

International Journal of Mathematics And its Applications

On Weakly $(1,2)^{\star}$ -g[#]-closed Sets

Research Article

$\rm O.Ravi^{1*},\, A.Pandi^2,\, I.Rajasekaran^3$ and $\rm S.Ramachandran^4$

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

3 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

4 Department of Mathematics, G.T.N.Arts College, Dindigul, Tamil Nadu, India.

Abstract: In this paper, we introduce weakly $(1,2)^*-g^{\#}$ -closed sets and investigate the relationships among the related $(1,2)^*$ -generalized closed sets.

MSC: 54E55.

Keywords: $(1,2)^*-g^{\#}$ -closed set, $(1,2)^*-g$ -closed set, $(1,2)^*-\alpha g$ -closed set, $(1,2)^*-g^{\#}$ -irresolute function. © JS Publication.

1. Introduction

Rajan [2] studied and investigated the properties of the notion of $(1,2)^*-g^{\#}$ -closed sets. In this paper, we introduce a new class of $(1,2)^*$ -generalized closed sets called weakly $(1,2)^*-g^{\#}$ -closed sets which contains the above mentioned class. Also, we investigate the relationships among the related $(1,2)^*$ -generalized closed sets.

2. Preliminaries

Throughout the paper, X, Y and Z denote bitopological spaces (X, τ_1 , τ_2), (Y, σ_1 , σ_2) and (Z, η_1 , η_2) respectively.

Definition 2.1. Let A be a subset of a bitopological space X. Then A is called $\tau_{1,2}$ -open [1] if $A = P \cup Q$, for some $P \in \tau_1$ and $Q \in \tau_2$. The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed. The family of all $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets of X is denoted by $(1,2)^*$ -O(X) (resp. $(1,2)^*$ -C(X)).

Definition 2.2 ([1]). Let A be a subset of a bitopological space X. Then

(1) the $\tau_{1,2}$ -interior of A, denoted by $\tau_{1,2}$ -int(A), is defined by $\cup \{ U : U \subseteq A \text{ and } U \text{ is } \tau_{1,2}\text{-open} \};$

^{*} E-mail: siingam@yahoo.com

(2) the $\tau_{1,2}$ -closure of A, denoted by $\tau_{1,2}$ -cl(A), is defined by $\cap \{ U : A \subseteq U \text{ and } U \text{ is } \tau_{1,2}\text{-closed} \}$.

Remark 2.3 ([1]). Notice that $\tau_{1,2}$ -open subsets of X need not necessarily form a topology.

Definition 2.4 ([4]). A subset A of a bitopological space X is said to be $(1, 2)^*$ -nowhere dense in X if $\tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) = ϕ .

Definition 2.5 ([1]). Let A be a subset of a bitopological space X. Then A is called

- (1) regular $(1,2)^*$ -open set if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)). The complement of regular $(1,2)^*$ -open set is regular $(1,2)^*$ -closed.
- (2) $(1,2)^*$ - π -open if the finite union of regular $(1,2)^*$ -open sets.
- (3) $(1,2)^*$ -semi-open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)). The complement of $(1,2)^*$ -semi-open set is $(1,2)^*$ -semi-closed.
- (4) $(1,2)^* \alpha$ -open if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))). The complement of $(1,2)^* \alpha$ -open set is $(1,2)^* \alpha$ -closed. The $(1,2)^* \alpha$ -closed of a subset A of X, denoted by $(1,2)^* \alpha cl(A)$, is defined to be the intersection of all $(1,2)^* \alpha$ -closed sets of X containing A.

Definition 2.6. Let A be a subset of a bitopological space X. Then A is called

- (1) a $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -g-closed) set [4] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ -g-closed set is called $(1,2)^*$ -g-open set.
- (2) an $(1,2)^*$ - α -generalized closed (briefly, $(1,2)^*$ - αg -closed) set [4] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X. The complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open set.
- (3) $(1,2)^*$ - $g^{\#}$ -closed set [2] if $\tau_{1,2}$ -cl(A) \subseteq U whenever $A \subseteq$ U and U is $(1,2)^*$ - αg -open in X. The complement of $(1,2)^*$ - $g^{\#}$ -closed set is called $(1,2)^*$ - $g^{\#}$ -open set.

Definition 2.7 ([1]). A function $f: X \to Y$ is called:

- (1) $(1,2)^*$ -open if f(V) is $\sigma_{1,2}$ -open in Y for every $\tau_{1,2}$ -open set V of X.
- (2) $(1,2)^*$ -closed if f(V) is $\sigma_{1,2}$ -closed in Y for every $\tau_{1,2}$ -closed set V of X.

