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Abstract : In this paper we study the optimal control problem for a multi-input bilinear system. We adopt a

method based on rewriting our system in a compartments form, and finding the optimal control which minimizes

a given cost function by applying the Pontryagin’s maximum principle. Also, we present an iterative process to

find a solution of the optimality system. Finally we applying this method to cancer chemotherapeutic model.
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1 Introduction

Bilinear systems are a special class of nonlinear systems, in which nonlinear terms are constructed by multiplication

of control vector and state vector. Through nearly half a century, they have received great attention by researchers.

The importance of such systems lies in the fact that many important processes, not only in engineering [11], but

also in biology [20], socio-economics [12], and chemistry [3-1], can be modeled by bilinear systems. An overview

of the available control strategies for bilinear systems can be found in [18]-[5]. Besides, optimal control is one

of the most active subjects in the control theory. It has successful applications is many disciplines, economics,

environement, management, engineering etc. As we know, optimal control problem for the bilinear systems

does not have an analytical solution as linear case so this reason motivates many researchers to try to obtain

an approximate solution for this problem. Theory and application of optimal control have been widely used in

different fields such as aircraft systems [9], robotic [19], biomedicine [6], etc.

In this paper, we consider the bilinear discrete time system described as follow

xk+1 = Axk +

i=p∑
i=1

ui(k)Bixk (1.1)
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for k = 0, 1, ..., T − 1. where k is the index for the time steps, with the initial conditions x(0) = x0. Where

xk ∈ Rn, u(k) = (u1(k), ..., up(k)) ∈ Rp, A and B are n × n matrices. We assumed that the process starts from

k = 0 and ends at fixed time T � 0.

In the theory of systems, there are two kinds of mathematical dynamic systems: the continuous-time models

described by differential equations and the discrete-time models described by difference equations. The continuous-

time models have been widely investigated in many articles (for example, [16–21] and the references cited therein).

In recent years, for several reasons, we have seen more attention being given to the discrete-time models (see,

[22–13] and the references cited therein). First, a number of systems are discrete in nature. Whenever a computer

is part of control system, sampling this system becomes a necessary step. Also, analysis and control of a system

in its discrete version is often appreciated by the engineer because it spares him some mathematical complications

such as the choice of space and regularity of the soulution.

we suppose that the system (1) is positive[7]. The main objective of this paper is to present an optimal

control design algorithm for a discrete time multi-input bilinear systems. We applying the discrete version of

Pontryagin’s Maximum Principle[15], The key idea is introducing the adjoint function to attach the system of

difference equations to the objective functional, resulting in the formation of a function called the Hamiltonian.

This principle converts the problem of finding the control to optimize the objective functional subject to the state

difference equations with initial condition to finding the control to optimize Hamiltonian pointwise with respect

to the control.

The paper is organized as follows. Section 2 present a compartment form for the multi-input bilinear system,

and the we analyse the optimal control problem. In section 3, we present a numerical algorithm to find a solution

of the optimality system. In section 4, we study an optimal control probelm for a cancer chemotherapeutic model

and we present the simulations corresponding results. Finally, the conclusion are summarized in Section 5.

2 The optimal control problem

Now, the comparment form of the system (1.1) is given as follow :



x1(k + 1) =
n∑
j=1

a1jxj(k) +
p∑
i=1

ui(k)

(
n∑
j=1

bi1jxj(k)

)

x2(k + 1) =
n∑
j=1

a2jxj(k) +
p∑
i=1

ui(k)

(
n∑
j=1

bi2jxj(k)

)
...

xn(k + 1) =
n∑
j=1

anjxj(k) +
p∑
i=1

ui(k)

(
n∑
j=1

binjxj(k)

)
(2.1)

with the initial conditions xi(0) = x0i for i ∈ {1, 2, ..., n} . Where aij = (Aij)1≤i,j≤n , bkij =
(
Bkij
)
1≤i,j≤n. The

xi is the i-th components of the state system, which can represent, for example, in a chemotherapeutic model,

the average number of cancer cells in the i-th compartment. Also, the aij and bij can represent the exchanges

between these compartments, and The control u denoting the drug dosage administered.

