Construction of Weights on the Semigroup ($\mathbb{N},+$) Using some Standard Functions

Shreema S. Bhatt ${ }^{1}$ and H. V. Dedania ${ }^{1, *}$
1 Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India.

Abstract

A weight on the semigroup $(\mathbb{N},+)$ of natural numbers is a function $\omega: \mathbb{N} \longrightarrow(0, \infty)$ satisfying the submultiplicativity $\omega(m+n) \leq \omega(m) \omega(n)$ for all $m, n \in \mathbb{N}$. In this simple paper, we exhibit that some standard functions such as $c \cosh (n)$, $c \sinh (n), \overline{n^{k}}+c,(n+c)^{k}, e^{n^{c}}, e^{-n^{c}}, \log \left(n^{k}\right)+c,[\log (n)+c]^{k}$, and much more are weights on \mathbb{N} under certain conditions on the constant c.

MSC: Primary 20M14; Secondary 11N60 and 46J05.

Keywords: Semigroup, Weight, Hyperbolic functions, Exponential function, and Logarithmic function
(C) JS Publication.

1. Introduction

The weights play crucial role in studying the weighted discrete semigroup algebra $\ell^{1}(\mathbb{N}, \omega)$ with the convolution product [4, Section 4.6]. Moreover, many Banach algebra properties of $\ell^{1}(\mathbb{N}, \omega)$ can be characterized in terms of the weight ω. For example, the $\ell^{1}(\mathbb{N}, \omega)$ is semisimple if and only $\operatorname{if} \inf \left\{\omega(n)^{\frac{1}{n}}: n \in \mathbb{N}\right\}$ is positive [4, Theorem 4.6.9]. The weight ω greatly influences the Banach algebra structure of $\ell^{1}(\mathbb{N}, \omega)$. For example, consider $\omega_{1}(n)=e^{-n^{2}}$ and $\omega_{2}(n)=n^{2}+1$. Then, unlike $\ell^{1}\left(\mathbb{N}, \omega_{2}\right)$, the algebra $\ell^{1}\left(\mathbb{N}, \omega_{1}\right)$ is a radical, unicellular, ordinary Banach algebra [4, Proposition 4.6.24]. In 1974, G. E. Shilov asked the following question: Does there exist a radical weight ω on \mathbb{N} such that $\ell^{1}(\mathbb{N}, \omega)$ contains a non-standard closed ideal? [8, Page 189]. In 1984, M. P. Thomas succeeded to construct such weights [10]. There are some open problems also. For example, whether there exists a semisimple weight ω on \mathbb{N} such that $\ell^{1}(\mathbb{N}, \omega)$ is neither Arens regular nor strongly Arens irregular? [5, Page 56]. There are several types of weights such as radical, semisimple, regular, convex, ordinary, star-shaped, non-quasi-analytic, etc. $[2-4,6,7]$. We also note that the weights on \mathbb{N} have a connection with arithmetical functions in Number Theory [1].

These interesting facts motivated us to find a variety of weights on \mathbb{N}. In this paper, we characterize, in terms of the constant c, the standard functions $c \cosh (n), c \sinh (n), n^{k}+c,(n+c)^{k}, n^{-k}+c,\left(n^{k}+c\right)^{-n}, e^{n^{c}}, e^{-n^{c}}, e^{-(n+c)!}, \log \left(n^{k}\right)+c$, and $[\log (n)+c]^{k}$ as weights. General Methods of constructing weights on arbitrary semigroups are given in [9].

2. Main Results

Throughout, we reserve the notation for two constants $k \in \mathbb{N}$ and $c>0$.

[^0]Theorem 2.1. Let $c>0$. Then
(1). The map $\omega(n)=c \cosh (n)$ is a weight on \mathbb{N} if and only if $c \geq 2$.
(2). The map $\omega(n)=c \sinh (n)$ is a weight on \mathbb{N} if and only if $c \geq \frac{\sinh (2)}{\sinh ^{2}(1)}$.

Proof.

