Volume 3, Issue 2 (2015), 65-73.

ISSN: 2347-1557

Available Online: http://ijmaa.in/



### International Journal of Mathematics And its Applications

# On $\tilde{g}(1,2)^*$ -closed Sets

Research Article

### O.Ravi<sup>1\*</sup>, R.Bhavani<sup>2</sup>, S.Murugesan<sup>3</sup> and I.Rajasekaran<sup>4</sup>

- 1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
- 2 Department of Mathematics, M.T.N College, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, Sri S. Ramasamy Naidu Memorial College, Sattur, Tamil Nadu, India.
- 4 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

**Abstract:** In this present paper, we introduce a new class of sets namely  $\tilde{g}(1,2)^{\star}$ -closed sets in bitopological spaces. The notion of

 $\tilde{g}(1,2)^{\star}$ -interior is defined and some of its basic properties are studied. Also we introduce the concept of  $\tilde{g}(1,2)^{\star}$ -closure

in bit opological spaces using the notion of  $\tilde{g}(1,2)^{\star}\text{-closed}$  sets.

MSC: 54E55

**Keywords:**  $\tilde{g}(1,2)^*$ -closed set,  $(1,2)^*$ - $\hat{g}$ -closed set,  $(1,2)^*$ -sg-closed set,  $(1,2)^*$ -gsp-closed set,  $(1,2)^*$ - $\hat{g}$ -closed set,  $(1,2)^*$ - $\hat{$ 

© JS Publication.

## 1. Introduction

Levine [4] introduced generalized closed sets in general topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Veerakumar [16] introduced  $\hat{g}$ -closed sets in topological spaces. Sheik John [15] introduced  $\omega$ -closed sets in topological spaces. After advent of these notions, many topologists introduced various types of generalized closed sets and studied their fundamental properties. Quite Recently, Ravi and Ganesan [6] introduced and studied  $\ddot{g}$ -closed sets in topological spaces as another generalization of closed sets and proved that the class of  $\ddot{g}$ -closed sets properly lies between the class of closed sets and the class of  $\omega$ -closed sets. Ravi et al [12, 14], Ravi and Thivagar [8] and Duszynski et al [1] introduced  $(1,2)^*$ - $\alpha g$ -closed sets,  $(1,2)^*$ -g-closed sets,  $(1,2)^*$ -sg-closed sets and  $(1,2)^*$ -g-closed sets respectively. Ravi et al [7] introduced  $(1,2)^*$ -g-closed sets in bitopological spaces. In this paper, we introduce a new class of sets namely g(1, 2)\*-closed sets in bitopological spaces. This class lies between the class of  $(1,2)^*$ -g-closed sets and the class of  $(1,2)^*$ - $\alpha g$ -closed sets. The notion of g(1, 2)\*-interior is defined and some of its basic properties are studied. Also we introduce the concept of g(1, 2)\*-closure in bitopological spaces using the notion of g(1, 2)\*-closed sets, and we obtain some related results.

<sup>\*</sup> E-mail: siinqam@yahoo.com

### 2. Preliminaries

Throughout this paper,  $(X, \tau_1, \tau_2)$  (briefly, X) will denote bitopological space.

**Definition 2.1.** Let S be a subset of X. Then S is said to be  $\tau_{1,2}$ -open [9] if  $S = A \cup B$  where  $A \in \tau_1$  and  $B \in \tau_2$ . The complement of  $\tau_{1,2}$ -open set is called  $\tau_{1,2}$ -closed. Notice that  $\tau_{1,2}$ -open sets need not necessarily form a topology.

**Definition 2.2** ([9]). Let S be a subset of a bitopological space X. Then

- (1) the  $\tau_{1,2}$ -closure of S, denoted by  $\tau_{1,2}$ -cl(S), is defined as  $\cap \{F: S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$ .
- (2) the  $\tau_{1,2}$ -interior of S, denoted by  $\tau_{1,2}$ -int(S), is defined as  $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open}\}$ .

**Definition 2.3.** A subset A of a bitopological space X is called

- (1)  $(1,2)^*$ -semi-open set [8] if  $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- (2)  $(1,2)^*$ - $\alpha$ -open set [3] if  $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A));
- (3)  $(1,2)^*$ - $\beta$ -open set [10] if  $A \subseteq \tau_{1,2}$ - $cl(\tau_{1,2}$ - $int(\tau_{1,2}$ -cl(A))).