Definition 2.8 ([2]). A function $f: X \to Y$ is called:

- (1) $(1,2)^*$ - αg -irresolute if the inverse image of every $(1,2)^*$ - αg -closed (resp. $(1,2)^*$ - αg -open) set in Y is $(1,2)^*$ - αg -closed (resp. $(1,2)^*$ - αg -open) in X.
- (2) $(1,2)^*$ -g[#]-irresolute if the inverse image of every $(1,2)^*$ -g[#]-closed set in Y is $(1,2)^*$ -g[#]-closed in X.

Definition 2.9 ([3]). Let X and Y be two bitopological spaces. A function $f: X \to Y$ is called:

- (1) $(1,2)^*$ -R-map if $f^{-1}(V)$ is regular $(1,2)^*$ -open in X for each regular $(1,2)^*$ -open set V of Y.
- (2) perfectly $(1,2)^*$ -continuous if $f^{-1}(V)$ is $\tau_{1,2}$ -clopen in X for each $\sigma_{1,2}$ -open set V of Y.

Definition 2.10 ([4]). A subset A of a bitopological space X is called:

- (1) a weakly $(1,2)^*$ -g-closed (briefly, $(1,2)^*$ -wg-closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open in X.
- (2) a weakly $(1,2)^*$ - πg -closed (briefly, $(1,2)^*$ - $w\pi g$ -closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - π -open in X.
- (3) a regular weakly $(1,2)^*$ -generalized closed (briefly, $(1,2)^*$ -rwg-closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular $(1,2)^*$ -open in X.

Definition 2.11. A bitopological space X is said to be almost $(1,2)^*$ -connected [4] (resp. $(1,2)^*$ - $g^{\#}$ -connected [2], $(1,2)^*$ connected [2]) if X cannot be written as a disjoint union of two non-empty regular $(1,2)^*$ -open (resp. $(1,2)^*$ - $g^{\#}$ -open, $\tau_{1,2}$ -open) sets.

Remark 2.12 ([4]). For a subset of a bitopological space, we have following implications: regular $(1,2)^*$ -open $\rightarrow (1,2)^*$ - π -open $\rightarrow \tau_{1,2}$ -open $\rightarrow (1,2)^*$ - αg -open

The reverses of the above implications are not true.

3. Weakly $(1,2)^*$ -g[#]-closed Sets

We introduce the definition of weakly $(1,2)^*$ - $g^{\#}$ -closed sets in bitopological spaces and study the relationships of such sets.

Definition 3.1. A subset A of a bitopological space X is called a weakly $(1,2)^*$ - $g^{\#}$ -closed (briefly, $(1,2)^*$ - $wg^{\#}$ -closed) set if $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - αg -open in X.

Theorem 3.2. Every $(1,2)^*$ - $g^{\#}$ -closed set is $(1,2)^*$ - $wg^{\#}$ -closed but not conversely.

Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -wg[#]-closed set but it is not a $(1,2)^*$ -g[#]-closed in X.

Theorem 3.4. Every $(1,2)^*$ -wg[#]-closed set is $(1,2)^*$ -wg-closed but not conversely.

Proof. Let A be any $(1,2)^*$ -w $g^{\#}$ -closed set and U be any $\tau_{1,2}$ -open set containing A. Then U is a $(1,2)^*$ - αg -open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) \subseteq U. Thus, A is $(1,2)^*$ -wg-closed.

Example 3.5. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$. Then the sets in $\{\phi, \{a\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a, b\}$ is $(1,2)^*$ -wg-closed but it is not a $(1,2)^*$ -wg#-closed.

Theorem 3.6. Every $(1,2)^*$ - $wg^{\#}$ -closed set is $(1,2)^*$ - $w\pi g$ -closed but not conversely.

Proof. Let A be any $(1,2)^* \cdot wg^{\#}$ -closed set and U be any $(1,2)^* \cdot \pi$ -open set containing A. Then U is a $(1,2)^* \cdot \alpha g$ -open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) \subseteq U. Thus, A is $(1,2)^* \cdot w\pi g$ -closed.

Example 3.7. In Example 3.5, the set $\{a, c\}$ is $(1,2)^* - w\pi g$ -closed but it is not a $(1,2)^* - wg^\#$ -closed.

Theorem 3.8. Every $(1,2)^*$ -wg[#]-closed set is $(1,2)^*$ -rwg-closed but not conversely.