(1). Assume that ω is a weight on \mathbb{N}. Then, for any $n \in \mathbb{N}$, we have

$$
e^{2 n}+e^{-2 n}=\frac{2}{c} \omega(2 n) \leq \frac{2}{c} \omega(n)^{2}=\frac{c}{2}\left(e^{n}+e^{-n}\right)^{2} .
$$

This implies that $0 \leq\left(\frac{c}{2}-1\right) e^{2 n}+\left(\frac{c}{2}-1\right) e^{-2 n}+c(n \in \mathbb{N})$ and hence we have $c \geq 2$. Conversely, assume that $c \geq 2$. Define $\omega_{1}(n)=e^{n}, \omega_{2}(n)=e^{-n}$, and $\omega_{3}(n)=\frac{c}{2}$. Clearly they are weights on \mathbb{N} and hence $\omega=\omega_{3}\left(\omega_{1}+\omega_{2}\right)$ is a weight on \mathbb{N}.
(2). First we claim that, for $k, m, n \in \mathbb{N}$,

$$
\begin{gather*}
e^{k+1}+e^{k-1}+e^{-k+1}+e^{-k-1} \leq 2 e^{2 m+k-1}+2 e^{-2 m-k+1} ; \tag{1}\\
\left(e^{1}-e^{-1}\right)\left(e^{m+n}-e^{-m-n}\right) \leq\left(e^{1}+e^{-1}\right)\left(e^{m}-e^{-m}\right)\left(e^{n}-e^{-n}\right) . \tag{2}
\end{gather*}
$$

The inequality (1) is clear because

$$
\begin{aligned}
e^{k+1}+e^{k-1}+e^{-k+1}+e^{-k-1} & \leq e^{2} e^{k-1}+e^{2} e^{k-1}+e^{-k-1}+e^{-k-1} \\
& \leq e^{2 m+k-1}+e^{2 m+k-1}+e^{-2 m-k+1}+e^{-2 m-k+1}
\end{aligned}
$$

The inequality (2) clearly holds for $m=n$. Now assume that $m<n$. Then $n=m+k$ for some $k \geq 1$. By inequality (1) above, we have

$$
\begin{array}{ll}
& e^{k+1}+e^{k-1}+e^{-k+1}+e^{-k-1} \leq 2 e^{2 m+k-1}+2 e^{-2 m-k+1} \\
\Longrightarrow \quad & e^{2 m+k+1}+e^{-2 m-k-1}+e^{k+1}+e^{k-1}+e^{-k+1}+e^{-k-1} \\
& \leq e^{2 m+k+1}+e^{-2 m-k-1}+2 e^{2 m+k-1}+2 e^{-2 m-k+1} \\
\Longrightarrow \quad & e^{2 m+k+1}+e^{-2 m-k-1}-e^{2 m+k-1}-e^{-2 m-k+1}+e^{k+1}+e^{k-1} \\
& +e^{-k+1}+e^{-k-1} \leq e^{2 m+k+1}+e^{-2 m-k-1}+e^{2 m+k-1}+e^{-2 m-k+1} \\
\Longrightarrow \quad & e^{2 m+k+1}-e^{2 m+k-1}-e^{-2 m-k+1}+e^{-2 m-k-1} \leq e^{2 m+k+1}+e^{-2 m-k-1} \\
& +e^{2 m+k-1}+e^{-2 m-k+1}-e^{k+1}-e^{k-1}-e^{-k+1}-e^{-k-1} \\
\Longrightarrow \quad & e^{2 m+k+1}-e^{2 m+k-1}-e^{-2 m-k+1}+e^{-2 m-k-1} \leq e^{2 m+k+1}+e^{2 m+k-1} \\
& +e^{-2 m-k+1}-e^{k+1}-e^{k-1}-e^{-k+1}-e^{-k-1}+e^{-2 m-k-1} \\
\Longrightarrow \quad & \left(e^{1}-e^{-1}\right)\left(e^{2 m+k}-e^{-2 m-k}\right) \leq\left(e^{1}+e^{-1}\right)\left(e^{m}-e^{-m}\right)\left(e^{m+k}-e^{-m-k}\right) \\
\Longrightarrow \quad & \left(e^{1}-e^{-1}\right)\left(e^{m+n}-e^{-m-n}\right) \leq\left(e^{1}+e^{-1}\right)\left(e^{m}-e^{-m}\right)\left(e^{n}-e^{-n}\right)
\end{array}
$$

