

Some Decompositions of πg -Continuity

 $O.Ravi^{\dagger,1}$, A.Pandi[‡], R.Senthil Kumar[§] and A.Muthulakshmi^{*}

[†] Department of Mathematics, P.M. Thevar College, Usilampatti, Madurai, TamilNadu, India.

[‡] Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

§ R. V. S College of Engineering and Technology, Dindugul, Tamil Nadu, India.

* Department of Mathematics, Yadava College, Tiruppalai, Madurai, Tamil Nadu, India.

Abstract : In this paper, we introduce the notions of E_r -sets and E_r^* -sets in topological spaces and investigate some of their properties and using these notions we obtain three decompositions of πg -continuity.

Keywords : $\pi g \alpha$ -continuity, $\pi g p$ -continuity, E_r -continuity, E_r^* -continuity and πg -continuity.

AMS Subject Classification: 54C08.

1 Introduction and Preliminaries

In 1968, Zaitsev [15] introduced the concept of π -closed sets and in 1970, Levine [7] initiated the study of so called g-closed sets in topological spaces. The concept of g-continuity was introduced and studied by Balachandran et. al. in 1991 [3]. Dontchev and Noiri [4] defined the notions of πg -closed sets and πg -continuity in topological spaces. In 1993, Palaniappan and Rao [10] introduced the notions of regular generalized closed (rg-closed) sets and rg-continuity in topological spaces. In 2000, Sundaram and Rajamani [13] obtained three different decompositions of rg-continuity by providing two types of weaker forms of continuity, namely C_r -continuity and C_r^* -continuity. In this paper, we introduce the notions of E_r -sets and E_r^* -sets to obtain three decompositions of πg -continuity by providing two types of weaker forms of continuity, namely E_r -continuity and E_r^* -continuity.

Let (X, τ) be a topological space and also cl(A) and int(A) denote the closure of A and the interior of A in (X, τ) , respectively.

Definition 1.1. A subset A of (X, τ) is said to be

- (i) α -open [9] if $A \subseteq int(cl(int(A)))$,
- (ii) preopen [8] if $A \subseteq int(cl(A))$,

(iii) regular open [12] if A = int(cl(A)),

¹Corresponding author E-Mail: siingam@yahoo.com (O.Ravi)

- 150 Int. J. Math. And its App. Vol.3 No.1 (2015)/ O.Ravi, A.Pandi, R.Senthil Kumar and A.Muthulakshmi
- (iv) π -open [15] if the finite union of regular open sets,
- (v) πg -open [4] iff $F \subseteq int(A)$ whenever $F \subseteq A$ and F is π -closed in (X, τ) ,
- (vi) π gp-open [11] iff $F \subseteq pint(A)$ whenever $F \subseteq A$ and F is π -closed in (X, τ) ,
- (vii) $\pi g \alpha$ -open [2] iff $F \subseteq \alpha int(A)$ whenever $F \subseteq A$ and F is π -closed in (X, τ) ,
- (viii) a t-set [14] if int(A) = int(cl(A)),
- (ix) an α^* -set [5] if int(A) = int(cl(int(A))).

The complements of the above mentioned open sets are called their respective closed sets.

The preinterior pint(A) (resp. α -interior, α int(A)) of A is the union of all preopen sets (resp. α -open sets) contained in A. The α -closure α cl(A) of A is the intersection of all α -closed sets containing A.

Lemma 1.2 ([1]). If A is a subset of X, then

- (i) $pint(A) = A \cap int(cl(A)),$
- (ii) $\alpha int(A) = A \cap int(cl(int(A)))$ and $\alpha cl(A) = A \cup cl(int(cl(A)))$.

Remark 1.3. The following hold in a topological space.

- (i) Every πg -open set is πgp -open but not conversely [11].
- (ii) Every πg -open set is $\pi g \alpha$ -open but not conversely [2].

2 $\pi g \alpha$ -open Sets

Proposition 2.1. For a subset of a topological space, the following hold: Every $\pi g \alpha$ -open set is $\pi g p$ -open.

