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1. Introduction

Ozbakir and Yildirim [6] introduced m-Z4-closed sets in ideal minimal spaces and discussed their properties. In this paper,
in Section 3, we define A,,-sets and V,,-sets in minimal spaces and discuss their properties. In Section 4, we define Z.A,-sets
and Z.V,-sets in ideal minimal spaces and discuss their properties. In Section 5, we characterize m-T;-spaces using these

new sets.

2. Preliminaries

Definition 2.1 ([3]). A subfamily mx Cp(X) is said to be a minimal structure on X if §, Xémx. The pair (X, mx) is
called a minimal space (or an m-space). A subset A of X is said to be m-open if AEmx. The complement of an m-open set

is called m-closed set. We set m-int(A)=U{U : UCA, Uemx} and m-cl(A)=N{F : ACF, X—Femx}.

Lemma 2.2 ([3]). Let X be a nonempty set and mx a minimal structure on X. For subsets A and B of X, the following

properties hold:

(1) m-cl(X—A)=X—m-int(A) and m-int(X—A)=X—m-cl(A),
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(2) If X—Aemx, then m-cl(A)=A and if A€mx, then m-int(A)=A,
(3) m-cl(®)=0, m-cl(X)=X, m-int(0)=0 and m-int(X)=X,

(4) If ACB, then m-cl(A)Cm-cl(B) and m-int(A)Cm-int(B),

(5) ACm-cl(A) and m-int(A)CA,

(6) m-cl(m-cl(A))=m-cl(A) and m-int(m-int(A))=m-int(A).

A minimal space (X, mx) has the property [/] if "the arbitrary union of m-open sets is m-open” [6]. (X, mx) has the

property [Z] if ”the any finite intersection of m-open sets is m-open”. [6].

Lemma 2.3 ([6]). Let X be a nonempty set and mx a minimal structure on X satisfying property [U]. For a subset A of

X, the following properties hold:

(1) Aemx if and only if m-int(A)=A,

(2) A is m-closed if and only if m-cl(A)=A,

(3) m-int(A)emx and m-cl(A) is m-closed.

An ideal Z on a minimal space (X, mx) is a non-empty collection of subsets of X which satisfies the following conditions.
(1) A€Z and BCA imply BEZ and

(2) A€Z and B€Z imply AUBET.

Definition 2.4 ([6]). Let (X, mx) be a minimal space with an ideal Z on X and (.);, be a set operator from p(X) to p(X).
For a subset ACX, A}, (Z, mx)={z€X : UnNAEL for every Um€Epum (z)} where pim (z)={Un€Emx : 2€Un} is called the

minimal local function of A with respect to T and mx. We will simply write Ay, for Ay, (Z, mx).

Definition 2.5 ([6]). Let (X, mx) be a minimal space with an ideal T on X. The set operator m-cl* is called a minimal
*-closure and is defined as m-cl* (A)=AUA;, for ACX. We will denote by m}(Z, mx ) the minimal structure generated by
m-cl*, that is, my (Z, mx )={UCX : m-cl" (X—U)=X—-U}. m3(Z, mx) is called x-minimal structure which is finer than mx.
The elements of mj (L, mx ) are called mx-open and the complement of an mx-open set is called m*-closed. The interior of

a subset A in (X, m}(Z, mx)) is denoted by m-int* (A).

If 7 is an ideal on (X, mx), then (X, mx, Z) is called an ideal minimal space or ideal m-space.

Lemma 2.6 ([6], Theorem 2.1). Let (X, mx) be a minimal space with Z, 7' ideals on X and A, B be subsets of X. Then
(1) ACB = A}, CB;,,

(2) ICT = A% (T )CAL(T),

(3) Ay, =m-cl(A;,)Cm-cl(A),

(4) AnUBLC(AU B),,
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(5) (An)mCAL.

Proposition 2.7 ([6]). The set operator m-cl* satisfies the following conditions:
(1) ACm-cl*(A),

(2) m-cl"0)=0 and m-cl* (X)=X,

(3) If ACB, then m-cl* (A)Cm-cl* (B),

(4) m-cl* (A)Um-cl* (B)Cm-cl* (AUB).

