

International Journal of Mathematics And its Applications

Decompositions of rg-continuity via Idealization

Research Article

K.Indirani¹, V.Rajendran², M.Meharin³ and O.Ravi⁴*

1 Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

2 Department of Mathematics, KSG College, Coimbatore, Tamil Nadu, India.

3 School of Youth Empowerment, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

4 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

Abstract: In this paper, we introduce the notions of $r\alpha g$ - \mathcal{I} -open sets, gpr- \mathcal{I} -open sets, C_r - \mathcal{I} -sets and C_r^* - \mathcal{I} -sets in ideal topological spaces and investigate some of their properties and using these notions we obtain three decompositions of rg-continuity.

MSC: 54C08.

Keywords: $r \alpha g$ - \mathcal{I} -continuity, gpr- \mathcal{I} -continuity, C_r - \mathcal{I} -continuity, C_r^* - \mathcal{I} -continuity and rg-continuity. © JS Publication.

1. Introduction and Preliminaries

In 1970, Levine [11] initiated the study of so called g-closed sets in topological spaces. The concept of g-continuity was introduced and studied by Balachandran et.al in 1991 [2]. In 1993, Palaniappan and Rao [17] introduced the notions of regular generalized closed (rg-closed) sets and rg-continuity in topological spaces. In 2000, Sundaram and Rajamani [20] obtained three different decompositions of rg-continuity by providing two types of weaker forms of continuity, namely C_r -continuity and C_r^* -continuity. Recently, Noiri et. al. [15] introduced the notions of αg - \mathcal{I} -open sets, gp- \mathcal{I} -open sets, gs- \mathcal{I} -open sets, c^* - \mathcal{I} -sets to obtain three different decompositions of rag- \mathcal{I} -open sets, gp- \mathcal{I} -open sets, C_r - \mathcal{I} -sets and C_r^* - \mathcal{I} -sets to obtain further decompositions of rg-continuity.

Let (X, τ) be a topological space. An ideal is defined as a nonempty collection \mathcal{I} of subsets of X satisfying the following two conditions:

- (i) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$
- (ii) If $A \in \mathcal{I}$ and $B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

^{*} E-mail: siingam@yahoo.com

For a subset $A \subseteq X$, $A^*(\mathcal{I}) = \{x \in X/U \cap A \notin \mathcal{I} \text{ for each neighborhood } U \text{ of } x\}$ is called the local function of A with respect to \mathcal{I} and τ [9]. We simply write A^* instead of $A^*(\mathcal{I})$ in case there is no chance for confusion. X^* is often a proper subset of X. For every ideal topological space (X, τ, \mathcal{I}) there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generated by $\beta(\mathcal{I}, \tau)$ $= \{U \setminus I : U \in \tau \text{ and } I \in \mathcal{I}\}$, but in general $\beta(\mathcal{I}, \tau)$ is not always a topology [22]. Also, $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{I})$ [22]. Additionally, $cl^*(A) \subseteq cl(A)$ for any subset A of X [7]. Throughout this paper, X denotes the ideal topological space (X, τ, \mathcal{I}) and also cl(A) and int(A) denote the closure of A and the interior of A in (X, τ) , respectively.

Definition 1.1. A subset A of (X, τ) is said to be

- (1) α -open [13] if $A \subseteq int(cl(int(A)))$,
- (2) preopen [12] if $A \subseteq int(cl(A))$,
- (3) regular open [19] if A = int(cl(A)),
- (4) rg-open [17] iff $F \subseteq int(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) ,
- (5) gpr-open [4] iff $F \subseteq pint(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) ,
- (6) $r \alpha g$ -open [18] iff $F \subseteq \alpha int(A)$ whenever $F \subseteq A$ and F is regular closed in (X, τ) ,
- (7) a t-set [21] if int(A) = int(cl(A)),
- (8) an α^* -set [6] if int(A) = int(cl(int(A))),
- (9) a C_r -set [18] if $A = U \cap V$, where U is rg-open and V is a t-set in (X, τ) ,

(10) a C_r^* -set [18] if $A = U \cap V$, where U is rg-open and V is an α^* -set in (X, τ) .