27

Proof. Let A be any $(1,2)^*$ -w $g^{\#}$ -closed set and U be any regular $(1,2)^*$ -open set containing A. Then U is a $(1,2)^*$ - αg -open set containing A. We have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) \subseteq U. Thus, A is $(1,2)^*$ -rwg-closed.

Example 3.9. In Example 3.5, the set $\{a\}$ is $(1,2)^*$ -rwg-closed but it is not a $(1,2)^*$ -wg[#]-closed.

Theorem 3.10. If a subset A of a bitopological space X is both $\tau_{1,2}$ -closed and $(1,2)^*$ -g-closed, then it is $(1,2)^*$ -wg[#]-closed in X.

Proof. Let A be a $(1,2)^*$ -g-closed set in X and U be any $\tau_{1,2}$ -open set containing A. Then $U \supseteq \tau_{1,2}$ -cl(A) $\supseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))). Since A is $\tau_{1,2}$ -closed, $U \supseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) and hence $(1,2)^*$ -wg[#]-closed in X.

Theorem 3.11. If a subset A of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg[#]-closed, then it is $\tau_{1,2}$ -closed.

Proof. Since A is both $\tau_{1,2}$ -open and $(1,2)^*$ -w $g^{\#}$ -closed, $A \supseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) = \tau_{1,2}$ -cl(A) and hence A is $\tau_{1,2}$ -closed in X.

Corollary 3.12. If a subset A of a bitopological space X is both $\tau_{1,2}$ -open and $(1,2)^*$ -wg[#]-closed, then it is both regular $(1,2)^*$ -open and regular $(1,2)^*$ -closed in X.

Theorem 3.13. Let X be a bitopological space and $A \subseteq X$ be $\tau_{1,2}$ -open. Then, A is $(1,2)^*$ -wg[#]-closed if and only if A is $(1,2)^*$ -g[#]-closed.

Proof. Let A be $(1,2)^* - g^{\#}$ -closed. By Theorem 3.2, it is $(1,2)^* - wg^{\#}$ -closed. Conversely, let A be $(1,2)^* - wg^{\#}$ -closed. Since A is $\tau_{1,2}$ -open, by Theorem 3.11, A is $\tau_{1,2}$ -closed. Hence A is $(1,2)^* - g^{\#}$ -closed.

Theorem 3.14. If a set A of X is $(1,2)^*$ -wg[#]-closed, then $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) – A contains no non-empty $(1,2)^*$ - α g-closed set.

Proof. Let F be a $(1,2)^*$ - αg -closed set such that $F \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)) - A. Since F^c is $(1,2)^*$ - αg -open and $A \subseteq F^c$, from the definition of $(1,2)^*$ - $wg^{\#}$ -closedness it follows that $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)) \subseteq F^c$. i.e., $F \subseteq (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)))^c$. This implies that $F \subseteq (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A))) \cap (\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A)))^c = \phi$.

Theorem 3.15. If a subset A of a bitopological space X is $(1,2)^*$ -nowhere dense, then it is $(1,2)^*$ -wg[#]-closed.

Proof. Since $\tau_{1,2}$ -int(A) $\subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl(A)) and A is (1,2)*-nowhere dense, $\tau_{1,2}$ -int(A) = ϕ . Therefore $\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)) = ϕ and hence A is (1,2)*-wg#-closed in X.

The converse of Theorem 3.15 need not be true as seen in the following example.

Example 3.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -wg[#]-closed set but not $(1,2)^*$ -nowhere dense in X.

Remark 3.17. The following examples show that $(1,2)^*$ -wg[#]-closedness and $(1,2)^*$ -semi-closedness are independent.

Example 3.18. In Example 3.3, we have the set $\{a, c\}$ is $(1,2)^*$ -wg[#]-closed set but not $(1,2)^*$ -semi-closed in X.

Example 3.19. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Then the set $\{a\}$ is $(1,2)^*$ -semi-closed set but not $(1,2)^*$ -wg[#]-closed in X.

Remark 3.20. From the above discussions and known results, we obtain the following diagram, where $A \rightarrow B$ represents A implies B but not conversely.

$$\tau_{1,2}$$
-closed $\rightarrow (1,2)^*$ -wg[#]-closed $\rightarrow (1,2)^*$ -wg-closed $\rightarrow (1,2)^*$ -w π g-closed $\rightarrow (1,2)^*$ -rwg-closed

Definition 3.21. A subset A of a bitopological space X is called $(1,2)^*$ -wg[#]-open if A^c is $(1,2)^*$ -wg[#]-closed in X.

Proposition 3.22.