Thus the inequality (2) is proved.
Now assume that ω is a weight on \mathbb{N}. Then $c \sinh (2)=\omega(1+1) \leq \omega(1) \omega(1)=c^{2} \sinh ^{2}(1)$. Hence $c \geq \frac{\sinh (2)}{\sinh ^{2}(1)}$. Conversely, assume that $c \geq \frac{\sinh (2)}{\sinh ^{2}(1)}$. Without loss of generality, we may assume that $c=\frac{\sinh (2)}{\sinh ^{2}(1)}$. Then

$$
\omega(m+n)=\frac{c}{2}\left(e^{m+n}-e^{-m-n}\right)
$$

$$
\begin{aligned}
& \leq \frac{c}{2} \frac{\left(e^{1}+e^{-1}\right)\left(e^{m}+e^{-m}\right)\left(e^{n}+e^{-n}\right)}{e^{1}-e^{-1}} \quad(\text { By inequality (2)) } \\
& =\frac{c}{2} \frac{\left(e^{2}-e^{-2}\right)}{\left(e^{1}-e^{-1}\right)^{2}}\left(e^{m}-e^{-m}\right)\left(e^{n}-e^{-n}\right) \\
& =c \frac{\sinh (2)}{\sinh ^{2}(1)} \sinh (m) \sinh (n) \\
& =c^{2} \sinh (m) \sinh (n)=\omega(m) \omega(n)
\end{aligned}
$$

Thus ω is a weight on \mathbb{N}.
Next we prove that the power function $n^{k}+c$ is a weight on \mathbb{N} under some condition on c. In order to prove this, we need to define two positive numbers; namely,

$$
\begin{equation*}
c_{k}=\frac{\sqrt{2^{k+2}-3}-1}{2} \quad \text { and } \quad d_{k}=\sqrt{3^{k}+2^{2 k-2}-2^{k}}-2^{k-1} . \tag{3}
\end{equation*}
$$

Theorem 2.2. Let $k \in \mathbb{N}$ and $c>0$. Then
(1). $k \leq 4$ if and only if $c_{k}>d_{k}$.
(2). If $\omega(n)=n^{k}+c$ is a weight on \mathbb{N}, then $c \geq \max \left\{c_{k}, d_{k}\right\}$.
(3). If $k \leq 4$, then $\omega(n)=n^{k}+c_{k}$ is a weight on \mathbb{N}.
(4). If $k \geq 5$, then $\omega(n)=n^{k}+d_{k}$ is a weight on \mathbb{N}.
(5). The map $\omega(n)=n^{k}+c$ is a weight on \mathbb{N} if and only if $c \geq \max \left\{c_{k}, d_{k}\right\}$.

Proof.

(1). If $k \leq 4$, then one can check $c_{k}>d_{k}$ manually. Conversely, assume that $k \geq 5$. Clearly $c_{5}=\frac{\sqrt{125}-1}{2}<\sqrt{467}-16=d_{5}$. If $k \geq 6$, then

$$
\begin{aligned}
& 2+2^{\frac{k}{2}}<\left(\frac{3}{2}\right)^{k} \\
\Longrightarrow & 2^{k}+2^{\frac{3 k}{2}}+2^{2 k-2}<3^{k}+2^{2 k-2}-2^{k} \\
\Longrightarrow & \left(2^{\frac{k}{2}}+2^{k-1}\right)^{2}<3^{k}+2^{2 k-2}-2^{k} \\
\Longrightarrow & 2^{\frac{k}{2}}<\sqrt{3^{k}+2^{2 k-2}-2^{k}}-2^{k-1}=d_{k}
\end{aligned}
$$

On the other hand, $c_{k}=\frac{\sqrt{2^{k+2}-3}-1}{2}<2^{\frac{k}{2}}$. Thus $c_{k}<d_{k}$ for all $k \geq 5$.
(2). Assume that ω is a weight on \mathbb{N}. Then

$$
\begin{aligned}
& 2^{k}+c=\omega(1+1) \leq \omega(1) \omega(1)=1+2 c+c^{2} \\
\Longleftrightarrow & 2^{k} \leq 1+c+c^{2}=\frac{3}{4}+\left(\frac{1}{2}+c\right)^{2} \\
\Longleftrightarrow & \frac{\sqrt{2^{k+2}-3}}{2} \leq \frac{1}{2}+c \\
\Longleftrightarrow & \frac{\sqrt{2^{k+2}-3}-1}{2} \leq c .
\end{aligned}
$$