The complements of the above mentioned open sets are called their respective closed sets. The preinterior pint(A) (resp. α -interior, $\alpha int(A)$) of A is the union of all preopen sets (resp. α -open sets) contained in A. The α -closure $\alpha cl(A)$ of A is the intersection of all α -closed sets containing A.

Lemma 1.1 ([1]). If A is a subset of X, then

- (1) $pint(A) = A \cap int(cl(A)),$
- (2) $\alpha int(A) = A \cap int(cl(int(A)))$ and $\alpha cl(A) = A \cup cl(int(cl(A))).$

Definition 1.2. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) pre- \mathcal{I} -open [3] if $A \subseteq int(cl^*(A))$,
- (2) α - \mathcal{I} -open [5] if $A \subseteq int(cl^*(int(A)))$,
- (3) a t-*I*-set [5] if $int(cl^*(A)) = int(A)$,
- (4) an α^* - \mathcal{I} -set [5] if $int(cl^*(int(A))) = int(A)$.

Also, we have α - \mathcal{I} -int(A) = $A \cap int(cl^*(int(A)))$ [15] and p- \mathcal{I} -int(A) = $A \cap int(cl^*(A))$ [15], where α - \mathcal{I} -int(A) denotes the α - \mathcal{I} interior of A in (X, τ , \mathcal{I}) which is the union of all α - \mathcal{I} -open sets of (X, τ , \mathcal{I}) contained in A. p- \mathcal{I} -int(A) has similar meaning.

Remark 1.1. The following hold in a topological space.

- (1) Every rg-open set is gpr-open but not conversely [4].
- (2) Every rg-open set is $r\alpha g$ -open but not conversely [18].

2. $r\alpha g$ - \mathcal{I} -open Sets and gpr- \mathcal{I} -open Sets

Definition 2.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

(1) $r \alpha g \cdot \mathcal{I}$ -open if $F \subseteq \alpha \cdot \mathcal{I}$ -int(A) whenever $F \subseteq A$ and F is regular closed in X.

(2) gpr-I-open if $F \subseteq p$ -I-int(A) whenever $F \subseteq A$ and F is regular closed in X.

Proposition 2.1. For a subset of an ideal topological space, the following hold:

- (1) Every $r\alpha g$ - \mathcal{I} -open set is $r\alpha g$ -open.
- (2) Every gpr-I-open set is gpr-open.
- (3) Every $r\alpha g$ -open set is gpr-open.

Proof.

- (1) Let A be an $r\alpha g$ - \mathcal{I} -open set. Let $F \subseteq A$ and F is regular closed in X. Then, $F \subseteq \alpha$ - \mathcal{I} -int $(A) = A \cap (int(cl^*(int(A))))$ $\subseteq A \cap int(cl(int(A))) = \alpha int(A)$. This shows that A is $r\alpha g$ -open.
- (2) Let A be $gpr-\mathcal{I}$ -open set. Let $F \subseteq A$ and F is regular closed in X. Then, $F \subseteq p-\mathcal{I}$ -int $(A) = A \cap int(cl^*(A)) \subseteq A \cap int(cl(A)) = pint(A)$. This shows that A is gpr-open.
- (3) It follows from the definitions.

Remark 2.1. The converses of Proposition 2.1 are not true, in general.

Example 2.1. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. Then $\{a, b, d\}$ is rag-open but not an rag- \mathcal{I} -open set.

Example 2.2. In Example 2.1, $\{a, b, d\}$ is gpr-open but not a gpr- \mathcal{I} -open set.

Example 2.3. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$. Then $\{b, c, d\}$ is gpr-open set but not an $r \alpha g$ -open.

Proposition 2.2. For a subset of an ideal topological space, the following hold:

(1) Every $r\alpha g$ - \mathcal{I} -open set is gpr- \mathcal{I} -open.

(2) Every rg-open set is gpr-I-open.

(3) Every rg-open set is $r\alpha g$ - \mathcal{I} -open.

Proof.