The complements of the above mentioned open sets are called their respective closed sets. The  $(1,2)^*$ -semi-closure [5] (resp.  $(1,2)^*$ - $\alpha$ -closure [5],  $(1,2)^*$ - $\beta$ -closure [10]) of a subset A of X, denoted by  $(1,2)^*$ -scl(A) (resp.  $(1,2)^*$ - $\alpha$ cl(A),  $(1,2)^*$ - $\beta$ cl(A)), is defined to be the intersection of all  $(1,2)^*$ -semi-closed (resp.  $(1,2)^*$ - $\alpha$ -closed,  $(1,2)^*$ - $\beta$ -closed) sets of  $(X, \tau_1, \tau_2)$  containing A. It is known that  $(1,2)^*$ -scl(A) (resp.  $(1,2)^*$ - $\alpha$ cl(A),  $(1,2)^*$ - $\beta$ cl(A)) is a  $(1,2)^*$ -semiclosed (resp.  $(1,2)^*$ - $\alpha$ -closed,  $(1,2)^*$ - $\beta$ -closed) set.

**Definition 2.4.** A subset A of a bitopological space  $(X, \tau_1, \tau_2)$  is called

- (1)  $(1,2)^*$ -g-closed set [14] if  $\tau_{1,2}$ -cl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $\tau_{1,2}$ -open in X. The complement of  $(1,2)^*$ -g-closed set is called  $(1,2)^*$ -g-open set;
- (2)  $(1,2)^*$ -sg-closed set [8] if  $(1,2)^*$ -scl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ -semi-open in X. The complement of  $(1,2)^*$ -sg-closed set is called  $(1,2)^*$ -sg-open set;
- (3)  $(1,2)^*$ -gs-closed set [8] if  $(1,2)^*$ -scl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $\tau_{1,2}$ -open in X. The complement of  $(1,2)^*$ -gs-closed set is called  $(1,2)^*$ -gs-open set;
- (4)  $(1,2)^*$ - $\alpha g$ -closed set [12] if  $(1,2)^*$ - $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\tau_{1,2}$ -open in X. The complement of  $(1,2)^*$ - $\alpha g$ -closed set is called  $(1,2)^*$ - $\alpha g$ -open set;
- (5)  $(1,2)^*$ - $\hat{g}$ -closed set [1] or  $(1,2)^*$ - $\omega$ -closed set [2] if  $\tau_{1,2}$ -cl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ -semi-open in X. The complement of  $(1,2)^*$ - $\hat{g}$ -closed (or  $(1,2)^*$ - $\omega$ -closed) set is called  $(1,2)^*$ - $\hat{g}$ -open (or  $(1,2)^*$ - $\omega$ -open) set;
- (6)  $(1,2)^*$ - $\psi$ -closed set [7] if  $(1,2)^*$ -scl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ -sg-open in X. The complement of  $(1,2)^*$ - $\psi$ -closed set is called  $(1,2)^*$ - $\psi$ -open set;
- (7)  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed set [7] if  $(1,2)^*$ - $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ -sg-open in X. The complement of  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed set is called  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -open set;

(8)  $(1,2)^*$ -gsp-closed set [10] if  $(1,2)^*$ - $\beta cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\tau_{1,2}$ -open in X. The complement of  $(1,2)^*$ -gsp-closed set is called  $(1,2)^*$ -gsp-open set.

Remark 2.5. The collection of all  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed (resp.  $(1,2)^*$ - $\hat{g}$ -closed,  $(1,2)^*$ -g-closed,  $(1,2)^*$ -gs-closed,  $(1,2)^*$ -gs-closed,  $(1,2)^*$ -ag-closed,  $(1,2)^*$ -semi-closed,  $(1,2)^*$ -semi-closed) sets of X is denoted by  $(1,2)^*$ - $\ddot{G}_{\alpha}C(X)$  (resp.  $(1,2)^*$ - $\hat{G}(X)$ ,  $(1,2)^*$ -GC(X),  $(1,2)^*$ -GC(

We denote the power set of X by P(X).

#### Remark 2.6.

- (1) Every  $\tau_{1,2}$ -closed set is  $(1,2)^*$ -semi-closed but not conversely [8].
- (2) Every  $\tau_{1,2}$ -closed set is  $(1,2)^*$ - $\alpha$ -closed but not conversely [5].
- (3) Every  $(1,2)^*$ -semi-closed set is  $(1,2)^*$ - $\psi$ -closed but not conversely [7].
- (4) Every  $(1,2)^*$ -semi-closed set is  $(1,2)^*$ -sg-closed but not conversely [8].
- (5) Every  $(1,2)^*$ - $\hat{g}$ -closed set is  $(1,2)^*$ -g-closed but not conversely [1].
- (6) Every  $(1,2)^*$ -sg-closed set is  $(1,2)^*$ -gs-closed but not conversely [11].
- (7) Every  $(1,2)^*$ -g-closed set is  $(1,2)^*$   $\alpha g$ -closed but not conversely [12].
- (8) Every  $(1,2)^*$ -g-closed set is  $(1,2)^*$ -sg-closed but not conversely [11].
- (9) Every  $\tau_{1,2}$ -closed set is  $(1,2)^*$ - $\hat{g}$ -closed but not conversely [1].
- (10) Every  $(1,2)^*$ - $\hat{g}$ -closed set is  $(1,2)^*$ -sg-closed but not conversely [1].