We define the objective functional as

J(u) = φ(x1(T ), ..., xn(T )) +

T−1∑
k=0

[
n∑
i=1

pixi(k) +

p∑
i=1

ri
2
u2
i (k)

]
(2.2)

where the parameters pi ≥ 0 and ri > 0 are the cost coefficients, they are selected to weigh the relative

importance of xi and ui. and 0 and T are the initial and final times. The term, φ(x1 (T ) , ..., xn (T )), represents

a type of ‘salvage’ term; for example, in a cancer model this term can represent a weighted average of the total

number of cancer cells at the end of the therapy interval [0, T ].



Optimal control for the multi-input discrete-time bilinear systems with an application in cancer chemotherapy.3

Our goal is to minimize this objective functional. In other words, we seek the optimal control u∗ such that

J(u∗) = min{J(u) : u ∈ U} (2.3)

where U is the set of admissible controls defined by

U = {u(k) = (u1(k), ..., up(k)) : ui is Lebesgue mesurable, a ≤ ui(k) ≤ b, k ∈ [0, T − 1], i = 1, ..., p }(2.4)

Where ai, for i = 1, ...., p, and bi, for i = 1, ..., p, are given real numbers. Note that U is compact and convex

subset of Rp.

Theorem 2.1. (Weierstrass Extreme Value Theorem) Every continuous function on a compact set attains its

extreme values on that set.

Note that the J(u) is continuous for all u in the control set U . Since U is compact subset of Rp, so there

exists an optimal control u∗ ∈ U , with corresponding states from (2.1) such that J(u∗) = max
u∈U

J(u).

Returning to the general model (1.1), we also make the assumption that the control system is internally

positive [7]: i.e. For any admissible control u, if xi(0) � 0 for all i = 1, ..., n, then xi(k) > 0 for all i = 1, ..., n,

and all times k ∈ {0, 1, ..., T}.

A simple sufficient condition for this assumption to hold is that all the matrices A +
i=p∑
i=1

ui(k)Bi, they have

non-negative entries. Using the hypothesis by recurrence, this condition is satisfied.

This condition is natural and will be satisfied for many compartmental model in discrete time, whose dynamics

are given by equations of equilibrium where the diagonal elements have the form αii+
j=p∑
j=1

uj(k)bjii, with αii = 1−aii.

The aii and bjii represent the proportion of outflows from i-th compartments. And the off-diagonal entries represent

the inflows from the i-th into the j-th compartment, i 6= j. An example of this case is given in the section (4).

Positive systems play an important role in systems and control theory because in many physical systems

the state-variables represent quantities that can never attain negative values (e.g. population sizes or protein

concentrations) [2,4,8].

2.1 Characterization of the Optimal Control.

We applying the discrete version of Pontryagin’s Maximum Principle[15], The key idea is introducing the adjoint

function to attach the system of difference equation to the objective functional, resulting in the formation of

a function called the Hamiltonian. This principle converts the problem of finding the control to optimize the

objective functional subject to the state difference equation with initial condition to finding the control to optimize

Hamiltonian pointwise (with respect to the control).

Now we have the Hamiltonian Hk at time step k, defined by

Hk =

n∑
i=1

pixi +

p∑
i=1

ri
2
u2
i +

n∑
j=1

λj,k+1fj,k(x, u, k) (2.5)

where fj,k+1 is the right side of the difference equation of the jth state variable at time step k. By applying the

discrete version of Pontryagin’s maximum principle [15], we obtain the following theorem:

Theorem 2.2. For k = 0, 1, ..., T , there exists an optimal control u∗(k) , and corresponding solution x∗1(k),...,

x∗n(k), that minimizes J(u) over U . Moreover, there exists adjoint functions, λ1(k),...,λn(k) verifying{
λi(k) = pk +

n∑
j=1

λj(k + 1)

(
aji +

p∑
i=1

ui(k)biji

)
, for i ∈ {1, 2, ..., n} (2.6)
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with the transversality conditions at time T