Definition 2.8 ([6]). A subset A of an ideal minimal space (X, mx, I) is mx-closed (resp. mx-dense in itself, mx-perfect)

if A CA (resp. ACA},, An=A).

Definition 2.9 ([6]). A subset A of an ideal minimal space (X, mx, I) is m-I-generalized closed (briefly, m-Iy-closed) if
A;,CU whenever ACU and U is m-open. A subset A of an ideal minimal space (X, mx, I) is said to be m-Z-generalized

open (briefly, m-Iy-open) if X—A is m-Zy-closed.

Lemma 2.10 ([6]). If (X, mx, Z) is an ideal minimal space and ACX, then A is m-Zy-closed if and only if m-cl*(A)CU

whenever ACU and U is m-open in X.

Definition 2.11 ([6]). A minimal space (X, mx ) is said to be m-Ty if for any pair of distinct points x, y of X, there exist

an m-open set containing T but not y and an m-open set containing y but not x.

Lemma 2.12 ([6]). Let (X, mx ) be a minimal space satisfying property [U]. Then (X, mx) is m-T1 if and only if for each

point z€X, the singleton {z} is m-closed.

Lemma 2.13 ([6]). Let (X, mx, Z) be an ideal minimal space satisfying property U] and ACX. If (X, mx) is an m-Ti

space, then A is mx-closed if and only if A is m-Zy-closed.

Lemma 2.14 ([5]). Let (X, mx, Z) be an ideal minimal space and ACX. If A is m-Zy-closed then A;,—A contains no

nonempty m-closed set.

3. A,-sets and V,,-sets

Definition 3.1. Let A be a subset of a minimal space (X, mx ). We define subsets A}, and Ay, as follows:
(1) Ap,=n{U : ACU and U is m-open}.

(2) Ay,=U{F : FCA and F is m-closed}.

Lemma 3.2. For subsets A, B and A;, i€A, of a minimal space (X, mx ) the following properties hold:
(1) ACAJ,.

(2) ACB = A},CB),.

(3) (AR)m=An..
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(4) If A is m-open then A=AL,.

(5) U{(A))}, < i€A} C (U{A; i € A})h.
(6) (N{Ai:ie A} € N{(Ai)n, : €A}
(7) (X — A)p=X—Ay,.

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have A}, C(Ap)p. If x¢AJ,, then there exists an m-open set U such that ACU and x¢U. Hence
A}, CU by Definition 3.1 and so x¢ (A7, )n,. Thus (A},)5 CAp,. Hence (Ap)m=Ap.

(5) Let A=U{A; : ieA}. By (2) we have U{(A:)p, : IEA}CA), = (U{A; :i e A})),. O

Remark 3.3. In Lemma 3.2, the equality in (5) and (6) does not hold as can be seen by the following ezample.

Example 3.4. Let X={a, b, ¢} and mx={0, X, {a}, {b}}. Take A={a} and B={b}, then AL UB. ={a}u{b}={a, b} and
(AUB)j, =X. Hence ApUB), ={a, b}CX=(AUB),,. Also take C={a, b} and D={b, c}, then C;yNDp, =X and (CND),, ={b}.
Hence (C N D)), ={b}CX=CpNDj,.

Proposition 3.5. Let (X, mx ) be a minimal space satisfying property [U] and A;, i€A be subsets of X. Then U{(4;)p, :
i€AY=(U{A; : i € A}),.

Proof. Let A=U{A; : i€A}. If x¢U{(A:)p, : i€A} then for each i€A, there exists an m-open set U; such that A;CU;
and x¢U;. If U=U{U; : i€A} then U is m-open set by property [4] with ACU and x¢U. Therefore x¢A},. Hence
(U{4; 15 e AP CU{(Ai)p, : iEA}. O

Lemma 3.6. For subsets A, B and A;, i€/, of a minimal space (X, mx ) the following properties hold:
(1) A, CA.

