

International Journal of Mathematics And its Applications

Decompositions of \tilde{g} -continuity

Research Article

O.Ravi^{1*}, S.Margaret Parimalam², S.Murugesan³ and A.Pandi⁴

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

2 Department of Mathematics, CSI College of Arts and Science for Women, Madurai, Tamil Nadu, India.

3 Department of Mathematics, Sri S. Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India.

4 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.

Abstract: The aim of this paper is to give decompositions of a weaker form of continuity, namely \tilde{g} -continuity, by providing the concepts of \tilde{g}_t -sets, \tilde{g}_{α} -sets, \tilde{g}_{α} -continuity and \tilde{g}_{α} -continuity.

MSC: 54C05, 54C08, 54D10.

Keywords: \tilde{g} -closed set, \tilde{g}_{α} -closed set, \tilde{g}_{t} -set, \tilde{g}_{α} *-set, \tilde{g}_{t} -continuity, \tilde{g}_{α} *-continuity. © JS Publication.

1. Introduction

Levine [7], Mashhour et. al. [8] and Njastad [9] introduced the topological notions of semi-open sets, preopen sets and α -open sets respectively. The concept of g-closed sets was introduced and studied by Levine [5]. As a generalization, Jafari et. al. introduced and studied the notions of \tilde{g} -closed sets [3] and \tilde{g}_{α} -closed sets [4] in topological spaces and Ganesan et. al. [1] introduced and studied the class of \tilde{g}_p -closed sets in topological spaces. In 1961, Levine [6] obtained a decomposition of continuity which was later improved by Rose [13]. Tong [15] decomposed continuity into α -continuity and A-continuity and showed that his decomposition is independent of Levine's. Hatir et. al. [2] also obtained a decomposition of continuity. Ravi et. al. [12] obtained decomposition of α -continuity and \tilde{g}_{α} -continuity. In this paper we introduce \tilde{g}_t -continuity and $\tilde{g}_{\alpha}*$ -continuity to obtain decompositions of \tilde{g} -continuity in topological spaces.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (simply, X and Y) denote topological spaces on which no separation axioms are assumed. Let A be a subset of a space X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. The following definitions, Remarks, Proposition and Theorems are useful in the sequel.

^{*} E-mail: siingam@yahoo.com

Definition 2.1. A subset A of a topological space (X, τ) is said to be semi-open [7] (resp. preopen [8], α -open [9]) if $A \subseteq cl(int(A))$ (resp. $A \subseteq int(cl(A)), A \subseteq int(cl(int(A)))$). The complement of semi-open (resp. preopen, α -open) set is called semi-closed (resp. preclosed, α -closed) set.

Definition 2.2. A subset A of a topological space (X, τ) is said to be

- (1) a t-set [16] if int(A) = int(cl(A)).
- (2) an α^* -set [2] if int(A) = int(cl(int(A))).

Remark 2.3 ([2]).

- (1) Every t-set is an α^* -set, but not conversely.
- (2) An open set need not be an α^* -set.
- (3) The union of two α^* -sets need not be an α^* -set.
- (4) Arbitrary intersection of α^* -sets is an α^* -set.

Definition 2.4. A subset A of a topological space (X, τ) is called

- (1) a g-closed [5] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.
- (2) a \hat{g} -closed [17] or ω -closed [14] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in X.

The complement of a g-closed (resp. \hat{g} -closed) set is called g-open (resp. \hat{g} -open). For a subset A of a topological space X, the α -closure (resp. semi-closure, pre-closure) of A, denoted by $\alpha cl(A)$ (resp. scl(A), pcl(A)), is the intersection of all α -closed (resp. semi-closed, preclosed) subsets of X containing A. Dually, the α -interior (resp. semi-interior, pre-interior) of A, denoted by $\alpha int(A)$ (resp. sint(A), pint(A)), is the union of all α -open (resp. semi-open, preopen) subsets of X contained in A.

Proposition 2.5 ([10]). Let A and B be subsets of a topological space X. If B is an α^* -set, then $\alpha int(A \cap B) = \alpha int(A) \cap int(B)$.

Definition 2.6. A subset A of a topological space (X, τ) is called

- (1) a *g-closed [18] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) . The complement of *g-closed set is *g-open.
- (2) a $\sharp gs$ -closed [19] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is $\ast g$ -open in (X, τ) . The complement of $\sharp gs$ -closed set is $\sharp gs$ -open.
- (3) a \tilde{g} -closed [3] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) .
- (4) an \tilde{g}_{α} -closed [4] if $\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) .
- (5) a \tilde{g}_p -closed [1] if $pcl(A) \subseteq U$, whenever $A \subseteq U$ and U is $\sharp gs$ -open in (X, τ) .