# 3. $\tilde{g}(1,2)^*$ -closed Sets

We introduce the following definition.

**Definition 3.1.** A subset A of a bitopological space X is called

- (1)  $(1,2)^*$ - $\ddot{g}$ -closed set [7] if  $\tau_{1,2}$ -cl(A)  $\subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ -sg-open in X. The complement of  $(1,2)^*$ - $\ddot{g}$ -closed set is called  $(1,2)^*$ - $\ddot{g}$ -open set.
- (2)  $\tilde{g}(1,2)^*$ -closed if  $(1,2)^*$ - $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $(1,2)^*$ - $\hat{g}$ -open in X. The complement of  $\tilde{g}(1,2)^*$ -closed set is called  $\tilde{g}(1,2)^*$ -open set. The collection of all  $(1,2)^*$ - $\hat{g}$ -closed (resp.  $\tilde{g}(1,2)^*$ -closed) sets in X is denoted by  $(1,2)^*$ - $\ddot{G}C(X)$  (resp.  $(1,2)^*$ - $\ddot{G}C(X)$ ).

**Proposition 3.2** ([7]). Every  $\tau_{1,2}$ -closed set is  $(1,2)^*$ - $\ddot{g}$ -closed but not conversely.

**Proposition 3.3** ([7]). Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed but not conversely.

**Proposition 3.4** ([7]). Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ - $\psi$ -closed but not conversely.

**Proposition 3.5.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ - $\hat{g}$ -closed.

*Proof.* Suppose that  $A \subseteq G$  and G is  $(1,2)^*$ -semi-open in X. Since every  $(1,2)^*$ -semi-open set is  $(1,2)^*$ -sg-open and A is  $(1,2)^*$ - $\ddot{g}$ -closed, therefore  $\tau_{1,2}$ -cl $(A) \subseteq G$ . Hence A is  $(1,2)^*$ - $\hat{g}$ -closed in X.

The converse of Proposition 3.5 need not be true as seen from the following example.

**Example 3.6.** Let  $X = \{a, b, c, d\}$ ,  $\tau_1 = \{\emptyset, X, \{d\}, \{b, c, d\}\}$  and  $\tau_2 = \{\emptyset, X, \{b, c\}\}$ . Then the sets in  $\{\emptyset, X, \{d\}, \{b, c\}, \{b, c, d\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{a\}, \{a, d\}, \{a, b, c\}\}$  are called  $\tau_{1,2}$ -closed. Clearly, the set  $\{a, c, d\}$  is a  $(1, 2)^*$ - $\hat{g}$ -closed but not a  $(1, 2)^*$ - $\hat{g}$ -closed set in X.

**Proposition 3.7.** Every  $(1,2)^*$ - $\alpha$ -closed set is  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed.

*Proof.* If A is an  $(1,2)^*$ - $\alpha$ -closed subset of X and G is any  $(1,2)^*$ -sg-open set containing A, we have  $(1,2)^*$ - $\alpha$ cl(A) = A  $\subseteq$  G. Hence A is  $(1,2)^*$ - $\ddot{\sigma}_{\alpha}$ - closed in X.

The converse of Proposition 3.7 need not be true as seen from the following example.

**Example 3.8.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a, b\}\}$  and  $\tau_2 = \{\emptyset, X\}$ . Then the sets in  $\{\emptyset, X, \{a, b\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{c\}\}$  are called  $\tau_{1,2}$ -closed. Then  $(1,2)^*$ - $\alpha C(X) = \{\emptyset, \{c\}, X\}$  and  $(1,2)^*$ - $\ddot{G}_{\alpha}C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$ . Clearly, the set  $\{a, c\}$  is an  $(1,2)^*$ - $\ddot{G}_{\alpha}$ -closed but not an  $(1,2)^*$ - $\alpha$ -closed set in X.