(2) ACB = A),CBy.

(3) (An)m=An.

(4) If A is m-closed then A=Ay,.

(5) (NM{A; 11 € A}y, Cn{(Ai)y, : €A}

(6) U{(A:)y, : i€cA} C (U{A; i€ A})Y,.

Proof. (1), (2), (4) and (6) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have (A;,);, CA,,. If x€Ay, then for some m-closed set FCA, x€F. Then FCA/, by Definition 3.1.
Since F is m-closed, again by Definition 3.1, x€( A, )

(5) Let A=n{A, : icA}. By (2) we have (N{A; : i € A})Y, C N{(A:)y, : i€A}. O

Remark 3.7. In Lemma 3.6, the equality in (5) and (6) does not hold as can be seen by the following example.
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Example 3.8. In Ezample 3.4, take A={a, ¢} and B={b, c}, then A;NBy ={a, c}N{b, c}={c} and (AN B),,=0. Hence
(AN B)y, =0C{c}=Ay,NBY,. Also take C={a} and D={c}, then C),UDy, =0 and (C U D)y,={a, c}. Hence C},UD,,=0C{a,
c}=(CuUD)y,.

Proposition 3.9. Let (X, mx ) be a minimal space satisfying property U] and A;, i€A be subsets of X. Then (N{A; : i €
ANy =N{(As)y, : i€A}.

Proof. Let A=n{A; : ieA}. If xen{(A:),, : i€A}, then for each i€A, there exists a m-closed set F; such that F;CA;
and x€F;. If F=N{F; : i€A} then F is m-closed by property [U] with FCA and x€F. Therefore x€A,. Hence N{(A;)y, :
ieEAYC(N{Ai i€ A}, O

Definition 3.10. A subset A of a minimal space (X, mx ) is said to be a

(1) Am-set if A=A},.

(2) Vm-set if A=Ay,.

Remark 3.11. 0 and X are Am-sets and \V, -sets.

Theorem 3.12. Let (X, mx ) be a minimal space satisfying property [U]. Then the following hold.
(1) Arbitrary union of Am-sets is a Am-set.

(2) Arbitrary intersection of Vm-sets is a Vp,-set.

Proof.

(1) Let {A; : i€A} be a family of Ap-sets. If A=U{A; : i€A}, then by Proposition 3.5, A}, =U{(A;)}, : i€A}=U{A, :

i€A}=A. Hence A is a Ap-set.

(2) Let {A; : i€A} be a family of Vp,-sets. If A=N{A; : i€A}, then by Proposition 3.9, Ay,=N{(A:)y, : i€A}=N{A; :

i€A}=A. Hence A is a V,-set.

Remark 3.13. In Theorem 3.12, we cannot drop the property [U]. It is shown in the following example.

Example 3.14. In Ezample 3.4, {a} and {b} are Am-sets but their union is not Ay, -set. Also, {a, c} and {b, c} are Vy,-sets

but their intersection is not \,-set.

Theorem 3.15. Let (X, mx ) be a minimal space. Then the following hold.
(1) Arbitrary intersection of Am-sets is a Am-set.

(2) Arbitrary union of Vm-sets is a Vo -set.

Proof.

(1) Let {A; : i€A} be a family of Am,-sets. If A=N{A; : i€A}, then by Lemma 3.2, A, CN{(A:)p, : i€EA}=N{A; : iEA}=A.

Again by Lemma 3.2, ACAJ,. Hence A is a An,-set.
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(2) Let {A; : i€EA} be a family of V,,-sets. If A=U{A; : i€A}, then by Lemma 3.6, A, DU{(A4;)., : i€EA}=U{A; : iEA}=A.

Again by Lemma 3.6, Ay, CA. Hence A is a V,,-set.

4. Generalized N,,-sets and V,,-sets in Ideal Minimal Spaces

Definition 4.1. A subset A of an ideal minimal space (X, mx, Z) is said to be

(1) T.Am-set if Al CF whenever ACF and F is mx-closed.