The complement of \tilde{g} -closed set (resp. \tilde{g}_{α} -closed set, \tilde{g}_{p} -closed set) is \tilde{g} -open (resp. \tilde{g}_{α} -open, \tilde{g}_{p} -open).

Remark 2.7. The following hold in any topological space:

- (1) Every α -closed set is \tilde{g}_{α} -closed, but not conversely [4].
- (2) Every \tilde{g}_{α} -closed set is \tilde{g}_{p} -closed, but not conversely [1].
- (3) Every \tilde{g} -closed set is \tilde{g}_{α} -closed, but not conversely [4].
- (4) Every closed set is α -closed, but not conversely [4].
- (5) Every closed set is \tilde{g} -closed, but not conversely [3].

Definition 2.8. A subset S of a topological space (X, τ) is said to be

(1) $\sharp gslc^*$ -set [11] if $S = U \cap F$, where U is $\sharp gs$ -open and F is closed in (X, τ) .

- (2) $C\eta^*$ -set [12] if $S = U \cap F$, where U is $\sharp gs$ -open and F is α -closed in (X, τ) .
- (3) $C\eta^{**}$ -set [12] if $S = U \cap F$, where U is \tilde{g}_{α} -open and F is a t-set in (X, τ) .

Definition 2.9. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (1) α -continuous [12] if for each $V^c \in \sigma$, $f^{-1}(V)$ is an α -closed set in (X, τ) .
- (2) \tilde{g}_{α} -continuous [12] if for each $V^{c} \in \sigma$, $f^{-1}(V)$ is an \tilde{g}_{α} -closed set in (X, τ) .
- (3) \tilde{g} -precontinuous [12] if for each $V^c \in \sigma$, $f^{-1}(V)$ is \tilde{g}_p -closed set in (X, τ) .
- (4) $C\eta^*$ -continuous [12] if for each $V \in \sigma$, $f^{-1}(V)$ is $C\eta^*$ -set in (X, τ) .
- (5) $C\eta^{**}$ -continuous [12] if for each $V \in \sigma$, $f^{-1}(V)$ is $C\eta^{**}$ -set in (X, τ) .
- (6) $C^*\eta^*$ -continuous [12] if for each $V^c \in \sigma$, $f^{-1}(V)$ is $C\eta^*$ -set in (X, τ) .
- (7) \tilde{g} -continuous [12] if for each $V^c \in \sigma$, $f^{-1}(V)$ is \tilde{g} -closed set in (X, τ) .
- (8) $^{\sharp}GSLC^*$ -continuous [11] if for each $V^c \in \sigma$, $f^{-1}(V)$ is $^{\sharp}gslc^*$ -set in (X, τ) .

Recently, the following decompositions have been established in [12].

Theorem 2.10. A function $f: (X, \tau) \to (Y, \sigma)$ is α -continuous if and only if it is both \tilde{g}_{α} -continuous and $C^*\eta^*$ -continuous.

Theorem 2.11. A function $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g}_{α} -continuous if and only if it is both \tilde{g} -precontinuous and $C\eta^{**-}$ continuous.

3. On \tilde{g}_t -sets and \tilde{g}_{α} *-sets

Definition 3.1. A subset S of a topological space (X, τ) is called

(1) \tilde{g}_t -set if $S = U \cap F$, where U is \tilde{g} -open in X and F is a t-set in X,

(2) \tilde{g}_{α} *-set if $S = U \cap F$, where U is \tilde{g} -open in X and F is an α *-set in X.

The family of all \tilde{g}_t -sets (resp. \tilde{g}_{α} *-sets) in a topological space (X, τ) is denoted by $\tilde{g}_t(X, \tau)$ (resp. \tilde{g}_{α} * (X, τ)).

Proposition 3.2. Let S be a subset of a topological space (X, τ) .

- (1) If S is a t-set, then $S \in \tilde{g}_t(X, \tau)$.
- (2) If S is an α^* -set, then $S \in \tilde{g}_{\alpha} * (X, \tau)$.

(3) If S is a \tilde{g} -open set in X, then $S \in \tilde{g}_t(X, \tau)$ and $S \in \tilde{g}_{\alpha} * (X, \tau)$.