- (1) Let A be $r\alpha g\mathcal{I}$ -open. Then, for any regular closed set F with $F \subseteq A$, we have $F \subseteq \alpha \mathcal{I}$ -int $(A) = A \cap \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A))) \subseteq A \cap \operatorname{int}(\operatorname{cl}^*(A)) = p\mathcal{I}$ -int(A) which implies that A is $gpr\mathcal{I}$ -open.
- (2) Let A be an rg-open set. Then, for any regular closed set F with $F \subseteq A$, we have $F \subseteq \operatorname{int}(A) \subseteq \operatorname{int}((\operatorname{int}(A))^*) \cup \operatorname{int}(A) = \operatorname{int}((\operatorname{int}(A))^*) \cup \operatorname{int}((\operatorname{int}(A))^* \cup \operatorname{int}(A)) = \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A)))$. That is, $F \subseteq A \cap \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A))) = \alpha \mathcal{I} \operatorname{int}(A) = A \cap \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A))) \subseteq A \cap \operatorname{int}(\operatorname{cl}^*(A)) = p \mathcal{I} \operatorname{int}(A)$ which implies that A is $gpr \mathcal{I}$ -open.
- (3) Let A be an rg-open set. Then, for any regular closed set F with $F \subseteq A$, we have $F \subseteq \operatorname{int}(A) \subseteq \operatorname{int}((\operatorname{int}(A))^*) \cup \operatorname{int}(A) = \operatorname{int}((\operatorname{int}(A))^*) \cup \operatorname{int}(\operatorname{int}(A)) \subseteq \operatorname{int}((\operatorname{int}(A))^* \cup \operatorname{int}(A)) = \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A)))$. That is, $F \subseteq A \cap \operatorname{int}(\operatorname{cl}^*(\operatorname{int}(A))) = \alpha \mathcal{I} \operatorname{int}(A)$ which implies that A is $r \alpha g \mathcal{I}$ -open.

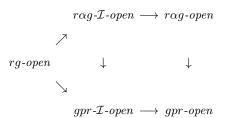
Remark 2.2. The converses of Proposition 2.2 are not true, in general.

Example 2.4. Let $X = \{a, b, c, d, e\}, \tau = \{\emptyset, X, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{e\}, \{a, e\}\}$. Then $\{a, b, d, e\}$ is gpr- \mathcal{I} -open but not an rag- \mathcal{I} -open set.

Example 2.5. Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{a, b, d\}$ is gpr- \mathcal{I} -open but not a rg-open set.

Example 2.6. In Example 2.5, $\{a, b, d\}$ is $r \alpha g \cdot I$ -open but not a rg-open set.

Remark 2.3. By Remark 1.1, Propositions 2.1 and 2.2, we have the following diagram. In this diagram, there is no implication which is reversible as shown by examples above.



3. C_r - \mathcal{I} -sets and C_r^* - \mathcal{I} -sets

Definition 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

(1) a C_r - \mathcal{I} -set if $A = U \cap V$, where U is rg-open and V is a t- \mathcal{I} -set,

(2) a C_r^* - \mathcal{I} -set if $A = U \cap V$, where U is rg-open and V is an α^* - \mathcal{I} -set.

We have the following proposition:

Proposition 3.1. For a subset of an ideal topological space, the following hold:

(1) Every t- \mathcal{I} -set is an α^* - \mathcal{I} -set [5] and a C_r - \mathcal{I} -set.

(2) Every α^* - \mathcal{I} -set is a C_r^* - \mathcal{I} -set.

(3) Every C_r - \mathcal{I} -set is a C_r^* - \mathcal{I} -set.

(4) Every rg-open set is a C_r - \mathcal{I} -set.

(5) Every C_r -set is a C_r - \mathcal{I} -set and a C_r^* - \mathcal{I} -set.

(6) Every C_r^* -set is a C_r^* - \mathcal{I} -set.

From Proposition 3.1, We have the following diagram.

 $\begin{array}{cccc} rg\text{-open set} &\longrightarrow & C_r\text{-set} &\longleftarrow & t\text{-}\mathcal{I}\text{-set} \\ & \downarrow & \downarrow & \downarrow \\ & & C_r^*\text{-set} &\longrightarrow & C_r^*\text{-}\mathcal{I}\text{-set} &\longleftarrow & \alpha^*\text{-}\mathcal{I}\text{-set} \end{array}$

Remark 3.1. The converses of implications in Diagram II need not be true as the following examples show.