(2) Z.NVm-set if X—A is an I.NAm,-set.

Proposition 4.2. Let (X, mx, Z) be an ideal minimal space. Then the following hold:
(1) Bvery Am-set is an I.Am-set but not conversely.

(2) Every Vm-set is an .V m-set but not conversely.

Example 4.3. Let X={a, b, ¢}, mx={0, X, {a, b}, {b, ¢}} and ZT={0}. Then {a, ¢} is T.Am-set but not Am-set and {b}

18 L.\ yn-set but not V,,-set.

Proposition 4.4. Every m-open set is Z.\m-set but not conversely.

Proof. Let ACF and F is mx-closed. If A is m-open, then A,=ACF. Hence A is Z.A,-set. O
Example 4.5. In Ezample 4.3, {b} is Z.Am-set but not m-open set.

Theorem 4.6. A subset A of an ideal minimal space (X, mx, I) is an I.Vm-set if and only if UC Ay, whenever UCA and

U is mx-open.

Proof. Suppose that ACX is an Z.Vy,-set and U is an mx-open set such that UCA. Then X—ACX-U and X-U is
mx-closed. Since X—A is an Z.Ap-set, we have (X — A)/,CX—U and so X—A,,CX—U, by Lemma 3.2. Therefore, UCA,.
Conversely, assume that UCA,, whenever UCA and U is mx-open. Suppose X—ACF and F is mx-closed. Then, X—FCA
and X—F is mx-open. Therefore, X—FCA), and so X—A,,CF. By Lemma 3.2, we have (X — A),,CF. Hence X—A is an

Z.Am-set and so A is an Z.V,,-set O

Theorem 4.7. Let A be an I.Vp-set in an ideal minimal space (X, mx, Z). Then for every mx*-closed set F such that

AYU(X—A)CF, F=X holds.

Proof. Let A be an Z.V,-set in an ideal minimal space (X, mx, Z). Suppose F is mx-closed set such that A),U(X—A)CF.
Then X—FC(X—A,,)NA. Since A is an Z.V,-set and the mx-open set X—FCA, by Theorem 4.6, X—FCA/,. Already, we
have X—FCX—Ay, and so X—F=() which implies that F=X. O

Corollary 4.8. Let A be an I.Vm,-set in an ideal minimal space (X, mx, ). Then Ay,U(X—A) is mx-closed if and only if

A is a Vo, -set.
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Proof. Let A be an Z.V,-set. Suppose A,,U(X—A) is mx-closed. Then by Theorem 4.7, Ay,U(X—A)=X and so ACA,,.
By Lemma 3.6, we have A),CA. Hence A is a V,-set.

Conversely, suppose A is a Vy,-set. Then A;,U(X—A)=AU(X—A)=X, which is mx-closed. O

Theorem 4.9. Let A be a subset of an ideal minimal space (X, mx, T) satisfying property [L] such that Ay, is a mx-closed
set. If F=X, whenever F is mx-closed and Ay;,J(X—A)CF, then A is an I.V.m-set.

Proof. Let U be an mx-open set such that UCA. Since A, is mx-closed, A),U(X—U) is m*-closed. By hypothesis,

AY,U(X—U)=X. This implies that UCA,,. Hence A is an Z.V,-set. O
Theorem 4.10. Let (X, mx, Z) be an ideal minimal space. Then each singleton set in X is either mx-open or an L.V, -set.

Proof. Suppose {x} is not mx-open. Then, X—{x} is not mx-closed. So the only mx-closed set containing X—{x} is X.

Therefore, (X—{x})»CX and so X—{x} is an Z.A,,-set. Hence {x} is an Z.V,-set. O
The set of all Z.V,,-sets is denoted by D,,7 and the set of all Z.A,-sets is denoted by DJ,7.

Definition 4.11. Let (X, mx, Z) be an ideal minimal space and ACX. Then m-cly (A) =N{U : ACU and UeD},z} and
m-inty (A)=U{F : FCA and FED,,}.