Proposition 3.3. In a topological space X, every \tilde{g}_t -set is \tilde{g}_{α} *-set but not conversely.

Example 3.4. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$. In (X, τ) , the set $\{a, d\}$ is \tilde{g}_{α} *-set but it is not \tilde{g}_t -set.

Remark 3.5. The following examples show that

(1) the converse of Proposition 3.2 need not be true.

(2) the concepts of \tilde{g}_t -sets and \tilde{g}_p -open sets are independent.

(3) the concepts of \tilde{g}_{α} *-sets and \tilde{g}_{α} -open sets are independent.

Example 3.6. Let X and τ be as in Example 3.4. Then $\{a\}$ is \tilde{g}_t -set but not a t-set and the set $\{a, b, c\}$ is \tilde{g}_{α} *-set but not an α *-set.

Example 3.7. Let X and τ be as in Example 3.4. Then $\{d\}$ is both \tilde{g}_t -set and \tilde{g}_{α} *-set, but it is not a \tilde{g} -open set.

Example 3.8. Let X and τ be as in Example 3.4. Then $\{d\}$ is \tilde{g}_t -set but not a \tilde{g}_p -open set. Also $\{a, b, d\}$ is a \tilde{g}_p -open set but not \tilde{g}_t -set.

Example 3.9. Let X and τ be as in Example 3.4. Then $\{d\}$ is \tilde{g}_{α} *-set but not an \tilde{g}_{α} -open set.

Example 3.10. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, \{c\}, \{a, c\}, X\}$. In (X, τ) , the set $\{b, c\}$ is an \tilde{g}_{α} -open set but not \tilde{g}_{α} *-set.

Remark 3.11.

(1) The union of two \tilde{g}_t -sets need not be \tilde{g}_t -set.

(2) The union of two \tilde{g}_{α} *-sets need not be \tilde{g}_{α} *-set.

Example 3.12. Let X and τ be as in Example 3.10. Then (1) {b} and {c} are \tilde{g}_t -sets but {b} \cup {c}= {b, c} is not \tilde{g}_t -set. (2) {b} and {c} are \tilde{g}_{α} *-sets but {b} \cup {c}= {b, c} is not \tilde{g}_{α} *-set.

Lemma 3.13.

- (1) A subset S of X is \tilde{g} -open [3] if and only if $F \subseteq int(S)$ whenever $F \subseteq S$ and F is $\sharp gs$ -closed in X.
- (2) A subset S of X is \tilde{g}_{α} -open [4] if and only if $F \subseteq \alpha int(S)$ whenever $F \subseteq S$ and F is $\sharp gs$ -closed in X.

(3) A subset S of X is \tilde{g}_p -open [1] if and only if $F \subseteq pint(S)$ whenever $F \subseteq S$ and F is $\sharp gs$ -closed in X.

Theorem 3.14. A subset S of X is \tilde{g} -open in (X, τ) if and only if it is both \tilde{g}_{α} -open and \tilde{g}_{α} *-set in (X, τ) .

Proof. Necessity. The proof is obvious.

Sufficiency. Let S be an \tilde{g}_{α} -open set and \tilde{g}_{α} *-set. Since S is \tilde{g}_{α} *-set, S = A \cap B, where A is \tilde{g} -open and B is an α *-set. Assume that F \subseteq S, where F is $\sharp gs$ -closed in X. Since A is \tilde{g} -open, by Lemma 3.13(1), F \subseteq int(A). Since S is \tilde{g}_{α} -open in X, by Lemma 3.13(2), F $\subseteq \alpha$ int(S) = S \cap int(cl(int(S))) = (A \cap B) \capint(cl(int(A \cap B))) \subseteq A \cap B \cap int(cl(int(A))) \capint(cl(int(B))) = A \cap B \cap int(cl(int(A))) \capint(B) \subseteq int(B). Therefore, we obtain F \subseteq int(B) and hence F \subseteq int(A) \cap int(B) = int(S). Hence S is \tilde{g} -open.

Theorem 3.15. A subset S of X is \tilde{g} -open in (X, τ) if and only if it is both \tilde{g}_p -open and \tilde{g}_t -set in (X, τ) .

Proof. Similar to Theorem 3.14.