λi(T ) =
∂φ

xi(T )
(x1(T ), ..., xn(T )), for i ∈ {1, 2, ..., n}

Futhermore, for k = 0, 1, ..., T − 1, the optimal control u∗i is given by

u∗i (k) = min

[
b,max(a,− 1

ri

n∑
l=1

λl(k + 1)

(
n∑
j=1

biljxj(k)

)
)

]
, i ∈ {1, 2, ..., p} (2.7)

Proof. The Hamiltonian at time step k is

H(k) =

n∑
i=1

pixi +

p∑
i=1

ri
2
u2
i +

n∑
j=1

λj,k+1fj,k(x, u, k) (2.8)

The adjoint equations for k = 0, 1, ..., T −1 and transversality conditions can be obtained by using Pontryagin

Maximum Principle such that

λ1(k) = ∂Hk
∂x1(k)

, λ1(T ) = ∂φ
x1(T )

(x1(T ), ..., xn(T ))

λ2(k) = ∂Hk
∂x2(k)

, λ2(T ) = ∂φ
x2(T )

(x1(T ), ..., xn(T ))

...

λn(k) = ∂Hk
∂xn(k)

, λn(T ) = ∂φ
xn(T )

(x1(T ), ..., xn(T ))

For k = 0, 1, ..., T − 1, the optimal control u∗i (k) can be solve from the optimality condition,

∂Hk
∂ui(k)

= 0, i ∈ {1, 2, ..., p}

that is
∂Hk
∂ui(k)

= riui +

n∑
l=1

λl(k + 1)

(
n∑
j=1

biljxj(k)

)
) = 0, i ∈ {1, 2, ..., p}

By the bounds in U of the controls, we obtain u∗i in the form of (2.7).

3 Numerical algorithm

In this section we present the results obtained by solving numerically the optimality system. This system consists

of the state system, adjoint system, initial and final time conditions, and the control characterization. So the

optimality system is given by

x1(k + 1) =
n∑
j=1

a1jxj(k) +
p∑
i=1

min [b; max (a;Ti(k))]

(
n∑
j=1

bi1jxj(k)

)

x2(k + 1) =
n∑
j=1

a2jxj(k) +
p∑
i=1

min [b; max (a;Ti(k))]

(
n∑
j=1

bi2jxj(k)

)
...

xn(k + 1) =
n∑
j=1

anjxj(k) +
p∑
i=1

min [b; max (a;Ti(k))]

(
n∑
j=1

binjxj(k)

)

λ1(k) = p1 +
n∑
j=1

λj(k + 1)

(
aj1 +

p∑
i=1

min [b; max (a;Ti(k))] bij1

)
λ2(k) = p2 +

n∑
j=1

λj(k + 1)

(
aj2 +

p∑
i=1

min [b; max (a;Ti(k))] bij2

)

λn(k) = pn +
n∑
j=1

λj(k + 1)

(
ajn +

p∑
i=1

min [b; max (a;Ti(k))] bijn

)

With Ti(k) = 1
ri

n∑
j=1

λj(k + 1)

(
n∑
j=1

bi1jxj(k)

)
, i ∈ {1, ..., p}
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with xi(0) = x0i and λi(T ) = ∂φ
xi(T )

(x1(T ), ..., xn(T )), for i = 1, ..., n. In this formulation, there were initial

conditions for the state variables and terminal conditions for the adjoints. That is, the optimality system is a two-

point boundary value problem, with separated boundary conditions at times step k = 0 and k = T . We solve the

optimality system by an iterative method with forward solving of the state system followed by backward solving

of the adjoint system. We start with an initial guess for the control at the first iteration and then before the

next iteration, we update the control by using the characterization. We continued until convergence of successive

iterates is achieved. Thus, we obtain the following algorithm

Step 1 : xi(0) = x0i and λi(T ) = ∂φ
xi(T )

(x1(T ), ..., xn(T )), for i = 1, ..., n. ui(0) = u0
i for i = 1, ..., p.