Theorem 4.12. Let (X, mx, Z) be an ideal minimal space satisfying property [U] and A;, i€A be subsets of X. Then the
following hold.

(1) If A;€D)\; for alli €A, then U{A;: i€AYeD) ;
(2) If Ai€Dy,7 for all i€A, then N{A;: i€A}YED,, 7
Proof.

(1) Let A;€D;,; for all i€A. Suppose U{A; : i€A}CF and F is mx-closed. Then A;CF for all i€A. So A} CF for all i€A.
Therefore, U{(A;)}, : i€EA}CF. By Proposition 3.5, (U{A; : i€ A})n=U{(A:)}, : iEA}CF. So U{A, : ieA}eD) ;

(2) Let A;eD,), 7 for all ieA. Then, X—A;eD),; for all i€A. So, by (1), U{X—A; : ieA}eD} ;. X—n{A; : i€cA}eD}
and so N{A; : icA}eD) 7

Remark 4.13. In Theorem 4.12, we cannot drop the property [U]. It is shown in the following example.

Example 4.14. Let X={a, b, c}, mx={0, X, {a}, {b}} and T={0, {a}, {b}, {a, b}}. Then Dpr={0, X, {a}, {b}},
take A={a}eD},; and B={b}cD;, 1 but their union AUB={a, b}¢D) ;. Also, € D),7={0, X, {a, c}, {b, c}}, take A={a,

c}eDy,z and B={b, c}€D),1 but their intersection ANB={c}¢ D),z

Theorem 4.15. Let (X, mx, Z) be an ideal minimal space satisfying property U] and A, BCX. Then m-cly is a kuratowski

closure operator on X.

Proof.
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(1) Since 0,=0, 0D, and so m-cl7 (0)=0.
(2) From the definition of m-cl7 (A), it is clear that ACm-clZ (A).

(3) We have {U : AUBCU, UeD},;}c{U : ACU, UeD},z}. So m-clf (A)Cm-cl2 (AUB). Similarly, m-ci? (B)Cm-clZ (AUB).
Therefore, m-cl7 (A)Um-cl? (B) Cm-cl7 (AUB). On the other hand, if x¢m-cl7 (A)Um-cl% (B), then x¢m-cl7 (A). So there
exists U1€Dj,7 such that ACU; but x¢U;. Similarly, there exists Us€ D}z such that BCUs but x¢Us. Let U=U;UUs.
Then, by Theorem 4.12, U€ D}, 7 such that AUBCU but x¢U. So x¢m-clZ (AUB). Therefore, m-clz (AUB) C m-cl7 (A)Um-

cl% (B) which implies that m-cl7 (AUB) = m-cl2 (A)Um-cl7 (B).

(4) Now {U : ACU, UeD},7}={U : m-cl}(A)CU, UeD}, 7} by the definition of m-cl4 operator and so m-cl2 (A) = m-clF (m-

cl2(A)). Hence m-cl? is a kuratowski closure operator.

Remark 4.16. In Theorem 4.15, we cannot drop the property [U]. It is shown in the following example.

Example 4.17. In Ezample 4.14, take A={a} and B={b}. Then m-cl; (A)Um-cly (B) = {a}u{b} = {a, b}Tm-cl} (AUB)=X.
Theorem 4.18. Let (X, mx, Z) be an ideal minimal space. Then X—m-cl} (A) = m-inty (X—A) for every subset A of X.
Proof. X—m-clf(A)=X-N{U : ACU, UeD; s} = U{X-U : X—UCX-A, X-UeD,,7} = m-inty(X—A). O

Theorem 4.19. Let (X, mx, Z) be an ideal minimal space satisfying property [U]. Then every singleton subset of X is an

T.Am-set if and only if G=G,,, holds for every mx-open set G.