Proof. It follows from the definitions.

Remark 2.2. The converse of Proposition 2.1 is not true, in general.

Example 2.3. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$. Then $\{b, c, e\}$ is πgp -open set but not $\pi g\alpha$ -open.

Remark 2.4. By Proposition 2.1 and Remark 1.3, we have the following diagram. In this diagram, there is no implication which is reversible as shown by examples above.

3 E_r -sets and E_r^* -sets

Definition 3.1. A subset A of a topological space (X, τ) is called

- (i) a E_r -set if $A = U \cap V$, where U is πg -open and V is a t-set,
- (ii) a E_r^* -set if $A = U \cap V$, where U is πg -open and V is an α^* -set.

We have the following proposition:

Proposition 3.2. For a subset of a topological space, the following hold:

- (i) Every t-set is an α^* -set [5] and a E_r -set.
- (ii) Every α^* -set is a E_r^* -set.
- (iii) Every E_r -set is a E_r^* -set.
- (iv) Every πg -open set is a E_r -set.

From Proposition 3.2, We have the following diagram.

Remark 3.3. The converses of implications in Diagram II need not be true as the following examples show.

Example 3.4. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d\}, \{b, c, d, e\}, X\}$. Then $\{b\}$ is E_r -set but not πg -open.

Example 3.5. In Example 3.4, $\{c\}$ is E_r -set but not t-set.

Example 3.6. In Example 3.4, $\{b, c\}$ is E_r^* -set but not E_r -set.

Example 3.7. In Example 3.4, $\{c\}$ is α^* -set but not t-set.

Example 3.8. In Example 3.4, $\{c, d, e\}$ is E_r^* -set but not α^* -set.

Proposition 3.9. A subset A of X is πg -open if and only if it is both $\pi g p$ -open and a E_r -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is πgp -open and a E_r -set in X. Let $F \subseteq A$ and F is π -closed in X. Since A is a E_r -set in X, $A = U \cap V$, where U is πg -open and V is a t-set. Since A is πgp -open, $F \subseteq pint(A) = A \cap int(cl(A)) = (U \cap V) \cap int(cl(U \cap V)) \subseteq (U \cap V) \cap int(cl(U)) = (U \cap V) \cap int(cl(U)) \cap int(cl(V))$. This implies $F \subseteq int(cl(V)) = int(V)$ since V is a t-set. Since F is π -closed, U is πg -open and $F \subseteq U$, we have $F \subseteq int(U)$. Therefore, $F \subseteq int(U) \cap int(V) = int(V) = int(A)$. Hence A is πg -open in X.

Corollary 3.10. A subset A of X is πg -open if and only if it is both $\pi g \alpha$ -open and a E_r -set in X.

Proof. This is an immediate consequence of Proposition 3.9.

Proposition 3.11. A subset A of X is πg -open if and only if it is both $\pi g \alpha$ -open and a E_r^* -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is $\pi g \alpha$ -open and a E_r^* -set in X. Let $F \subseteq A$ and F is π -closed in X. Since A is a E_r^* -set in X, $A = U \cap V$, where U is πg -open and V is an α^* -set. Now since F is π -closed, $F \subseteq U$ and U is πg -open, $F \subseteq int(U)$. Since A is $\pi g \alpha$ -open, $F \subseteq \alpha int(A) = A \cap int(cl(int(A))) = (U \cap V) \cap int(cl(int(U \cap V))) = (U \cap V) \cap int(cl(int(U))) \cap int(cl(int(U))) = (U \cap V) \cap int(cl(int(U))) \cap int(cl(int(U))) = (U \cap V) \cap int(cl(int(U))) \cap int(cl(int(V))) = (U \cap V) \cap int(C) \cap int(V) = int(U \cap V)$ $\cap int(V)$, since V is an α^* -set. This implies $F \subseteq int(V)$. Therefore, $F \subseteq int(U) \cap int(V) = int(U \cap V)$ = int(A). Hence A is πg -open in X.

Remark 3.12.