Step 2 : for k = 0, ..., T − 1, do :

x1(k + 1) =
n∑
j=1

a1jxj(k) +
p∑
i=1

ui(k)

(
n∑
j=1

bi1jxj(k)

)
...

xn(k + 1) =
n∑
j=1

anjxj(k) +
p∑
i=1

ui(k)

(
n∑
j=1

binjxj(k)

)

λ1(T − k) = p1 +
n∑
j=1

λj(T − k + 1)

(
aj1 +

p∑
i=1

ui(k)bij1

)
...

λn(T − k) = pn +
n∑
j=1

λj(T − k + 1)

(
ajn +

p∑
i=1

ui(k)bijn

)

Ti(T − k) = − 1
ri

n∑
l=1

λl(T − k + 1)

(
n∑
j=1

biljxj(k)

)
, i ∈ {1, ..., p}

u∗i (k + 1) = min [b; max (a;Ti(T − k))] , i ∈ {1, ..., p}
End for

Step 3 : For k = 0, 1, ..., T, write

x∗1(k) = x∗k,..., x∗n(k) = x∗k and u∗1(k) = u∗k,..., u∗n(k) = u∗k

End for.

4 Application : Optimal controls for a cancer chemotherapeutic

model.

In this section we formulate a general n-compartment model in discrete time for cancer chemotherapy as an

optimal control problem over a fixed therapy interval with dynamics described by a bilinear system[10].

Let N = (N1, ..., Nn)T denote the state-vector with Ni denoting the number of cancer cells in the i-th

compartment, i = 1, ..., n. The control is a vector u = (u1, ..., um)T with ui denoting the drug dosage administered.

The control set U is a compact m-dimensional interval of the form [α1, β1] × · · · × [αm, βm] with each interval

[αi, βi] ∈ [0,∞). Let A and Bi, i = 1, ...,m, be constant n × n matrices, let r = (r1, ..., rn) be a row-vector of

positive numbers and let s = (s1, ..., sm) be a row-vector of non-negative numbers. The vectors r and s represent

subjective weights in the objective. We then consider the following optimal control problem:

minimize the objective

J(u) = φ(N1(T ), ..., Nn(T )) +

T−1∑
k=0

[
n∑
i=1

piNi +

p∑
i=1

ri
2
u2
i

]
(4.1)

subject to the dynamics
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N(k + 1) = (I −A)N(k) +

i=p∑
i=1

ui(k)BiN(k), N(0) = N0 (4.2)

where the parameters pi ≥ 0 and ri > 0 are the cost coefficients, they are selected to weigh the relative

importance of Ni and ui. And T is the final time. The term φ(N1(T ), ..., Nn(T )) represents a weighted average

of the total number of cancer cells at the end of an assumed fixed therapy period {0, 1, ..., T}.

In other words, we seek the optimal control u∗ such that

J(u∗) = min{J(u) : u ∈ U} (4.3)

where U is the set of admissible controls defined by

U = {u(k) = (u1(k), ..., up(k)) : ui is Lebesgue mesurable,a ≤ ui(k) ≤ b, k = 0, ..., T and i = 1, ..., p}(4.4)

We also make the assumption that the control system is internally positive [7]: i.e. For any admissible control

u, if Ni(0) � 0 for all i = 1, ..., n, then Ni(k) > 0 for all i = 1, ..., n, and all times k ∈ {0, 1, ..., T}.

Before introducing a 4-compartment discrete-time model for cancer chemotherapy, we give a brief biological

background on the cell cycle and chemotherapy agents[10]. Each cell passes through a sequence of phases from

cell birth to cell division. After an initial growth phase G1, the cell enters a phase S where DNA synthesis occurs.

Following a second growth phase G2, the cell prepares for mitosis or phase M that leads to cell division. Each of

the two daughter cells can either reenter phase G1 or for some time may simply lie dormant in a separate phase

G0 until reentering G1, thus starting the entire process all over again. Multi-compartment models combine phases

of the cell cycle into clusters [17], with the purpose of effectively modeling the different types of chemotherapeutic

agents used: cytotoxic (killing), cytostatic (blocking) and recruiting agents.