Proof. Suppose every singleton subset of X is an Z.Am,-set. Let G be an mx-open set and yeX—G. Since {y} is Z.A-set,
{y} 5 CX—G. Therefore, U{{y}n, : yéX—G}C X—G. By Proposition 3.5, (U{{y} : v € X—-G}n=U{{y}n : yeX-G}CX-G
and so (X — G);,CX—G. Therefore, (X — G)p=X—G. Since X—G,=(X — G);,=X—G and so G=G,.

Conversely, let x€X and F be a mx-closed set containing x. Since X—F is mx-open, X—F=(X — F),,=X—F/, and so F=F,.

Therefore, {x}), CFn=F. Hence {x} is an Z.A,-set. O
Theorem 4.20. Let (X, mx, Z) be an ideal minimal space satisfying property [U]. Then the following are equivalent.

(1) Every mx-open set is a \Vm-set,

(2) Dyz=p(X).

Proof.  (1)=(2) By Theorem 4.19, every singleton subset of X is an Z.A,,-set. If any subset A of X is written as a union of
singleton sets, then by Theorem 4.12(1), A is an Z.A,-set and so every subset of X is an Z.V.,-set. Therefore, D,,7=p(X).
(2)=(1) Let A be an m*-open set. By hypothesis, A is an Z.V,,-set and so by Lemma 3.2(1) and Theorem 4.6, A is a

Vm-set. O

Theorem 4.21. A subset A of an ideal minimal space (X, mx, I) is an m-Iy-closed set if and only if m-cl*(A)CAp,.
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Proof. Suppose that ACX is an m-Zy-closed set. Let xeém-cl*(A). Suppose x¢Aj,. Then there exists an m-open set
U containing A such that x¢U. Since A is an m-Z,4-closed set, ACU and U is m-open implies that m-cl*(A)CU and so
x¢m-cl*(A), a contradiction. Therefore, m-clI*(A)CA,.

Conversely, suppose m-cl*(A)CAj,. If ACU and U is m-open, then A}, CU/=U and so m-clI*(A)C A}, CU. Therefore, A is

m-Z4-closed. O
Corollary 4.22. A subset A of an ideal minimal space (X, mx, I) is m-Iy-open if and only if Ay, Cm-int*(A).

Proof. ACX is m-Z;-open if and only if X—A is m-Z,-closed if and only if m-cl*(X—A) C(X — A), if and only if X—m-
int*(A)CX—Ay, if and only if Ay, Cm-int*(A). O

Theorem 4.23. If A is an m-Zg-open set in an ideal minimal space (X, mx, I), then U=X whenever U is m-open and

m-int*(A)J(X—A)C U.

Proof.  Assume that A is m-Zg-open in X. Let U be an m-open set in X such that m-int*(A)U(X—A)CU, then X—UCX—(m-
int*(A)U(X—=A)) = (X—m-int*(A))NA = m-cI*(X—A)—(X—A). Since X—A is m-Z,-closed, then by Lemma 2.14, (X —
A);,—(X—A) contains no nonempty m-closed set. But m-cl*(X—A)—(X—A)=(X—-A);,—(X—A) and so m-cI*(X—A)—(X—A)

contains no nonempty m-closed set. Since X—U is m-closed, then X—U={ and so U=X. O
Corollary 4.24. A Apm-set A in an ideal minimal space (X, mx, Z) is m-Zg-closed if and only if A is m*-closed.

Proof. Let A be a Am-set. If A is m-Z,-closed, then by Theorem 4.21, m-cl*(A)C A}, and so m-cl*(A)CA which implies
that A is mx-closed.

Conversely, it is clear, since every mx-closed set is m-Z,-closed. O
Corollary 4.25. An m-open set A in an ideal minimal space (X, mx, ) is m-Ig-closed if and only if A is m*-closed.
Proof. The proof follows from the fact that every m-open set is a A,-set. O

Theorem 4.26. Let (X, mx, Z) be an ideal minimal space and ACX. If A}, is an m-L,-closed set, then A is an m-Z,-closed

set.

Proof. Let A}, be m-Z,-closed set. By Theorem 4.21, m-cl*(A},)C(AM)m=Ap. Since ACA}, and so m-cl*(A)Cm-

cl*(A},)CA),. Again, by Theorem 4.21, A is m-Z,-closed. O
Remark 4.27. The converse of Theorem 4.26 need not be true as shown by the following example.