So that $c \geq c_{k}$. Also ω must satisfy

$$
3^{k}+c=\omega(1+2) \leq \omega(1) \omega(2)=2^{k}+c+2^{k} c+c^{2}
$$

$$
\begin{aligned}
& \Longleftrightarrow 3^{k}-2^{k} \leq c^{2}+2^{k} c \\
& \Longleftrightarrow 3^{k}-2^{k}+2^{2 k-2} \leq\left(2^{k-1}+c\right)^{2} \\
& \Longleftrightarrow \sqrt{3^{k}+2^{2 k-2}-2^{k}}-2^{k-1} \leq c .
\end{aligned}
$$

So that $c \geq d_{k}$. Thus $c \geq \max \left\{c_{k}, d_{k}\right\}$.
(3). We shall prove this result in four cases.

Case-(i): $k=1$. In this case, $c_{1}>\frac{1}{2}$. The inequality $\omega(1+1) \leq \omega(1) \omega(1)$ follows from the proof of Statement (2) above. For $n \geq 2$,

$$
\omega(1+n)<n+c_{1}+n c_{1}<\left(1+c_{1}\right)\left(n+c_{1}\right)=\omega(1) \omega(n) .
$$

For $m, n \geq 2$, we have

$$
\omega(m+n)=m+n+c_{1} \leq m n+c_{1}<\omega(m) \omega(n) .
$$

Case-(ii): $k=2$. In this case, $c_{2}>1$. Again $\omega(1+1) \leq \omega(1) \omega(1)$ follows from the proof of Statement (2) above. For $n \geq 2$,

$$
\omega(1+n)=1+2 n+n^{2}+c_{2}<n^{2}+c_{2}+n^{2} c_{2}+c_{2}^{2}=\omega(1) \omega(n) .
$$

Finally, for $m, n \geq 2$, we have

$$
\left(\frac{1}{n}+\frac{1}{m}\right)^{k}+\frac{c_{2}}{m^{k} n^{k}} \leq 1+\frac{c_{2}}{m^{k} n^{k}} \leq 1+\frac{c_{2}^{2}}{m^{k} n^{k}}<\left(1+\frac{c_{2}}{m^{k}}\right)\left(1+\frac{c_{2}}{n^{k}}\right) .
$$

Multiplying both sides by $m^{k} n^{k}$, we get $\omega(m+n) \leq \omega(m) \omega(n)$.
Case-(iii): $k=3$. In this case, $c_{3}>2$. Now this can be proved as per the arguments given in Case-(ii) above.
Case-(iv): $k=4$. In this case, $3.4<c_{4}<3.5$. The inequality $\omega(1+1) \leq \omega(1) \omega(1)$ is clear. Let $m=1$ and $n=2$. Now

$$
\omega(1+2)<84.5<16+17(3.4)+(3.4)^{2}<16+17 c_{4}+c_{4}^{2}=\omega(1) \omega(2)
$$

and, for $n \geq 3$, we have

$$
\omega(1+n) \leq 4 n^{4}+c_{4} \leq\left(1+c_{4}\right) n^{4}+\left(1+c_{4}\right) c_{4}=\omega(1) \omega(n) .
$$

Finally, the $m, n \geq 2$ can be proved as in Case-(ii) above.
(4). By Statement (1) above, we have

$$
\frac{\sqrt{2^{k+2}-3}-1}{2}=c_{k}<d_{k} \Longrightarrow 2^{k+2}-3<\left(1+2 d_{k}\right)^{2} \Longrightarrow 2^{k}+d_{k}<\left(1+d_{k}\right)^{2}
$$

Thus $\omega(1+1)<\omega(1) \omega(1)$. Next we have

$$
\begin{aligned}
& d_{k}=\sqrt{3^{k}+2^{2 k-2}-2^{k}}-2^{k-1} \\
\Longrightarrow & \left(c_{2}+2^{k-1}\right)^{2}=3^{k}+2^{2 k-2}-2^{k} \\
\Longrightarrow & 2^{k}+c_{2} 2^{k}+c_{2}^{2}=3^{k} \\
\Longrightarrow & \left(1^{k}+c_{2}\right)\left(2^{k}+c_{2}\right)=3^{k}+c_{2}
\end{aligned}
$$