**Remark 3.9.**  $(1,2)^*$ - $\hat{g}$ -closed set is different from  $\tilde{g}(1,2)^*$ -closed.

#### Example 3.10.

(1) Let  $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}\$ and  $\tau_2 = \{\emptyset, \{a, b\}, X\}.$  Then  $\{b\}$  is  $\tilde{g}(1, 2)^*$ -closed set but not  $(1, 2)^*$ - $\hat{g}$ -closed.

(2) Let  $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}\}\$ and  $\tau_2 = \{\emptyset, \{b, c\}, X\}.$  Then  $\{b\}$  is  $(1, 2)^* - \hat{g}$ -closed set but not  $\tilde{g}(1, 2)^*$ -closed.

**Proposition 3.11.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ -g-closed.

*Proof.* If A is a  $(1,2)^*$ -g-closed subset of X and G is any  $\tau_{1,2}$ -open set containing A, since every  $\tau_{1,2}$ -open set is  $(1,2)^*$ -sg-open, we have  $G \supseteq \tau_{1,2}$ -cl(A). Hence A is  $(1,2)^*$ -g-closed in X.

The converse of Proposition 3.11 need not be true as seen from the following example.

**Example 3.12.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a\}\}$  and  $\tau_2 = \{\emptyset, X, \{b, c\}\}$ . Then the sets in  $\{\emptyset, X, \{a\}, \{b, c\}\}$  are called both  $\tau_{1,2}$ -open and  $\tau_{1,2}$ -closed. Then  $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{a\}, \{b, c\}, X\}$  and  $(1,2)^*$ -GC(X) = P(X). Clearly, the set  $\{a, b\}$  is a  $(1,2)^*$ -g-closed but not a  $(1,2)^*$ - $\ddot{G}$ -closed set in X.

**Proposition 3.13.** Every  $\tilde{g}(1,2)^*$ -closed set is  $(1,2)^*$ - $\alpha g$ -closed.

*Proof.* If A is a  $\tilde{g}(1,2)^*$ -closed subset of X and G is any  $\tau_{1,2}$ -open set containing A, since every  $\tau_{1,2}$ -open set is  $(1,2)^*$ - $\hat{g}$ -open, we have  $(1,2)^*$ - $\alpha cl(A) \subseteq U$ . Hence A is  $(1,2)^*$ - $\alpha g$ -closed in X.

The converse of Proposition 3.13 need not be true as seen from the following example.

**Example 3.14.** In Example 3.12,  $\{a, c\}$  is  $(1, 2)^*$ - $\alpha g$ -closed set but not  $\tilde{g}(1, 2)^*$ -closed.

**Proposition 3.15.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ - $\alpha g$ -closed.

*Proof.* If A is a  $(1,2)^*$ - $\ddot{g}$ -closed subset of X and G is any  $\tau_{1,2}$ -open set containing A, since every  $\tau_{1,2}$ -open set is  $(1,2)^*$ -sg-open, we have  $G \supseteq \tau_{1,2}$ -cl(A)  $\supseteq (1,2)^*$ - $\alpha$ cl(A). Hence A is  $(1,2)^*$ - $\alpha$ g-closed in X.

The converse of Proposition 3.15 need not be true as seen from the following example.

**Example 3.16.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a, b\}\}$  and  $\tau_2 = \{\emptyset, X, \{c\}\}$ . Then the sets in  $\{\emptyset, X, \{c\}, \{a, b\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{c\}, \{a, b\}\}$  are called  $\tau_{1,2}$ -closed. Then  $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{c\}, \{a, b\}, X\}$  and  $(1,2)^*$ - $\alpha GC(X) = P(X)$ . Clearly, the set  $\{a, c\}$  is an  $(1,2)^*$ - $\alpha g$ -closed but not a  $(1,2)^*$ - $\ddot{g}$ -closed set in X.

**Proposition 3.17.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ -g-closed.

*Proof.* If A is a  $(1,2)^*$ - $\ddot{g}$ -closed subset of X and G is any  $\tau_{1,2}$ -open set containing A, since every  $\tau_{1,2}$ -open set is  $(1,2)^*$ -sg-open, we have  $G \supseteq \tau_{1,2}$ -cl(A)  $\supseteq (1,2)^*$ -scl(A). Hence A is  $(1,2)^*$ -gs-closed in X.

The converse of Proposition 3.17 need not be true as seen from the following example.

**Example 3.18.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a\}\}$  and  $\tau_2 = \{\emptyset, X\}$ . Then the sets in  $\{\emptyset, X, \{a\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{b, c\}\}$  are called  $\tau_{1,2}$ -closed. We have  $(1,2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{b, c\}, X\}$  and  $(1,2)^*$ - $GSC(X) = \{\emptyset, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ . Clearly, the set  $\{c\}$  is a  $(1,2)^*$ -g-closed but not a  $(1,2)^*$ - $\ddot{g}$ -closed set in X.