(1) Every $(1,2)^*$ -g[#]-open set is $(1,2)^*$ -wg[#]-open but not conversely.

(2) Every $(1,2)^*$ -g-open set is $(1,2)^*$ -wg[#]-open but not conversely.

Theorem 3.23. A subset A of a bitopological space X is $(1,2)^*$ -wg[#]-open if $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) whenever $G \subseteq A$ and G is $(1,2)^*$ - αg -closed.

Proof. Let A be any $(1,2)^* \cdot wg^{\#}$ -open. Then A^c is $(1,2)^* \cdot wg^{\#}$ -closed. Let G be an $(1,2)^* \cdot \alpha g$ -closed set contained in A. Then G^c is an $(1,2)^*$ - αg -open set containing A^c . Since A^c is $(1,2)^*$ - $wg^{\#}$ -closed, we have $\tau_{1,2}$ -cl $(\tau_{1,2}$ -int $(A^c)) \subseteq G^c$. Therefore $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

Conversely, we suppose that $G \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)) whenever $G \subseteq A$ and G is $(1,2)^* - \alpha g$ -closed. Then G^c is an $(1,2)^* - \alpha g$ -open set containing A^c and $G^c \supseteq (\tau_{1,2}\text{-int}(\tau_{1,2}\text{-cl}(A)))^c$. It follows that $G^c \supseteq \tau_{1,2}\text{-cl}(\tau_{1,2}\text{-int}(A^c))$. Hence A^c is $(1,2)^* \cdot wg^{\#}$ -closed and so A is $(1,2)^*$ -w $g^{\#}$ -open.

Definition 3.24. Let $f: X \to Y$ be a function. Then f is said to be

- (1) contra $(1,2)^*$ - $g^{\#}$ -continuous [2] (resp. $(1,2)^*$ - $g^{\#}$ -continuous [5]) if the inverse image of every $\sigma_{1,2}$ -open (resp. $\sigma_{1,2}$ closed) set in Y is $(1,2)^*$ - $g^{\#}$ -closed set in X.
- (2) (1,2)^{*}-continuous [5] if the inverse image of every $\sigma_{1,2}$ -open set in Y is $\tau_{1,2}$ -open set in X.

Theorem 3.25. The following are equivalent for a function $f: X \to Y$:

- (1) f is contra $(1,2)^*$ -g[#]-continuous.
- (2) the inverse image of every $\sigma_{1,2}$ -closed set of Y is $(1,2)^*$ -g[#]-open in X.

Proof. Let U be any $\sigma_{1,2}$ -closed set of Y. Since Y \U is $\sigma_{1,2}$ -open, then by (1), it follows that $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is $(1,2)^*$ - $q^{\#}$ -closed. This shows that $f^{-1}(U)$ is $(1,2)^*$ - $q^{\#}$ -open in X. Converse is similar.

4. Weakly $(1,2)^*$ - $g^{\#}$ -continuous Functions

Definition 4.1. Let X and Y be two bitopological spaces. A function $f : X \to Y$ is called weakly $(1,2)^* \cdot g^{\#}$ -continuous (briefly, $(1,2)^* \cdot wg^{\#}$ -continuous) if $f^{-1}(U)$ is a $(1,2)^* \cdot wg^{\#}$ -open set in X for each $\sigma_{1,2}$ -open set U of Y.

Example 4.2. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. The function $f: X \to Y$ defined by f(a) = b, f(b) = c and f(c) = a is $(1,2)^*$ -wg[#]-continuous, because every subset of Y is $(1,2)^*$ -wg[#]-closed in X.

Theorem 4.3. Every $(1,2)^*$ - $g^{\#}$ -continuous function is $(1,2)^*$ - $wg^{\#}$ -continuous.

Proof. It follows from Theorem 3.2.

The converse of Theorem 4.3 need not be true as seen in the following example.

Example 4.4. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg[#]-continuous but not $(1,2)^*$ -g[#]-continuous.

Theorem 4.5. A function $f: X \to Y$ is $(1,2)^* \cdot wg^{\#} \cdot continuous$ if and only if $f^{-1}(U)$ is a $(1,2)^* \cdot wg^{\#} \cdot closed$ set in X for each $\sigma_{1,2}$ -closed set U of Y.

Proof. Let U be any $\sigma_{1,2}$ -closed set of Y. According to the assumption $f^{-1}(U^c) = X \setminus f^{-1}(U)$ is $(1,2)^* \cdot wg^{\#}$ -open in X, so $f^{-1}(U)$ is $(1,2)^* \cdot wg^{\#}$ -closed in X.