Hence $\omega(1) \omega(2)=\omega(1+2)$. The remaining two cases can be proved as in Case-(ii) of Statement (2) above.
(5). The necessary condition is proved in Statement (2) above. For the sufficient condition, we first note that if ω is a weight on \mathbb{N} and if $\omega(n) \geq 1(n \in \mathbb{N})$, then $\widetilde{\omega}(n)=\omega(n)+d$ is also a weight on \mathbb{N} for any $d>0$. So, we can assume that $c=\max \left\{c_{k}, d_{k}\right\}$. Now the result follows from Statements (1), (3), and (4).

Theorem 2.3. Let $k \in \mathbb{N}$ and $c>0$. Then
(1). $\omega(n)=(n+c)^{k}$ is a weight on \mathbb{N} if and only if $c \geq c_{1}$.
(2). $\omega(n)=\frac{1}{n^{k}}+c$ is a weight on \mathbb{N} if and only if $c \geq 1$.
(3). $\omega(n)=\frac{1}{\left(n^{k}+c\right)^{n}}$ is always a weight on \mathbb{N}.
(4). $\omega(n)=\frac{1}{n^{k}+c}$ is never a weight on \mathbb{N}.

Proof.
(1). Define $\omega_{1}(n)=n+c(n \in \mathbb{N})$. Then $\omega(n)=\omega_{1}(n)^{k}$ for all n. Clearly, ω is a weight if and only if ω_{1} is a weight. Now the result follows from Theorem 2.2(5).
(2). Assume that ω is a weight on \mathbb{N}. Then, for all $m, n \in \mathbb{N}$,

$$
\frac{1}{(m+n)^{k}}+c=\omega(m+n) \leq \omega(m) \omega(n)=\left(\frac{1}{m^{k}}+c\right)\left(\frac{1}{n^{k}}+c\right)
$$

Taking $m, n \longrightarrow \infty$, we get $c \leq c^{2}$. Hence $c \geq 1$. Conversely, assume that $c \geq 1$. Then, for $m, n \in \mathbb{N}$,

$$
\begin{aligned}
m^{k} n^{k}\left\{1+c(m+n)^{k}\right\} & =m^{k} n^{k}+c m^{k} n^{k}(m+n)^{k} \\
& \leq\left(c m^{k}\right)(m+n)^{k}+c^{2} m^{k} n^{k}(m+n)^{k} \\
& \leq\left(c m^{k}+c n^{k}+1\right)(m+n)^{k}+c^{2} m^{k} n^{k}(m+n)^{k} \\
& =\left(c m^{k}+c n^{k}+1+c^{2} m^{k} n^{k}\right)(m+n)^{k} \\
& =\left(c m^{k}+1\right)\left(c n^{k}+1\right)(m+n)^{k}
\end{aligned}
$$

Dividing both sides by $m^{k} n^{k}(m+n)^{k}$, we get $\omega(m+n) \leq \omega(m) \omega(n)$.
(3). Let $m, n \in \mathbb{N}$. Then

$$
\begin{aligned}
\left(m^{k}+c\right)^{m}\left(n^{k}+c\right)^{n} & \leq\left[(m+n)^{k}+c\right]^{m}\left(n^{k}+c\right)^{n} \\
& \leq\left[(m+n)^{k}+c\right]^{m}\left[(m+n)^{k}+c\right]^{n} \\
& =\left[(m+n)^{k}+c\right]^{m+n}
\end{aligned}
$$

Thus $\frac{1}{\left[(m+n)^{k}+c\right]^{m+n}} \leq \frac{1}{m^{k}+c^{m}} \frac{1}{n^{k}+c^{n}}$ which implies $\omega(m+n) \leq \omega(m) \omega(n)$.
(4). Suppose, if possible, $\omega(n)=\frac{1}{n^{k}+c}$ is a weight. Then, for $m, n \in \mathbb{N}$,

$$
\begin{aligned}
& \omega(m+n) \leq \omega(m) \omega(n) \\
\Longrightarrow & \frac{1}{(m+n)^{k}+c} \leq\left(\frac{1}{m^{k}+c}\right)\left(\frac{1}{n^{k}+c}\right) \\
\Longrightarrow & \left(m^{k}+c\right)\left(n^{k}+c\right) \leq(m+n)^{k}+c \\
\Longrightarrow & \left(1+\frac{c}{m^{k}}\right)\left(1+\frac{c}{n^{k}}\right) \leq\left(\frac{1}{n}+\frac{1}{m}\right)^{k}+\frac{c}{m^{k} n^{k}}
\end{aligned}
$$

Taking $m, n \longrightarrow \infty$, we get $1 \leq 0$. It is a contradiction. So ω is not a weight on \mathbb{N}.