**Proposition 3.19.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ -sg-closed.

*Proof.* If A is a  $(1,2)^*$ - $\ddot{g}$ -closed subset of X and G is any  $(1,2)^*$ -semi-open set containing A, since every  $(1,2)^*$ -semi-open set is  $(1,2)^*$ -sg-open, we have  $G \supseteq \tau_{1,2}$ -cl(A)  $\supseteq (1,2)^*$ -scl(A). Hence A is  $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.19 need not be true as seen from the following example.

**Example 3.20.** In Example 3.18, we have  $(1, 2)^*$ - $\ddot{G}C(X) = \{\emptyset, \{b, c\}, X\}$  and  $(1, 2)^*$ - $SGC(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ . Clearly, the set  $\{b\}$  is a  $(1, 2)^*$ -sg-closed but not a  $(1, 2)^*$ - $\ddot{g}$ -closed set in X.

**Proposition 3.21.** Every  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed set is  $\tilde{g}(1,2)^*$ -closed.

*Proof.* If A is an  $(1,2)^*$ - $\ddot{g}_{\alpha}$ -closed subset of X and G is any  $(1,2)^*$ - $\hat{g}$ -open set containing A, since every  $(1,2)^*$ - $\hat{g}$ -open set is  $(1,2)^*$ -sg-open, we have  $(1,2)^*$ - $\alpha$ cl(A)  $\subseteq$ G. Hence A is  $\tilde{g}(1,2)^*$ -closed in X.

The converse of Proposition 3.21 need not be true as seen from the following example.

**Example 3.22.** In Example 3.10(1),  $\{a, c\}$  is  $\tilde{g}(1, 2)^*$ -closed set but not  $(1, 2)^*$ - $\ddot{g}_{\alpha}$ -closed.

**Proposition 3.23.** Every  $(1,2)^*$ - $\alpha$ -closed set is  $\tilde{g}(1,2)^*$ -closed.

*Proof.* If A is an  $(1,2)^*$ - $\alpha$ -closed subset of X and G is any  $(1,2)^*$ - $\hat{g}$ -open set containing A, we have  $(1,2)^*$ - $\alpha$ cl(A) = A  $\subseteq$  G. Hence A is  $\tilde{g}(1,2)^*$ -closed in X.

The converse of Proposition 3.23 need not be true as seen from the following example.

**Example 3.24.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a, b\}\}$  and  $\tau_2 = \{\emptyset, \{a, c\}, X\}$ . Then  $\{b, c\}$  is  $\tilde{g}(1, 2)^*$ -closed set but not  $(1, 2)^*$ - $\alpha$ -closed.

**Proposition 3.25.** Every  $(1,2)^*$ - $\psi$ -closed set is  $(1,2)^*$ -sg-closed.

*Proof.* Suppose that  $A \subseteq G$  and G is  $(1,2)^*$ -semi-open in X. Since every  $(1,2)^*$ -semi-open set is  $(1,2)^*$ -sg-open and A is  $(1,2)^*$ - $\psi$ -closed, therefore  $(1,2)^*$ - scl $(A) \subseteq G$ . Hence A is  $(1,2)^*$ -sg-closed in X.

The converse of Proposition 3.25 need not be true as seen from the following example.

**Example 3.26.** In Example 3.12, we have  $(1,2)^* - \psi C(X) = \{\emptyset, X, \{a\}, \{b, c\}\}\}$  and  $(1,2)^* - SGC(X) = P(X)$ . Clearly, the set  $\{a, b\}$  is a  $(1,2)^* - sg$ -closed but not a  $(1,2)^* - \psi$ -closed set in X.

**Proposition 3.27.** Every  $(1,2)^*$ - $\ddot{g}$ -closed set is  $(1,2)^*$ -gsp-closed.

*Proof.* If A is a  $(1,2)^*$ - $\ddot{g}$ -closed subset of X and G is any  $\tau_{1,2}$ -open set containing A, since every  $\tau_{1,2}$ -open set is  $(1,2)^*$ -sg-open, we have  $G \supseteq \tau_{1,2}$ -cl(A)  $\supseteq (1,2)^*$ - $\beta$ cl(A). Hence A is  $(1,2)^*$ -gsp-closed in X.

The converse of Proposition 3.27 need not be true as seen from the following example.