The converse can be proved in a similar manner.

Definition 4.6. A bitopological space X is said to be locally $(1,2)^*$ - $g^\#$ -indiscrete if every $(1,2)^*$ - $g^\#$ -open set of X is $\tau_{1,2}$ closed in X.

Theorem 4.7. Let $f: X \to Y$ be a function. If f is contra $(1,2)^* - g^\#$ -continuous and X is locally $(1,2)^* - g^\#$ -indiscrete, then f is $(1,2)^*$ -continuous.

Proof. Let V be a $\sigma_{1,2}$ -closed in Y. Since f is contra $(1,2)^*-g^{\#}$ -continuous, $f^{-1}(V)$ is $(1,2)^*-g^{\#}$ -open in X. Since X is locally $(1,2)^*-g^{\#}$ -indiscrete, $f^{-1}(V)$ is $\tau_{1,2}$ -closed in X. Hence f is $(1,2)^*$ -continuous.

Theorem 4.8. Let $f: X \to Y$ be a function. If f is contra $(1,2)^* - g^\#$ -continuous and X is locally $(1,2)^* - g^\#$ -indiscrete, then f is $(1,2)^* - wg^\#$ -continuous.

Proof. Let $f: X \to Y$ be contra $(1,2)^*-g^{\#}$ -continuous and X is locally $(1,2)^*-g^{\#}$ -indiscrete. By Theorem 4.7, f is $(1,2)^*$ -continuous, then f is $(1,2)^*-wg^{\#}$ -continuous.

Proposition 4.9. If $f: X \to Y$ is perfectly $(1,2)^*$ -continuous and $(1,2)^*$ -wg[#]-continuous, then it is $(1,2)^*$ -R-map.

Proof. Let V be any regular $(1,2)^*$ -open subset of Y. According to the assumption, $f^{-1}(V)$ is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed in X. Since $f^{-1}(V)$ is $\tau_{1,2}$ -closed, it is $(1,2)^*$ -w $g^{\#}$ -closed. We have $f^{-1}(V)$ is both $\tau_{1,2}$ -open and $(1,2)^*$ -w $g^{\#}$ -closed. Hence, by Corollary 3.12, it is regular $(1,2)^*$ -open in X, so f is $(1,2)^*$ -R-map.

Definition 4.10. A bitopological space X is called $(1,2)^*$ - $g^\#$ -compact (resp. $(1,2)^*$ -compact) if every cover of X by $(1,2)^*$ - $g^\#$ -open (resp. $\tau_{1,2}$ -open) sets has finite subcover.

Definition 4.11. A bitopological space X is weakly $(1,2)^*$ - $g^\#$ -compact (briefly, $(1,2)^*$ - $wg^\#$ -compact) if every $(1,2)^*$ - $wg^\#$ -open cover of X has a finite subcover.

Remark 4.12. Every $(1,2)^*$ - $wg^{\#}$ -compact space is $(1,2)^*$ - $g^{\#}$ -compact.

Theorem 4.13. Let $f : X \to Y$ be surjective $(1,2)^* \cdot wg^\#$ -continuous function. If X is $(1,2)^* \cdot wg^\#$ -compact, then Y is $(1,2)^*$ -compact.

Proof. Let $\{A_i : i \in I\}$ be an $\sigma_{1,2}$ -open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a $(1,2)^*$ -w $g^{\#}$ -open cover in X. Since X is $(1,2)^*$ -w $g^{\#}$ -compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$. Since f is surjective $\{A_1, A_2, \dots, A_n\}$ is a finite subcover of Y and hence Y is $(1,2)^*$ -compact.

Definition 4.14. A bitopological space X is weakly $(1,2)^*$ - $g^\#$ -connected (briefly, $(1,2)^*$ - $wg^\#$ -connected) if X cannot be written as the disjoint union of two non-empty $(1,2)^*$ - $wg^\#$ -open sets.

Theorem 4.15. If a bitopological space X is $(1,2)^*$ - $wg^\#$ -connected, then X is almost $(1,2)^*$ -connected (resp. $(1,2)^*$ - $g^\#$ -connected).

Proof. It follows from the fact that each regular $(1,2)^*$ -open set (resp. $(1,2)^*-g^{\#}$ -open set) is $(1,2)^*-wg^{\#}$ -open.

Theorem 4.16. For a bitopological space X, the following statements are equivalent:

(1) X is $(1,2)^*$ -wg[#]-connected.

(2) The empty set ϕ and X are only subsets which are both $(1,2)^*$ -wg[#]-open and $(1,2)^*$ -wg[#]-closed.

