πgp -open sets and \mathcal{I} - E_r -sets are independent of each other.

122

- (ii) The concepts of \mathcal{I} - $\pi g \alpha$ -open sets and \mathcal{I} - E_r -sets are independent of each other.
- (iii) The concepts of \mathcal{I} - $\pi g \alpha$ -open sets and \mathcal{I} - E_r^* -sets are independent of each other.

Example 3.13. Consider the Example 2.4. Then

- (i) $\{d\}$ is \mathcal{I} - E_r -set but not a \mathcal{I} - πgp -open.
- (ii) $\{a, b, d\}$ is \mathcal{I} - πgp -open but not a \mathcal{I} - E_r -set.

Example 3.14.

- (i) In Example 2.4, $\{b, c, d\}$ is \mathcal{I} - E_r -set but not an \mathcal{I} - $\pi g \alpha$ -open set.
- (ii) In Example 2.6, $\{a, c, d, e\}$ is \mathcal{I} - $\pi g \alpha$ -open set but not a \mathcal{I} - E_r -set.

Example 3.15.

- (i) In Example 2.5, $\{b, c, d\}$ is \mathcal{I} - E_r^* -set but not an \mathcal{I} - $\pi g \alpha$ -open set.
- (ii) In Example 2.6, $\{a, c, d, e\}$ is \mathcal{I} - $\pi g \alpha$ -open set but not a \mathcal{I} - E_r^* -set.

4 Decompositions of \mathcal{I} - πg -continuity

Definition 4.1. A mapping $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be \mathcal{I} - $\pi g\alpha$ -continuous (resp. \mathcal{I} - πg continuous, \mathcal{I} - πgp -continuous, \mathcal{I} - E_r -continuous and \mathcal{I} - E_r^* -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is \mathcal{I} - $\pi g\alpha$ -open (resp. \mathcal{I} - πg -open, \mathcal{I} - πgp -open, a \mathcal{I} - E_r -set and a \mathcal{I} - E_r^* -set) in (X, τ, \mathcal{I}) . From Propositions 3.9 and 3.11 and Corollary 3.10 we have the following decompositions of \mathcal{I} - πg -continuity.

Theorem 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space. For a mapping $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

- (i) f is \mathcal{I} - πg -continuous;
- (ii) f is \mathcal{I} - πgp -continuous and \mathcal{I} - E_r -continuous;
- (iii) f is \mathcal{I} - $\pi g \alpha$ -continuous and \mathcal{I} - E_r -continuous;
- (iv) f is \mathcal{I} - $\pi g \alpha$ -continuous and \mathcal{I} - E_r^* -continuous.

Remark 4.3.

- (i) The concepts of \mathcal{I} - πgp -continuity and \mathcal{I} - E_r -continuity are independent of each other.
- (ii) The concepts of \mathcal{I} - $\pi g \alpha$ -continuity and \mathcal{I} - E_r -continuity are independent of each other.
- (iii) The concepts of \mathcal{I} - $\pi g \alpha$ -continuity and \mathcal{I} - E_r^* -continuity are independent of each other.

Example 4.4.

(i) Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\emptyset, \{d\}\} and \sigma = \{\emptyset, Y, \{b, c, d\}\}.$ Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is \mathcal{I} - E_r -continuous but not \mathcal{I} - πgp -continuous.

124 Int. J. Math. And its App. Vol.3 No.1 (2015)/ O. Ravi, M. Meharin and K. M. Dharmalingam

(ii) In Example 4.4(1), if σ is replaced by $\sigma = \{\emptyset, Y, \{a, b, d\}\}$, then f is \mathcal{I} - πgp -continuous but not \mathcal{I} - E_r -continuous.

Example 4.5.

- (i) In Example 4.4(1), f is \mathcal{I} - E_r -continuous but not \mathcal{I} - $\pi g\alpha$ -continuous.
- (ii) Let $X = Y = \{a, b, c, d, e\}, \tau = \{\emptyset, X, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}, \mathcal{I} = \{\emptyset\} and \sigma = \{\emptyset, Y, \{a, c, d, e\}\}.$ Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is \mathcal{I} - $\pi g \alpha$ -continuous but not \mathcal{I} - E_r -continuous.

Example 4.6.

- (i) In Example 4.4(1), f is \mathcal{I} - E_r^* -continuous but not \mathcal{I} - $\pi g\alpha$ -continuous.
- (ii) In Example 4.5(2), f is \mathcal{I} - $\pi g \alpha$ -continuous but not \mathcal{I} - E_r^* -continuous.

5 Conclusion

Recently, Rajamani et. al. [7] introduced \mathcal{I} -g-open sets, \mathcal{I} -gp-open sets, \mathcal{I} -gs-open sets and obtained three different decompositions of \mathcal{I} -g-continuity and in [8], they also introduced \mathcal{I} -rg-open sets, \mathcal{I} -g α^{**} open sets, \mathcal{I} -gpr-open sets and obtained three different decompositions of \mathcal{I} -rg-continuity. In this paper, we introduced the notions of \mathcal{I} - π -open sets, \mathcal{I} - πg -open sets, \mathcal{I} - $\pi g \alpha$ -open sets, \mathcal{I} - $\pi g p$ -open sets, \mathcal{I} - $\mathcal{I} - \mathcal{I} - \mathcal{I}$

References

- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [2] J.Dontchev and T.Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [3] E.Hayashi, Topologies defined by local properties, Math. Ann. 156(1964), 205-215.
- [4] K.Kuratowski, Topology, Vol. 1, Academic Press, New York (1966).
- [5] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [6] M.Rajamani, V.Inthumathi and V.Chitra, On *I*-α-open sets and *I*-α-continuous functions, Antarctica Journal of Mathematics, 8(3)(2011), 220-229.
- [7] M.Rajamani, V.Inthumathi and V.Chitra, *I-g-continuity and its decompositions*, Journal of Advanced Studies in Topology, 3(1)(2012), 19-24.
- [8] M.Rajamani, V.Inthumathi and V.Chitra, On decompositions of *I*-rg-continuity, Bol. Soc. Paran. Mat., 30(2)(2012), 33-38.

- [9] O.Ravi, A.Pandi, R.Senthil Kumar and A.Muthulakshmi, Some decompositions of πg -continuity, Submitted.
- [10] O.Ravi, R.Senthil Kumar and A.Hamari Choudhi, *Decompositions of* πg -continuity via idealization, Journal of New Results in Science, 7(2014), 72-80.
- [11] R.Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., Sect A, 20(1944), 51-61.
- [12] V.Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk. SSSR, 178(1968), 778-779.