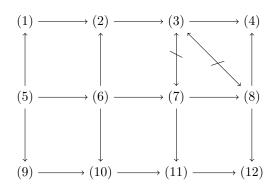
**Example 3.28.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{b\}\}$  and  $\tau_2 = \{\emptyset, X\}$ . We have  $(1, 2)^*$ - $\ddot{G}$   $C(X) = \{\emptyset, \{a, c\}, X\}$  and  $(1, 2)^*$ - $GSPC(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ . Clearly, the set  $\{c\}$  is a  $(1, 2)^*$ -gsp-closed but not a  $(1, 2)^*$ - $\ddot{g}$ -closed set in X.

**Remark 3.29.** The concepts of  $\tilde{g}(1,2)^*$ -closed sets and  $(1,2)^*$ -g-closed sets are independent.

#### Example 3.30.

- (1) In Example 3.10 (2),  $\{b\}$  is  $(1,2)^*$ -g-closed set but it is not  $\tilde{g}(1,2)^*$ -closed set.
- (2) Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a\}\}$  and  $\tau_2 = \{\emptyset, X, \{a, b\}\}$ . Then  $\{b\}$  is  $\tilde{g}(1, 2)^*$ -closed set but it is not  $(1, 2)^*$ -g-closed set.

**Remark 3.31.** From the above Propositions, Examples and Remarks, we obtain the following diagram, where  $A \longrightarrow B$  (resp.  $A \leftrightarrow B$ ) represents A implies B but not conversely (resp. A and B are independent of each other).



(1)  $(1, 2)^* - \alpha - closed$ 

(2)  $(1,2)^{\star}$ - $\ddot{g}_{\alpha}$ -closed

(3)  $\tilde{g}(1,2)^*$ -closed

(4)  $(1,2)^*$ - $\alpha g$ -closed

(5)  $\tau_{1,2}$ -closed

 $\textit{(6)}\ (1,2)^{\star}\textrm{-}\ddot{g}\textrm{-}closed$ 

(7)  $(1,2)^*$ - $\hat{g}$ -closed

(8)  $(1,2)^*$ -g-closed

 $(9) (1,2)^*$ -semi-closed

(10)  $(1,2)^* - \psi$ -closed

 $(11) (1,2)^*$ -sq-closed

(12)  $(1,2)^*$ -gs-closed.

## 4. Properties of $\tilde{g}(1,2)^*$ -closed Sets

**Remark 4.1.** Union of any two  $\tilde{g}(1,2)^*$ -closed sets in X need not be a  $\tilde{g}(1,2)^*$ -closed set as seen from the following example.

**Example 4.2.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X, \{a\}, \{a, c\}\}$  and  $\tau_2 = \{\emptyset, X, \{b\}, \{b, c\}\}$ . Then the sets in  $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$  are called  $\tau_{1,2}$ -closed. Then  $(1,2)^*$ - $\tilde{G}C(X) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\}$ . Clearly, the sets  $\{a\}$  and  $\{b\}$  are  $\tilde{g}(1,2)^*$ -closed but their union  $\{a, b\}$  is not a  $\tilde{g}(1,2)^*$ -closed set in X.

**Proposition 4.3.** If a set A is  $\tilde{g}(1,2)^*$ -closed in X then  $(1,2)^*$ - $\alpha cl(A) - A$  contains no nonempty  $\tau_{1,2}$ -closed set in X.

*Proof.* Suppose that A is  $\tilde{g}(1,2)^*$ -closed. Let F be a  $\tau_{1,2}$ -closed subset of  $(1,2)^*$ - $\alpha \operatorname{cl}(A) - A$ . Then  $A \subseteq F^c$ . But A is  $\tilde{g}(1,2)^*$ -closed, therefore  $(1,2)^*$ - $\alpha \operatorname{cl}(A) \subseteq F^c$ . Consequently,  $F \subseteq ((1,2)^*$ - $\alpha \operatorname{cl}(A))^c$ . We already have  $F \subseteq (1,2)^*$ - $\alpha \operatorname{cl}(A)$ . Thus  $F \subseteq (1,2)^*$ - $\alpha \operatorname{cl}(A) \cap ((1,2)^*$ - $\alpha \operatorname{cl}(A))^c$  and F is empty.

The converse of Proposition 4.3 need not be true as seen from the following example.

**Example 4.4.** In Example 3.12, if  $A = \{b\}$ , then  $(1,2)^* - \alpha cl(A) - A$  does not contain any nonempty  $\tau_{1,2}$ -closed set. But A is not a  $\tilde{g}(1,2)^*$ -closed set in X.

**Theorem 4.5.** If a set A is  $\tilde{g}(1,2)^*$ -closed in X then  $(1,2)^*$ - $\alpha cl(A) - A$  contains no nonempty  $(1,2)^*$ - $\hat{g}$ -closed set.