(3) Each $(1,2)^*$ -wg[#]-continuous function from X into a discrete space Y which has at least two points is a constant function.

Proof. (1) \Rightarrow (2). Let $S \subseteq X$ be any proper subset, which is both $(1,2)^* \cdot wg^\#$ -open and $(1,2)^* \cdot wg^\#$ -closed. Its complement X \S is also $(1,2)^* \cdot wg^\#$ -open and $(1,2)^* \cdot wg^\#$ -closed. Then $X = S \cup (X \setminus S)$ is a disjoint union of two non-empty $(1,2)^* \cdot wg^\#$ -open sets which is a contradiction with the fact that X is $(1,2)^* \cdot wg^\#$ -connected. Hence, $S = \phi$ or X.

(2) \Rightarrow (1). Let X = A \cup B where A \cap B = ϕ , A $\neq \phi$, B $\neq \phi$ and A, B are $(1,2)^*$ -wg[#]-open. Since A = X \B, A is $(1,2)^*$ -wg[#]-closed. According to the assumption A = ϕ , which is a contradiction.

(2) \Rightarrow (3). Let $f : X \to Y$ be a $(1,2)^* \cdot wg^{\#}$ -continuous function where Y is a discrete bitopological space with at least two points. Then $f^{-1}(\{y\})$ is $(1,2)^* \cdot wg^{\#}$ -closed and $(1,2)^* \cdot wg^{\#}$ -open for each $y \in Y$ and $X = \bigcup \{ f^{-1}(\{y\}) : y \in Y \}$. According to the assumption, $f^{-1}(\{y\}) = \phi$ or $f^{-1}(\{y\}) = X$. If $f^{-1}(\{y\}) = \phi$ for all $y \in Y$, f will not be a function. Also there is no exist more than one $y \in Y$ such that $f^{-1}(\{y\}) = X$. Hence, there exists only one $y \in Y$ such that $f^{-1}(\{y\}) = X$ and $f^{-1}(\{y\}) = \phi$ where $y \neq y_1 \in Y$. This shows that f is a constant function.

(3) \Rightarrow (2). Let $S \neq \phi$ be both $(1,2)^* \cdot wg^\#$ -open and $(1,2)^* \cdot wg^\#$ -closed in X. Let $f : X \to Y$ be a $(1,2)^* \cdot wg^\#$ -continuous function defined by $f(S) = \{a\}$ and $f(X \setminus S) = \{b\}$ where $a \neq b$. Since f is constant function we get S = X.

Theorem 4.17. Let $f: X \to Y$ be a $(1,2)^*$ - $wg^\#$ -continuous surjective function. If X is $(1,2)^*$ - $wg^\#$ -connected, then Y is $(1,2)^*$ -connected.

Proof. We suppose that Y is not $(1,2)^*$ -connected. Then $Y = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A, B are $\sigma_{1,2}$ -open sets in Y. Since f is $(1,2)^*$ -wg[#]-continuous surjective function, $X = f^{-1}(A) \cup f^{-1}(B)$ are disjoint union of two non-empty $(1,2)^*$ -wg[#]-open subsets. This is contradiction with the fact that X is $(1,2)^*$ -wg[#]-connected.

5. Weakly $(1,2)^*-g^{\#}$ -open Functions and Weakly $(1,2)^*-g^{\#}$ -closed Functions

Definition 5.1. Let X and Y be bitopological spaces. A function $f : X \to Y$ is called weakly $(1,2)^* \cdot g^{\#}$ -open (briefly, $(1,2)^* \cdot wg^{\#}$ -open) if f(V) is a $(1,2)^* \cdot wg^{\#}$ -open set in Y for each $\tau_{1,2}$ -open set V of X.

Remark 5.2. Every $(1,2)^*$ - $g^\#$ -open function is $(1,2)^*$ - $wg^\#$ -open but not conversely.

Example 5.3. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b, d\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b, d\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, \{a, b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, Y\}$ are called $\sigma_{1,2}$ -open but not $(1,2)^*$ - $wg^{\#}$ -open.

Definition 5.4. Let X and Y be bitopological spaces. A function $f: X \to Y$ is called weakly $(1,2)^*$ - $g^{\#}$ -closed (briefly, $(1,2)^*$ - $wg^{\#}$ -closed) if f(V) is a $(1,2)^*$ - $wg^{\#}$ -closed set in Y for each $\tau_{1,2}$ -closed set V of X. It is clear that an $(1,2)^*$ -open function is $(1,2)^*$ - $wg^{\#}$ -open and a $(1,2)^*$ -closed function is $(1,2)^*$ - $wg^{\#}$ -closed.