Remark 3.16. We obtain the following diagram by the above discussions and the following Examples, where $A \rightarrow B$ (resp. $A \ddagger B$) represents A implies B but not conversely (resp. A and B are independent of each other).

$$\begin{array}{cccc} closed & \longrightarrow & \tilde{g}\text{-}closed & \longrightarrow & \tilde{g}_t\text{-}set \\ & \downarrow & & \\ \downarrow & & \tilde{g}_{\alpha}*\text{-}set & & \ddagger \\ & & \uparrow & \\ \alpha\text{-}closed & \longrightarrow & \tilde{g}_{\alpha}\text{-}closed & \longrightarrow & \tilde{g}_p\text{-}closed \end{array}$$

Example 3.17. Let X and τ be as in Example 3.10. Then $\{a\}$ is α -closed but it is neither a \tilde{g} -closed set nor a closed set.

Example 3.18. Let X and τ be as in Example 3.4. Then $\{a, d\}$ is an \tilde{g}_{α} -closed but not an α -closed set.

Example 3.19. Let X and τ be as in Example 3.10. Then $\{b, c\}$ is *g-closed set but not an \tilde{g}_{α} -closed set.

Example 3.20. Let X and τ be as in Example 3.10. Then (1) {a} is an \tilde{g}_{α} -closed set but not a *g-closed set, (2) {c} is \tilde{g}_{α} *-set but it is neither a \tilde{g} -closed nor an \tilde{g}_{α} -closed set.

Example 3.21. Let X and τ be as in Example 3.4. Then $\{a\}$ is \tilde{g}_p -closed set but not an \tilde{g}_{α} -closed set.

Example 3.22. Let X and τ be as in Example 3.4. Then $\{a, d\}$ is \tilde{g} -closed, but it is neither an α -closed nor a closed set.

Example 3.23. Let X and τ be as in Example 3.4. Then (1) {a} is \tilde{g}_t -set but not a \tilde{g} -closed set, (2) {a, d} is \tilde{g}_p -closed set but not \tilde{g}_t -set, (3) {b} is \tilde{g}_t -set but not a \tilde{g}_p -closed set.

Remark 3.24. The concepts of *g-closed sets and \tilde{g}_{α} -closed sets are independent by the Examples 3.19 and 3.20.

Remark 3.25. The concepts of \tilde{g} -closed sets and α -closed sets are independent by the Examples 3.17 and 3.22.

Proposition 3.26. Let (X, τ) be a topological space. Then a subset A of X is closed if and only if it is both \tilde{g} -closed and $\sharp gslc^*$ -set.

Proof. Necessity is trivial. To prove the sufficiency, assume that A is both \tilde{g} -closed and $\sharp gslc^*$ -set. Then $A = U \cap V$, where U is $\sharp gs$ -open and V is closed in X. Therefore $A \subseteq U$ and $A \subseteq V$ and so by hypothesis, $cl(A) \subseteq U$ and $cl(A) \subseteq V$, thus $cl(A) \subseteq U \cap V = A$ and hence cl(A) = A. Therefore A is closed in X.

Remark 3.27. The following Example shows that the concepts of \tilde{g} -closed sets and $\sharp gslc^*$ -sets are independent.

Example 3.28. Let X and τ be as in Example 3.4. Then (1) {a} is $\sharp gslc^*$ -set but not \tilde{g} -closed set. (2) {a, d} is \tilde{g} -closed set but not $\sharp gslc^*$ -set.

4. Decompositions of \tilde{g} -continuity

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be

- (1) \tilde{g}_t -continuous if for each $V \in \sigma$, $f^{-1}(V) \in \tilde{g}_t(X, \tau)$.
- (2) \tilde{g}_{α} *-continuous if for each $V \in \sigma$, $f^{-1}(V) \in \tilde{g}_{\alpha} * (X, \tau)$.

Proposition 4.2. For a function $f: (X, \tau) \to (Y, \sigma)$, the following implications hold:

- (1) \tilde{g} -continuity $\Rightarrow \tilde{g}_t$ -continuity;
- (2) \tilde{g} -continuity $\Rightarrow \tilde{g}_{\alpha}$ *-continuity;
- (3) \tilde{g} -continuity $\Rightarrow \tilde{g}_{\alpha}$ -continuity $\Rightarrow \tilde{g}$ -precontinuity.

The reverse implications in Proposition 4.2 are not true as shown in the following Examples.

Example 4.3. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{d\}, \{b, d\}, \{a, c, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g}_t -continuous function. However, f is neither \tilde{g} -continuous nor \tilde{g} -precontinuous.

Example 4.4. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{c, d\}, \{a, c, d\}, \{b, c, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g}_{α} *-continuous function. However, f is neither \tilde{g} -continuous nor \tilde{g}_{α} -continuous.