Example 3.1. In Example 2.1, $\{a, b, d\}$ is C_r - \mathcal{I} -set but not a C_r -set.

Example 3.2. In Example 2.1, $\{a, b, c\}$ is C_r - \mathcal{I} -set but not a t- \mathcal{I} -set.

Example 3.3. In Example 2.1, $\{a, d\}$ is C_r -set but not a rg-open set.

Example 3.4. In Example 2.3, $\{a, b, d\}$ is C_r^* -set but not a C_r -set.

Example 3.5. In Example 2.4, $\{a, b, c, e\}$ is C_r^* - \mathcal{I} -set but not a C_r - \mathcal{I} -set.

Example 3.6. In Example 2.1, $\{a, b, d\}$ is C_r^* - \mathcal{I} -set but not a C_r^* -set.

Example 3.7. In Example 2.1, $\{a, b, c\}$ is C_r^* - \mathcal{I} -set but not an α^* - \mathcal{I} -set.

Example 3.8. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. Then $\{b\}$ is $\alpha^* \cdot \mathcal{I}$ -set but not a t- \mathcal{I} -set.

Remark 3.2. Examples 3.9 and 3.10 show that C_r - \mathcal{I} -sets and C_r^* -sets are independent of each other.

Example 3.9. In Example 2.4, $\{a, c, d\}$ is C_r^* -set but not a C_r - \mathcal{I} -set.

Example 3.10. In Example 2.1, $\{a, b, d\}$ is C_r - \mathcal{I} -set but not a C_r^* -set.

Proposition 3.2. A subset A of X is rg-open if and only if it is both $gpr-\mathcal{I}$ -open and a $C_r-\mathcal{I}$ -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is $gpr \cdot \mathcal{I}$ -open and a $C_r \cdot \mathcal{I}$ -set in X. Let $F \subseteq A$ and F is regular closed in X. Since A is a $C_r \cdot \mathcal{I}$ -set in X, $A = U \cap V$, where U is rg-open and V is a $t \cdot \mathcal{I}$ -set. Since A is $gpr \cdot \mathcal{I}$ -open, $F \subseteq p \cdot \mathcal{I}$ -int $(A) = A \cap int(cl^*(A)) = (U \cap V) \cap int(cl^*(U \cap V)) \subseteq (U \cap V) \cap int(cl^*(U)) = (U \cap V) \cap int(cl^*(U))$ $\cap int(cl^*(V))$. This implies $F \subseteq int(cl^*(V)) = int(V)$ since V is a $t \cdot \mathcal{I}$ -set. Since F is regular closed, U is rg-open and $F \subseteq U$, we have $F \subseteq int(U)$. Therefore, $F \subseteq int(U) \cap int(V) = int(U \cap V) = int(A)$. Hence A is rg-open in X.

Corollary 3.1. A subset A of X is rg-open if and only if it is both $r\alpha g$ - \mathcal{I} -open and a C_r - \mathcal{I} -set in X.

Proof. This is an immediate consequence of Proposition 3.2.

Proposition 3.3. A subset A of X is rg-open if and only if it is both $r\alpha g$ - \mathcal{I} -open and a C_r^* - \mathcal{I} -set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is $r\alpha g$ -*I*-open and a C_r^* -*I*-set in X. Let $F \subseteq A$ and F is regular closed in X. Since A is a C_r^* -*I*-set in X, $A = U \cap V$, where U is rg-open and V is an α^* -*I*-set. Now since F is regular closed, $F \subseteq U$ and U is rg-open, $F \subseteq int(U)$. Since A is $r\alpha g$ -*I*-open, $F \subseteq \alpha$ -*I*-int(A) = A \cap int(cl^*(int(A))) = $(U \cap V) \cap int(cl^*(int(U \cap V))) = (U \cap V) \cap int(cl^*(int(U)) \cap int(V))) \subseteq (U \cap V) \cap int(cl^*(int(U))) = (U \cap V)$ $\cap int(cl^*(int(U))) \cap int(cl^*(int(V))) = (U \cap V) \cap int(cl^*(int(U))) \cap int(V)$, since V is an α^* -*I*-set. This implies $F \subseteq int(V)$. Therefore, $F \subseteq int(U) \cap int(V) = int(U \cap V) = int(A)$. Hence A is rg-open in X.