Theorem 2.4. Let $k \in \mathbb{N}$ and $c \geq 0$. Then
(1). $\omega(n)=e^{n^{c}}$ is a weight on \mathbb{N} if and only if $0 \leq c \leq 1$.
(2). $\omega(n)=e^{-n^{c}}$ is a weight on \mathbb{N} if and only if $c \geq 1$.
(3). If $c \in \mathbb{N} \cup\{0\}$, then $\omega(n)=e^{-(n+c)!}$ is a weight on \mathbb{N}.

Proof.
(1). If ω is a weight, then $2^{c}=\ln \omega(2)=\ln \omega(1+1) \leq 2 \ln \omega(1)=2$. Hence $c \leq 1$. Conversely, if $c \leq 1$, then $(m+n)^{c} \leq$ $m^{c}+n^{c}$, and so $\omega(m+n) \leq \omega(m) \omega(n)$.
(2). If ω is a weight, then $-2^{c}=\ln \omega(1+1) \leq 2 \ln \omega(1)=-2$. Hence $c \geq 1$. Conversely, if $c \geq 1$, then $(m+n)^{c} \geq m^{c}+n^{c}$. Hence $\omega(n)=e^{-n^{c}}$ is a weight on \mathbb{N}.
(3). Clearly, $\left[(m+n)^{k}+c\right]!\geq 2\left\{\left[(m+n-1)^{k}+c\right]!\right\} \geq\left(m^{k}+c\right)!+\left(n^{k}+c\right)!$. Thus ω is a weight on \mathbb{N}.

Theorem 2.5. Let $k \in \mathbb{N}$ and $c>0$. Then
(1). $\omega(n)=\log \left(n^{k}\right)+c$ is a weight on \mathbb{N} if and only if $\log \left(2^{k}\right) \leq c(c-1)$.
(2). $\omega(n)=[\log (n)+c]^{k}$ is a weight on \mathbb{N} if and only if $\log (2) \leq c(c-1)$.
(3). If $c \geq c_{1}$ and $\log \left[(1+c)^{k}\right] \geq 2$, then $\omega(n)=\log \left[(n+c)^{k}\right]$ is a weight on \mathbb{N}.
(4). If $c \geq c_{1}$ and $\log (1+c) \geq 2$, then $\omega(n)=[\log (n+c)]^{k}$ is a weight on \mathbb{N}.

Proof.

(1). Assume that ω is a weight. Then $\log \left(2^{k}\right)+c=\omega(1+1) \leq \omega(1)^{2}=c^{2}$. Conversely, assume that $\log \left(2^{k}\right) \leq c(c-1)$. Since $\left\{\left(\frac{n+1}{n}\right)\right\}$ is a decreasing sequence and $c>1$, we have

$$
\begin{aligned}
& \log \left[\left(\frac{n+1}{n^{c}}\right)^{k}\right]<\log \left[\left(\frac{n+1}{n}\right)^{k}\right] \leq \log \left(2^{k}\right) \leq c(c-1) \\
\Longrightarrow & \log \left[(n+1)^{k}\right]-\log \left[n^{k c}\right] \leq c^{2}-c \\
\Longrightarrow & \log \left[(n+1)^{k}\right]+c \leq c \log \left(n^{k}\right)+c^{2} \\
\Longrightarrow & \log \left[(n+1)^{k}\right]+c \leq c\left[\log \left(n^{k}\right)+c\right] .
\end{aligned}
$$

Thus $\omega(1+n) \leq \omega(1) \omega(n)$. Now let $m \geq 2$, and $n \geq 2$. Since $c>1$, we have

$$
\log \left[(m+n)^{k}\right]+c \leq \log \left[(m n)^{k}\right]+c<c\left[\log \left(m^{k}\right)+\log \left(n^{k}\right)\right]+c^{2} .
$$