*Proof.* Suppose that A is  $\tilde{g}(1,2)^*$ -closed. Let S be a  $(1,2)^*$ - $\hat{g}$ -closed subset of  $(1,2)^*$ - $\alpha cl(A) - A$ . Then  $A \subseteq S^c$ . Since A is  $\tilde{g}(1,2)^*$ -closed, we have  $(1,2)^*$ - $\alpha cl(A) \subseteq S^c$ . Consequently,  $S \subseteq ((1,2)^*$ - $\alpha cl(A))^c$ . Hence,  $S \subseteq (1,2)^*$ - $\alpha cl(A) \cap ((1,2)^*$ - $\alpha cl(A))^c = \emptyset$ . Therefore S is empty.

**Theorem 4.6.** If A is  $\tilde{g}(1,2)^*$ -closed in X and  $A \subseteq B \subseteq (1,2)^*$ - $\alpha cl(A)$ , then B is  $\tilde{g}(1,2)^*$ -closed in X.

Proof. Let  $B \subseteq U$  where U is  $(1,2)^*$ - $\hat{g}$ -open set in X. Then  $A \subseteq U$ . Since A is  $\tilde{g}(1,2)^*$ -closed,  $(1,2)^*$ - $\alpha cl(A) \subseteq U$ . Since  $B \subseteq (1,2)^*$ - $\alpha cl(A)$ ,  $(1,2)^*$ - $\alpha cl(B) \subseteq (1,2)^*$ - $\alpha cl(A)$ . Therefore  $(1,2)^*$ - $\alpha cl(B) \subseteq U$  and B is  $\tilde{g}(1,2)^*$ -closed in X.

**Proposition 4.7.** If A is a  $(1,2)^*$ - $\hat{g}$ -open and  $\tilde{g}(1,2)^*$ -closed in X, then A is  $(1,2)^*$ - $\alpha$ -closed in X.

*Proof.* Since A is  $(1,2)^*$ - $\hat{g}$ -open and  $\tilde{g}(1,2)^*$ -closed,  $(1,2)^*$ - $\alpha$ cl(A)  $\subseteq$  A and hence A is  $(1,2)^*$ - $\alpha$ -closed in X.

# 5. $\tilde{g}(1,2)^*$ -interior

We introduce the following definition.

**Definition 5.1.** For any  $A \subseteq X$ ,  $\tilde{g}(1,2)^*$ -int(A) is defined as the union of all  $\tilde{g}(1,2)^*$ -open sets contained in A. That is  $\tilde{g}(1,2)^*$ -int $(A) = \bigcup \{ G : G \subseteq A \text{ and } G \text{ is } \tilde{g}(1,2)^*$ -open $\}$ .

**Lemma 5.2.** For any  $A \subseteq X$ ,  $\tau_{1,2}$ -int $(A) \subseteq \tilde{g}(1,2)^*$ -int $(A) \subseteq A$ .

The following two Propositions are easy consequences from definitions.

**Proposition 5.3.** For any  $A \subseteq X$ , we have A is  $\tilde{q}(1,2)^*$ -open if and only if  $\tilde{q}(1,2)^*$ -int(A) = A.

**Proposition 5.4.** For any subsets A and B of X, we have

- (1)  $\tilde{g}(1,2)^*$ - $int(A \cap B) = \tilde{g}(1,2)^*$ - $int(A) \cap \tilde{g}(1,2)^*$ -int(B).
- (2)  $\tilde{g}(1,2)^*$ -int $(A \cup B) \supseteq \tilde{g}(1,2)^*$ -int $(A) \cup \tilde{g}(1,2)^*$ -int(B).
- (3) If  $A \subseteq B$ , then  $\tilde{g}(1,2)^*$ -int $(A) \subseteq \tilde{g}(1,2)^*$ -int(B).
- (4)  $\tilde{g}(1,2)^*$ -int(X) = X and  $\tilde{g}(1,2)^*$ - $int(\emptyset) = \emptyset$ .

## 6. $\tilde{g}(1,2)^*$ -closure

**Definition 6.1.** For every set  $A \subseteq X$ , we define the  $\tilde{g}(1,2)^*$ -closure of A to be the intersection of all  $\tilde{g}(1,2)^*$ -closed sets containing A. In symbols,  $\tilde{g}(1,2)^*$ -cl $(A) = \cap \{F : A \subseteq F \in (1,2)^* - \tilde{G}C(X)\}$ .