Example 4.5. Example (4.3) and the following Example (4.6) show that \tilde{g}_t -continuity and \tilde{g} -precontinuity are independent.

Example 4.6. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b, d\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \tilde{g} -precontinuous function but it is not \tilde{g}_t -continuous.

Example 4.7. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, \{a, b, c\}, \{b, c, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g} -precontinuous function but not an \tilde{g}_{α} -continuous.

Example 4.8. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g}_{α} *-continuous function but not a \tilde{g}_t -continuous.

Example 4.9. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g} -precontinuous function but not a \tilde{g} -continuous.

Example 4.10. Let X, Y, τ , σ and f be as in Example 4.9. Then f is \tilde{g}_{α} -continuous function but not a \tilde{g} -continuous.

Remark 4.11. By the above discussions, we obtain the following diagram, where $A \longrightarrow B$ (resp. $A \ddagger B$) represents A implies B but not conversely (resp. A and B are independent of each other).

Theorem 4.12. A function $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g} -continuous if and only if it is both \tilde{g}_{α} -continuous and \tilde{g}_{α} *-continuous.

Proof. The proof follows immediately from Theorem 3.14.

Theorem 4.13. A function $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g} -continuous if and only if it is both \tilde{g} -precontinuous and \tilde{g}_t -continuous.

Proof. From Theorem 3.15, the proof is immediate.

Corollary 4.14. A function $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g} -continuous if and only if it is \tilde{g} -precontinuous, $C\eta^{**}$ -continuous and \tilde{g}_{α} *-continuous.

Proof. It follows from Theorems 2.11 and 4.12.

Remark 4.15. The following Examples show that the concepts of \tilde{g} -continuity and ${}^{\sharp}GSLC^*$ -continuity are independent of each other.

Example 4.16. Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{a, c\}, \{a, b, c\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is \tilde{g} -continuous function but not an ${}^{\sharp}GSLC^*$ -continuous.

Example 4.17. Let X, Y, τ , σ and f be as in Example 4.4. Then f is ${}^{\sharp}GSLC^*$ -continuous function but not a \tilde{g} -continuous. **Theorem 4.18.** A function $f: (X, \tau) \to (Y, \sigma)$ is continuous if and only if it is both \tilde{g} -continuous and $\sharp GSLC^*$ -continuous.

Proof. It follows from Proposition 3.26.

References

- [2] E.Hatir, T.Noiri and S.Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1-2)(1996), 145-150.
- [3] S.Jafari, T.Noiri, N.Rajesh and M.L.Thivagar, Another generalization of closed sets, Kochi Journal of Mathematics, 3(2008), 25-38.
- [4] S.Jafari, M.Lellis Thivagar and Nirmala Rebecca Paul, Remarks on \tilde{g}_{α} -closed sets in topological spaces, International Mathematical Forum, 5(24)(2010), 1167-1178.

^[1] S.Ganesan, O.Ravi and S.Chandrasekar, *ğ-preclosed sets in topological spaces*, International Journal of Mathematical Archive, 2(2)(2011), 294-299.

- [5] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [6] N.Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [7] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [9] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] T.Noiri, M.Rajamani and P.Sundaram, A decomposition of a weaker form of continuity, Acta Math. Hungar., 93(1-2)(2001), 109-114.
- [11] N.Rajesh and E.Ekici, *ğ*-locally closed sets in topological spaces, Kochi Journal of Mathematics, 2(2007), 1-9.
- [12] O.Ravi, G.Ramkumar and R.Latha, Decomposition of α -continuity and \tilde{g}_{α} -continuity, Jordan Journal of Mathematiics and Statistics, 3(3)(2010), 181-192.
- [13] D.Rose, On Levine's decomposition of continuity, Canad. Math. Bull., 21(1978), 477-481.
- [14] M.Sheik John and P.Sundaram, On decomposition of continuity, Bull. Allahabad Math. Soc., 22(2007), 1-9.
- [15] J.Tong, A decomposition of continuity, Acta Math. Hungar., 48(1986), 11-15.
- [16] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.
- [17] M.K.R.S.Veerakumar, ĝ-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
- [18] M.K.R.S.Veerakumar, Between g*-closed sets and g-closed sets, Antarctica Journal of Mathematics, Reprint.
- [19] M.K.R.S.Veerakumar, ${}^{\sharp}g$ -semiclosed sets in topological spaces, Antarctica Journal of Mathematics, 2(2)(2005), 201-222.