Hence $\omega(m+n) \leq \omega(m) \omega(n)$. Thus ω is a weight on \mathbb{N}.
(2). Define $\omega_{1}(n)=\log (n)+c$. Then $\omega(n)=\omega_{1}(n)^{k}$. Clearly, ω is a weight iff ω_{1} is a weight. By Statement (1) above, ω_{1} is a weight if and only if $\log (2) \leq c(c-1)$.
(3). Define $\omega_{1}(n)=(n+c)^{k}$. By Theorem 2.3(1), ω_{1} is a weight. Then, by the hypothesis, $\omega(n)=\log \omega_{1}(n) \geq 2(n \in \mathbb{N})$. Hence $\omega(m+n)=\log \omega_{1}(m+n) \leq \log \left[\omega_{1}(m) \omega_{1}(n)\right]=\omega(m)+\omega(n) \leq \omega(m) \omega(n)$ because $a \geq 2$ and $b \geq 2$ implies $a+b \leq a b$. Thus ω is a weight.
(4). Define $\omega_{1}=n+c$ and $\omega_{2}(n)=\log \omega_{1}(n)$. By Theorem 2.3(1), ω_{1} is a weight on \mathbb{N}. By the hypothesis, $\omega_{2}(n) \geq 2(n \in \mathbb{N})$. So $\omega_{2}(m+n)=\log \omega_{1}(m+n) \leq \log \left[\omega_{1}(m) \omega_{1}(n)\right]=\omega_{2}(m)+\omega_{2}(n) \leq \omega_{2}(m) \omega_{2}(n)$. Thus ω_{2} is a weight. Hence $\omega(n)=\omega_{2}(n)^{k}$ is a weight on \mathbb{N}.

Remark 2.6. Note that the maps $e^{|\sin (n)|}$ and $e^{|\sin (n)|+|\cos (n)|}$ are weights. But their ranges are contained in a bounded subset of $[1, \infty)$. Such weights are not interesting in studying the Banach algebra $\ell^{1}(\mathbb{N}, \omega)$. Moreover, \mathbb{N} is the smallest subsemigroup of \mathbb{R}. If ω is a weight on a subsemigroup S of \mathbb{R}, then we can get a weight on \mathbb{N} simply by $\widetilde{\omega}(n)=\omega\left(n s_{0}\right)$ with some fixed $s_{0} \in S$. On the other hand, we can extend weights on \mathbb{N} to a subsemigroup S of \mathbb{R} containing \mathbb{N} under some conditions on ω [2, Section 3.4]. The reader could refer to [2, 5, 9] and references their in for more weights and for methods of constructing them.

References

[1] Tom M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition, Narosa Publishing House, New Delhi, (1989).
[2] Shreema S. Bhatt, Weights on Groups and Semigroups, and their relevance in Banach Algebras, M.Phil. Dissertation, Sardar Patel University, (2019).
[3] T. D. Blackmore, Weak Amenability of Discrete Semigroup Algebras, Semigroup Forum, 55(1997), 196-205.
[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, Vol 24, Clarendon Press, Oxford, (2000).
[5] H. G. Dales and H. V. Dedania, Weighted Convolution Algebras on Subsemigroups of the Real Line, Dissertationes Mathematicae (Rosprawy Matematicze), 459(2009), 1-60.
[6] H. R. Ebrahimi Vishki, B. Khodsiani and A. Rejali, Arens regularity of certain weighted semigroup algebras and countability, Semigroup Forum, 92(2016), 304-310.
[7] N. Grønbæk, Amenability of Weighted Discrete Semigroup Algebras on Cancellative Semigroups, Proc. Roy. Soc. Edinburgh Series-A, 110(1988), 351-360.
[8] N. K. Nikolskii, Selected Problems of Weighted Approximations and Spectral Analysis, Proc. Steklov Inst. Math., 120(1974), 1-278.
[9] J. H. Shah, Vector-valued Weighted Discrete Semigroup Algebras, Ph.D. Thesis, Sardar Patel University, (2008).
[10] M. P. Thomas, A Non-standard Ideal of a Radical Banach Algebra of Power Series, Acta Math., 152(1984), 199-217.

[^0]: * E-mail: hvdedania@gmail.com