Remark 3.3.

- (1) The concepts of gpr- \mathcal{I} -open sets and C_r - \mathcal{I} -sets are independent of each other.
- (2) The concepts of $r\alpha g$ - \mathcal{I} -open sets and C_r - \mathcal{I} -sets are independent of each other.
- (3) The concepts of $r\alpha g$ - \mathcal{I} -open sets and C_r^* - \mathcal{I} -sets are independent of each other.

Example 3.11. In Example 2.5,

- (1) $\{b, c, d\}$ is C_r - \mathcal{I} -set but not a gpr- \mathcal{I} -open.
- (2) $\{a, b, d\}$ is gpr- \mathcal{I} -open but not a C_r - \mathcal{I} -set.

Example 3.12. In Example 2.5,

- (i) $\{b, c, d\}$ is C_r - \mathcal{I} -set but not an $r\alpha g$ - \mathcal{I} -open set.
- (ii) $\{a, b, d\}$ is $r \alpha g \cdot \mathcal{I}$ -open set but not a $C_r \cdot \mathcal{I}$ -set.

Example 3.13. In Example 2.5,

- (1) {b, c, d} is C_r^* - \mathcal{I} -set but not an $r\alpha g$ - \mathcal{I} -open set.
- (2) $\{a, b, d\}$ is $r \alpha g \cdot \mathcal{I}$ -open set but not a $C_r^* \cdot \mathcal{I}$ -set.

4. Decompositions of *rg*-continuity

Definition 4.1. A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be rg-continuous [17] (resp. gpr-continuous [4], rag-continuous [18], C_r -continuous [18] and C_r^* -continuous [18]) if $f^{-1}(V)$ is rg-open (resp. gpr-open, rag-open, C_r -set and C_r^* -set) in (X, τ) for every open set V in (Y, σ) .

Definition 4.2. A mapping $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be $r\alpha g$ - \mathcal{I} -continuous (resp. gpr- \mathcal{I} -continuous, C_r - \mathcal{I} -continuous and C_r^* - \mathcal{I} -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is $r\alpha g$ - \mathcal{I} -open (resp. gpr- \mathcal{I} -open, a C_r - \mathcal{I} -set and a C_r^* - \mathcal{I} -set) in (X, τ, \mathcal{I}) .

From Propositions 3.2 and 3.3 and Corollary 3.1 we have the following decompositions of rg-continuity.

Theorem 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. For a mapping $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is rg-continuous;
- (2) f is $gpr-\mathcal{I}$ -continuous and C_r - \mathcal{I} -continuous;
- (3) f is $r \alpha g \cdot \mathcal{I}$ -continuous and $C_r \cdot \mathcal{I}$ -continuous;
- (4) f is $r \alpha g \cdot \mathcal{I}$ -continuous and $C_r^* \cdot \mathcal{I}$ -continuous.

Remark 4.1.

- (1) The concepts of gpr- \mathcal{I} -continuity and C_r - \mathcal{I} -continuity are independent of each other.
- (2) The concepts of $r\alpha g$ - \mathcal{I} -continuity and C_r - \mathcal{I} -continuity are independent of each other.
- (3) The concepts of $r\alpha g$ - \mathcal{I} -continuity and C_r^* - \mathcal{I} -continuity are independent of each other.

Example 4.1.

- (1) Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\emptyset, \{b\}\} \text{ and } \sigma = \{\emptyset, Y, \{a, d\}\}.$ Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is C_r - \mathcal{I} -continuous but not gpr- \mathcal{I} -continuous.
- (2) Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, X, \{d\}, \{a, c\}, \{a, c, d\}\}, \mathcal{I} = \{\emptyset, \{a\}, \{d\}, \{a, d\}\} and \sigma = \{\emptyset, Y, \{b, c, d\}\}.$ Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is $gpr \cdot \mathcal{I}$ -continuous but not $C_r \cdot \mathcal{I}$ -continuous.