Example 4.28. In Ezample 4.3, A={a} is m-I,-closed set but A}, is not m-Ly-closed set.

5. Characterizations of m-T-spaces

Definition 5.1. Let (X, mx, Z) be an ideal minimal space and ACX. Then m% is defined as follows: my={ACX : m-
c} (X—A)=X—A}. m?% is called A-minimal structure on X generated by m-cly. Each element of m% is called m/%-open and
the complement of an m%-open set is called mp-closed. We observe that m% is always finer than D),z and m2° is always

finer than D). r.



L.V p-sets and Z.A,,-sets

Theorem 5.2. In an ideal minimal space (X, mx, I) satisfying property U], the following are equivalent.
(1) (X, mx, Z) is a m-Ti-space,

(2) Every Z.Nm-set is a Vm-set,

(8) Every mf7-open set is a Vo, -set.

Proof.  (1)=(2) Suppose there exists an Z.V,-set A which is not V,,-set. Then A, CA. Therefore, there exists an element
x€A such that x¢A),. Then, {x} is not m-closed, the definition of A, a contradiction to Lemma 2.12. This proves (2).
(2)=-(1) Suppose that (X, mx, Z) is not a m-Ty-space. Then by Lemma 2.13 there exists an m-Z,-closed set A which is
not mx-closed. So, there exists an element x€X such that x€ém-cl*(A) but x¢A. By Theorem 4.10, {x} is either mx-open or
an Z.V,-set. When {x} is m*-open, {x}NA=0, m-cI*(A)Cm-cl*(X—{x}) = X—{x} which is a contradiction to the fact that
x€m-cl*(A). When {x} is an Z.V,,-set, by our assumption, {x} is a V,,-set and hence {x} is m-closed. Therefore, ACX—{x}
and X—{x} is m-open. Since A is m-Z,-closed, m-cI*(A)CX—{x}. This is also a contradiction to the fact that x€m-cl*(A).
Therefore, every m-Zy-closed set is mx-closed and hence (X, mx, Z) is a m-T;-space.

(2)=(3) Suppose that every Z.V,,-set is a V.,-set. Then, a subset F is a Z.V,-set if and only if F is a Vp,-set. Let Aem?.
Then A=m-inty(A)=U{F: FCA and FeD,,7}=U{F : FCA and F is a Viy-set}. Now A),=(m-inty(A))=(U{F : F C
Aand F = Fy}) . DU{Fy, : FCA and F=F),}=U{F : FCA and F=Fy,}=U{F : FCA and FeD,,,; }=m-inty(A)=A. Always
A, CA and so A),=A. Hence A is a V,-set.

(3)=(2) Let A be an Z.V.,-set. Then, by definition of m-inty(A), m-inty(A)=A and so Aem?%. By (3), A is a Vp-set. O

Corollary 5.3. An ideal minimal space (X, mx, I) satisfying property fU] is a m-T1-space if and only if every singleton

set is either mx-open or m-closed.

Proof. Assume that (X, mx, Z) is a m-Ti-space. Let x€X. Suppose {x} is not mx-open. By Theorem 4.10, it is an
Z.Vm-set. Since X is a m-Ti-space, by Theorem 5.2(2), {x} is a Vm,-set and hence is m-closed.

Conversely, suppose (X, my, Z) is not a m-T1-space. Then, there exists an Z.Vp,-set A which is not a V,,-set, by Theorem
5.2(2). So there exists an element x€A such that x¢Ay,. If {x} is m-closed, then A}, contains the m-closed set {x}, which
is not possible. If {x} is m*-open, then the m*-closed set X—{x} contains A,,U(X—A). By Theorem 4.7, X—{x}=X, which
is not possible. So {x} is neither mx-open nor m-closed, which is contradiction to our assumption. Therefore, (X, mx, Z)

is a m-T1-space. O
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