Theorem 5.5. Let X and Y be bitopological spaces. A function $f : X \to Y$ is $(1,2)^* \cdot wg^{\#} \cdot closed$ if and only if for each subset B of Y and for each $\tau_{1,2}$ -open set G containing $f^{-1}(B)$ there exists a $(1,2)^* \cdot wg^{\#} \cdot open$ set F of Y such that $B \subseteq F$ and $f^{-1}(F) \subseteq G$.

Proof. Let B be any subset of Y and let G be an $\tau_{1,2}$ -open subset of X such that $f^{-1}(B) \subseteq G$. Then $F = Y \setminus f(X \setminus G)$ is $(1,2)^*$ -wg[#]-open set containing B and $f^{-1}(F) \subseteq G$.

Conversely, let U be any $\tau_{1,2}$ -closed subset of X. Then $f^{-1}(Y \setminus f(U)) \subseteq X \setminus U$ and X \U is $\tau_{1,2}$ -open. According to the assumption, there exists a $(1,2)^*$ -w $g^{\#}$ -open set F of Y such that $Y \setminus f(U) \subseteq F$ and $f^{-1}(F) \subseteq X \setminus U$. Then $U \subseteq X \setminus f^{-1}(F)$. From $Y \setminus F \subseteq f(U) \subseteq f(X \setminus f^{-1}(F)) \subseteq Y \setminus F$ it follows that $f(U) = Y \setminus F$, so f(U) is $(1,2)^*$ -w $g^{\#}$ -closed in Y. Therefore f is a $(1,2)^*$ -w $g^{\#}$ -closed function.

Remark 5.6. The composition of two $(1,2)^*$ - $wg^\#$ -closed functions need not be a $(1,2)^*$ - $wg^\#$ -closed as we can see from the following example.

Example 5.7. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{b, c\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, b\}, Z\}$ are called $\eta_{1,2}$ -open $\sigma_{1,2}$ -closed. Let $Z = \{a, b, c\}, \eta_1 = \{\phi, Z\}$ and $\eta_2 = \{\phi, \{a, b\}, Z\}$. Then the sets in $\{\phi, \{a, b\}, Z\}$ are called $\eta_{1,2}$ -open

and the sets in $\{\phi, \{c\}, Z\}$ are called $\eta_{1,2}$ -closed. We define $f: X \to Y$ by f(a) = c, f(b) = b and f(c) = a and let $g: Y \to Z$ be the identity function. Hence both f and g are $(1,2)^*$ -wg[#]-closed functions. For a $\tau_{1,2}$ -closed set $U = \{b, c\}$, $(g \circ f)(U) = g(f(U)) = g(\{a, b\}) = \{a, b\}$ which is not $(1,2)^*$ -wg[#]-closed in Z. Hence the composition of two $(1,2)^*$ -wg[#]-closed functions need not be a $(1,2)^*$ -wg[#]-closed.

Theorem 5.8. Let X, Y and Z be bitopological spaces. If $f : X \to Y$ is a $(1,2)^*$ -closed function and $g : Y \to Z$ is a $(1,2)^*$ -wg[#]-closed function, then $g \circ f : X \to Z$ is a $(1,2)^*$ -wg[#]-closed function.

Definition 5.9. A function $f: X \to Y$ is called a weakly $(1,2)^* \cdot g^\#$ -irresolute (briefly, $(1,2)^* \cdot wg^\#$ -irresolute) if $f^{-1}(U)$ is a $(1,2)^* \cdot wg^\#$ -open set in X for each $(1,2)^* \cdot wg^\#$ -open set U of Y.

Example 5.10. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{b\}, Y\}$. Then the sets in $\{\phi, \{b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{a, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg[#]-irresolute.

Remark 5.11. The following examples show that $(1,2)^*$ - αg -irresoluteness and $(1,2)^*$ - $wg^{\#}$ -irresoluteness are independent of each other.

Example 5.12. Let $X = \{a, b, c\}, \tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$. Then the sets in $\{\phi, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a\}, Y\}$. Then the sets in $\{\phi, \{a\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f : X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg[#]-irresolute but not $(1,2)^*$ - α g-irresolute.

Example 5.13. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f = \{x, y\}$ are called $\sigma_{1,2}$ -closed. Let $f = \{x, y\}$ are called $\sigma_{1,2}$ -closed. Let $f = \{x, y\}$ are called $\sigma_{1,2}$ -closed. Let $f = \{x, y\}$ are called $\sigma_{1,2}$ -closed. Let $f = \{x, y\}$ be the identity function. Then f is $(1,2)^*$ - αg -irresolute but not $(1,2)^*$ - $wg^\#$ -irresolute.