**Lemma 6.2.** For any  $A \subseteq X$ ,  $A \subseteq \tilde{g}(1,2)^*$ - $cl(A) \subseteq \tau_{1,2}$ -cl(A).

*Proof.* It follows from the fact that every  $\tau_{1,2}$ -closed set is  $\tilde{g}(1,2)^*$ -closed.

Remark 6.3. Both containment relations in Lemma 6.2 may be proper as seen from the following example.

**Example 6.4.** Let  $X = \{a, b, c\}$ ,  $\tau_1 = \{\emptyset, X\}$  and  $\tau_2 = \{\emptyset, X, \{a, b\}\}$ . Then the sets in  $\{\emptyset, X, \{a, b\}\}$  are called  $\tau_{1,2}$ -open and the sets in  $\{\emptyset, X, \{c\}\}$  are called  $\tau_{1,2}$ -closed. Let  $A = \{a\}$ . Then  $\tilde{g}(1,2)^*$ -cl $(A) = \{a, c\}$  and so  $A \subset \tilde{g}(1,2)^*$ -cl $(A) \subset \tau_{1,2}$ -cl(A).

**Proposition 6.5.** For any  $A \subseteq X$ , we have A is  $\tilde{g}(1,2)^*$ -closed if and only if  $\tilde{g}(1,2)^*$ -cl(A) = A.

**Proposition 6.6.** For any two subsets A and B of X, we have

- (1) If  $A \subseteq B$ , then  $\tilde{g}(1,2)^* cl(A) \subseteq \tilde{g}(1,2)^* cl(B)$ .
- (2)  $\tilde{g}(1,2)^* cl(A \cap B) \subseteq \tilde{g}(1,2)^* cl(A) \cap \tilde{g}(1,2)^* cl(B)$ .

#### References

<sup>[1]</sup> Z.Duszynski, M.Jeyaraman, M.S.Joseph, O.Ravi and M.L.Thivagar, A new generalization of closed sets in bitopology, South Asian Journal of Mathematics, 4(5)(2014), 215-224.

<sup>[2]</sup> S.Jafari, M.Lellis Thivagar and Nirmala Mariappan, On  $(1,2)^*$ - $\alpha \hat{g}$ -closed sets, J. Adv. Math. Studies, 2(2)(2009), 25-34.

<sup>[3]</sup> M.Lellis Thivagar, O.Ravi and M.E.Abd El-Monsef, Remarks on bitopological  $(1,2)^*$ -quotient mappings, J. Egypt Math. Soc., 16(1) (2008), 17-25.

<sup>[4]</sup> N.Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.

- [5] O.Ravi, M.L.hivagar and E.Hatir, Decomposition of (1,2)\*-continuity and (1,2)\*-α-continuity, Miskolc Mathematical Notes, 10(2) (2009), 163-171.
- [6] O.Ravi and S.Ganesan, \(\bar{g}\)-closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(2011), 330-337.
- [7] O.Ravi, M.Kamaraj, A.Pandi and K.Kumaresan,  $(1,2)^*$ - $\ddot{g}$ -closed and  $(1,2)^*$ - $\ddot{g}$ -open maps in bitopological spaces, International Journal of Mathematical Archive, 3(2) (2012), 586-594.
- [8] O.Ravi and M.Lellis Thivagar, A bitopological  $(1,2)^*$ -semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc., 29(1)(2006), 79-88.
- [9] O.Ravi and M.Lellis Thivagar, On stronger forms of  $(1,2)^*$ -quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14(6)(2004), 481-492.
- [10] O.Ravi and M.L.Thivagar, Remarks on  $\lambda$ -irresolute functions via  $(1,2)^*$ -sets, Advances in App. Math. Analysis, 5(1)(2010), 1-15.
- [11] O.Ravi, S.Pious Missier and T.Salai Parkunan, On bitopological  $(1,2)^*$ -generalized homeomorphisms, Int J. Contemp. Math. Sciences, 5(11)(2010), 543-557.
- [12] O.Ravi, M.L.Thivagar and A.Nagarajan,  $(1, 2)^*$   $\alpha g$ -closed sets and  $(1, 2)^*$ - $g\alpha$ -closed sets, (submitted).
- [13] O.Ravi, M.L.Thivagar and E.Ekici, Decomposition of  $(1,2)^*$ -continuity and complete  $(1,2)^*$ -continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom, XV(2008), 29-37.
- [14] O.Ravi, M.L.Thivagar and Jinjinli, Remarks on extensions of (1,2)\*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.
- [15] M.Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, September (2002).
- [16] M.K.R.S.Veera kumar,  $\hat{g}$ -closed sets in topological spaces, Bull. Allah. Math. Soc., 18(2003), 99-112.