Example 4.2.

- (1) Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\emptyset, \{c\}\} and \sigma = \{\emptyset, Y, \{b, c, d\}\}.$ Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is C_r - \mathcal{I} -continuous but not $r \alpha g$ - \mathcal{I} -continuous.
- (2) Let $X = Y = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}, \mathcal{I} = \{\emptyset, \{d\}\} and \sigma = \{\emptyset, Y, \{a, b, d\}\}.$ Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be the identity function. Then f is $r \alpha g$ - \mathcal{I} -continuous but not C_r - \mathcal{I} -continuous.

Example 4.3. Let X, Y, τ , \mathcal{I} and f be as in Example 4.2 (2). Let $\sigma = \{\emptyset, Y, \{b, c, d\}\}$. Then f is C_r^* - \mathcal{I} -continuous but not $r\alpha g$ - \mathcal{I} -continuous. In Example 4.2 (2), f is $r\alpha g$ - \mathcal{I} -continuous but not C_r^* - \mathcal{I} -continuous.

Corollary 4.1 ([18]). Let (X, τ, \mathcal{I}) be an ideal topological space and $\mathcal{I} = \{\emptyset\}$. For a mapping $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$, the following properties are equivalent:

- (1) f is rg-continuous;
- (2) f is gpr-continuous and C_r -continuous;
- (3) f is $r\alpha g$ -continuous and C_r -continuous;
- (4) f is rag-continuous and C_r^* -continuous.

Proof. Since $\mathcal{I} = \{\emptyset\}$, we have $A^* = \operatorname{cl}(A)$ and $\operatorname{cl}^*(A) = A^* \cup A = \operatorname{cl}(A)$ for any subset A of X [[5], Proposition 2.4(a)]. Therefore, we obtain (1) A is $r\alpha g$ - \mathcal{I} -open (resp. gpr- \mathcal{I} -open) if and only if it is $r\alpha g$ -open (resp. gpr-open) and (2) A is a C_r - \mathcal{I} -set (resp. a C_r^* - \mathcal{I} -set) if and only if it is a C_r -set (resp. a C_r^* -set). The proof follows from Theorem 4.1 immediately. \Box

References

- [1] D.Andrijevic, *Semi-preopen sets*, Mat. Vesnik, 38(1)(1986), 24-32.
- K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12(1991), 5-13.
- [3] J.Dontchev, On pre-I-open sets and a decomposition of *I*-continuity, Banyan Math. J., 2(1996).
- [4] Y.Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure Appl. Math., 28(3)(1997), 351-360.
- [5] E.Hatir and T.Noiri, On decompositions of continuity via idealization, Acta Math. Hungar., 96(4)(2002), 341-349.
- [6] E.Hatir, T.Noiri and S.Yuksel, A decomposition of continuity, Acta Math. Hungar., 70(1996), 145-150.
- [7] E.Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [8] D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [9] K.Kuratowski, Topology, Vol. 1, Academic Press, New York (1966).
- [10] N.Levine, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [11] N.Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.
- [12] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [13] O.Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [14] T.Noiri, Almost αg -closed functions and separation axioms, Acta Math. Hungar., 82(3)(1999), 193-205.
- [15] T.Noiri, M.Rajamani and V.Inthumathi, On decompositions of g-continuity via idealization, Bull. Cal. Math. Soc., 99(4)(2007), 415-424.
- [16] T.Noiri, M.Rajamani and V.Inthumathi, Some decompositions of regular generalized continuity via idealization, Kochi J. Math., 5(2010), 87-95.

- [17] N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [18] O.Ravi, A.Pandi, I.Rajasekaran and A.Hamari Choudhi, Further decompositions of rg-continuity, submitted.
- [19] M.H.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [20] P.Sundaram and M.Rajamani, Some decompositions of regular generalized continuous maps in topological spaces, Far East J. Math. Sci., special volume, Part II, (2000), 179-188.
- [21] J.Tong, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), 51-55.
- [22] R.Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci., Sect A, 20(1944), 51-61.