- (i) The concepts of πgp -open sets and E_r -sets are independent of each other.
- (ii) The concepts of $\pi g \alpha$ -open sets and E_r -sets are independent of each other.

(iii) The concepts of $\pi g \alpha$ -open sets and E_r^* -sets are independent of each other.

Example 3.13. Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d\}, \{b, c, d, e\}, X\}$. Then $\{b, c, e\}$ is πgp -open but not E_r -set and $\{b, e\}$ is E_r -set but not πgp -open.

Example 3.14. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then $\{a, d\}$ is E_r -set but not $\pi g \alpha$ -open set. Also $\{a, b, d\}$ is an $\pi g \alpha$ -open set but not E_r -set.

Example 3.15. In Example 3.14, $\{a, d\}$ is E_r^* -set but not $\pi g \alpha$ -open set and $\{a, b, d\}$ is an $\pi g \alpha$ -open set but not E_r^* -set.

4 Decompositions of πg -continuity

Definition 4.1. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be πg -continuous [4] (resp. $\pi g p$ -continuous [11], $\pi g \alpha$ -continuous [2], E_r -continuous and E_r^* -continuous) if $f^{-1}(V)$ is πg -open (resp. $\pi g p$ -open, $\pi g \alpha$ -open, E_r -set and E_r^* -set) in (X, τ) for every open set V in (Y, σ) .

From Propositions 3.9 and 3.11 and Corollary 3.10 we have the following decompositions of πg continuity.

Theorem 4.2. For a mapping $f: (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

- (i) f is πg -continuous;
- (ii) f is πgp -continuous and E_r -continuous;
- (iii) f is $\pi g \alpha$ -continuous and E_r -continuous;
- (iv) f is $\pi g \alpha$ -continuous and E_r^* -continuous.

Remark 4.3.

- (i) The concepts of πgp -continuity and E_r -continuity are independent of each other.
- (ii) The concepts of $\pi g \alpha$ -continuity and E_r -continuity are independent of each other.

(iii) The concepts of $\pi g \alpha$ -continuity and E_r^* -continuity are independent of each other.

Example 4.4.

- (i) Let $X = Y = \{a, b, c, d, e\}, \tau = \{\phi, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}, X\}$ and $\sigma = \{\phi, \{b, c, e\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is πgp -continuous but not E_r -continuous.
- (ii) Let X = Y = {a, b, c, d, e}, τ = {φ, {a}, {e}, {a, e}, {c, d}, {a, c, d}, {c, d, e}, {a, c, d, e}, {b, c, d, e}, X} and σ = {φ, {a, b}, Y}. Let f: (X, τ) → (Y, σ) be the identity function. Then f is E_r-continuous but not πgp-continuous.

Example 4.5.

- (i) Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\phi, \{a, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is E_r -continuous but not $\pi g \alpha$ -continuous.
- (ii) Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\phi, \{a, b, d\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $\pi g \alpha$ -continuous but not E_r -continuous.

Example 4.6.

- (i) Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\phi, \{a, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is E_r^* -continuous but not $\pi g \alpha$ -continuous.
- (ii) Let $X = Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{\phi, \{a, b, d\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is $\pi g \alpha$ -continuous but not E_r^* -continuous.

References

- [1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986), 24-32.
- [2] I.Arockiarani, K.Balachandran and C.Janaki, On contra-πgα-continuous functions, Kochi J. Math., 3(2008), 201-209.
- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [4] J.Dontchev and T.Noiri, Quasi-normal spaces and πg-closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [5] E.Hatir, T.Noiri and S.Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- [6] N.Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [7] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [8] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.

- 154 Int. J. Math. And its App. Vol.3 No.1 (2015)/ O.Ravi, A.Pandi, R.Senthil Kumar and A.Muthulakshmi
- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] J.H.Park, On πgp -closed sets in topological spaces, Indian J. Pure Appl. Math., to appear.
- [12] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [13] P.Sundaram and M.Rajamani, Some decompositions of regular generalized continuous maps in topological spaces, Far East J. Math. Sci., II(2000), 179-188.
- [14] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.
- [15] V.Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk. SSSR, 178(1968), 778-779.