Remark 5.14. Every $(1,2)^* \cdot g^{\#}$ -irresolute function is $(1,2)^* \cdot wg^{\#}$ -continuous but not conversely. Also, the concepts of $(1,2)^* \cdot g^{\#}$ -irresoluteness and $(1,2)^* \cdot wg^{\#}$ -irresoluteness are independent of each other.

Example 5.15. Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, \{a, b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, \{a, b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{d\}, \{a, d\}, \{b, c, d\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c, d\}$, $\sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{a, b, d\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{a, b, d\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c, d\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -wg[#]-continuous but not $(1,2)^*$ -g[#]-irresolute.

Example 5.16. Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -closed. Let $Y = \{a, b, c\}, \sigma_1 = \{\phi, \{a\}, Y\}$ and $\sigma_2 = \{\phi, \{a, b\}, Y\}$. Then the sets in $\{\phi, \{a\}, \{a, b\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, \{c\}, \{b, c\}, Y\}$ are called $\sigma_{1,2}$ -closed. Let $f: X \to Y$ be the identity function. Then f is $(1,2)^*$ -ug[#]-irresolute but not $(1,2)^*$ -g[#]-irresolute.

Example 5.17. In Example 5.13, f is $(1,2)^*-g^\#$ -irresolute but not $(1,2)^*-wg^\#$ -irresolute.

Theorem 5.18. The composition of two $(1,2)^*$ - $wg^{\#}$ -irresolute functions is also $(1,2)^*$ - $wg^{\#}$ -irresolute.

Theorem 5.19. Let $f: X \to Y$ and $g: Y \to Z$ be functions such that $g \circ f: X \to Z$ is $(1,2)^*$ -wg[#]-closed function. Then the following statements hold:

- (1) if f is $(1,2)^*$ -continuous and injective, then g is $(1,2)^*$ -wg[#]-closed.
- (2) if g is $(1,2)^*$ -wg[#]-irresolute and surjective, then f is $(1,2)^*$ -wg[#]-closed.

Proof.

- (1) Let F be a $\sigma_{1,2}$ -closed set of Y. Since $f^{-1}(F)$ is $\tau_{1,2}$ -closed in X, we can conclude that $(g \circ f)(f^{-1}(F))$ is $(1,2)^* \cdot wg^{\#}$ -closed in Z. Hence g(F) is $(1,2)^* \cdot wg^{\#}$ -closed in Z. Thus g is a $(1,2)^* \cdot wg^{\#}$ -closed function.
- (2) It can be proved in a similar manner as (1).

Theorem 5.20. If $f: X \to Y$ is an $(1,2)^*$ -wg[#]-irresolute function, then it is $(1,2)^*$ -wg[#]-continuous.

Remark 5.21. The converse of the above theorem need not be true in general. The function $f: X \to Y$ in the Example 5.13 is $(1,2)^* \cdot wg^{\#} \cdot continuous$ but not $(1,2)^* \cdot wg^{\#} \cdot irresolute$.

Theorem 5.22. If $f: X \to Y$ is surjective $(1,2)^* \cdot wg^{\#} \cdot irresolute$ function and X is $(1,2)^* \cdot wg^{\#} \cdot compact$, then Y is $(1,2)^* \cdot wg^{\#} - compact$.

Theorem 5.23. If $f: X \to Y$ is surjective $(1,2)^*$ - $wg^\#$ -irresolute function and X is $(1,2)^*$ - $wg^\#$ -connected, then Y is $(1,2)^*$ - $wg^\#$ -connected.

References

- M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc., 16(1)(2008), 17-25.
- [2] C.Rajan, Further study of new bitopological generalized continuous functions, Ph. D Thesis, Madurai Kamaraj University, Madurai, (2014).
- [3] O.Ravi, K.Kayathri, M.L.Thivagar and M.Joseph Israel, Mildly (1,2)*-normal spaces and some bitopological functions, Mathematica Bohemica, 135(1)(2010), 1-15.
- [4] O.Ravi, M.L.Thivagar and A.Nagarajan, $(1,2)^*$ - αg -closed sets and $(1,2)^*$ - $g\alpha$ -closed sets, (submitted).
- [5] O.Ravi, I.Rajasekaran and A.Pandi, On $(1,2)^*$ - $g^{\#}$ -continuous functions, Journal of New Theory, 1(2015), 69-79.