The dynamics of this cell cycle and the chemotherapy agents may be represented by the following compart-

mental model.

Figure 1: A discrete time model of cancer chemotherapy.

Where the ai are positive coefficients related to the mean transit times of cells through the i-th compartment.

The total number of cancer cells at time k in the phases of the cell cycle G0, G1, S and G2/M , is given by N1,

N2, N3 and N4, respectively. The killing agent u act in the G2/M phase which makes sense from a biological

standpoint for a couple of reasons[10]. First, in mitosis M the cell becomes very thin and porous. Hence, the cell

is more vulnerable to an attack while there will be a minimal effect on the normal cells. Second, chemotherapy

during mitosis will prevent the creation of daughter cells. It is assumed that the dose rate stands in direct relation

to the fraction of cells which are being killed in the G2/M phase. Therefore only the fraction 1−u of the outflow

of cells from the last compartment, −a4N4, undergoes cell division and reenters the first and second compartment.

As a result the flow of cancer cells from the fourth into the first and the second compartment,
(
a04 + a14

)
N2, is

reduced to (1−u)a4N2 where a4 = a04 +a14. However, all cells leave compartment G2/M . The blocking agent v is

applied to slow the transit times of cancer cells during the synthesis phase S. As a result the flow of cancer cells
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from the third into the fourth compartment, a3N3, is reduced by a factor 1 − v to (1 − v)a3N3. The recruiting

agent w is applied to reduce the average sejour time in the quiescent phase. As a result the average transit

time through the compartment G0 is reduced resulting in the outflow being increased by a factor 1 − w. The

chemotherapy agents can vary between 0 (no chemotherapy) and 1 (maximal chemotherapy). (Note: Maximal

chemotherapy is essentially a sub-lethal dose, or the maximum that can be given that will not kill the patient).

This model yields the mathematical system with controls of differential equations



N1(k + 1) = (1− a1 + wa1)N1(k) + (1− u)a14N4(k)

N2(k + 1) = (1− a2)N2 + (1− w)a1N1 + (1− u)a04N4

N3(k + 1) = (1− a3 + va3)N3 + a2N2

N4(k + 1) = (1− (a4 + a5) + u(a4 + a5))N4(t) + (1− v)a3N3

(4.5)

Our goal is to reduce the number of cancer cells in phases G0, S and G2/M of cell cycle and maximize the

number of cancer cells in synthesis phase S by slowing the transit times of cancer cells during this phase S. And

minimize the cost of chemotherapy. Mathematically, the problem is to minimize the objective functional

J(u) =

4∑
i=1
i6=3

qiNi(T )− q3N3(T ) +

T−1∑
k=0

 4∑
i=1
i6=3

piNi(k)− p3N3(k) +
r1
2
u2(k) +

r1
2
v2(k) +

r1
2
w2(k)

 (4.6)

subject to (16).

Using the algorithm proposed in section (3), we have the simulations results presented in the graph below.

These graphs, allow us to compare changes in the cancer cell population before and after the introduction of the

controls. The part of data for this model are taken from [16], like a1 = 0.197, a2 = 0.395 and a3 = 0.107. But the

initial conditions N1 = N3 = N4 = 1000 and N2 = 9000 and the parameter a04 = 0.2 and a04 = 0.1 are arbitrary

academic values.

Figures 2 and 5 show that before chemotherapy, in G0 and G2/M phases, the number of cells increase rapidly.

Whereas, We notice that after the chemotherapy by using the killing agent and recruiting agent, the number of

cells decreases greatly in these phases. Also, figure 3 shows the effect of the control in decreasing more rapidly
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the number of cells during the chemotherapy program. In figure 4, we can observe that the blocking agent can,

with sucess, slowing the transit times of cancer cells during this phase S, so, increasing the number of cells in this

phase.

5 Conclusion

In this paper, we have presented a method for the optimal control problem of multi-input bilinear systems. This

method based on the Pontryagin’s maximum principle and a numerical algorithm to solve the optimality system.

An example of cancer chemotherapy has been proposed to clarify method.
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