

International Journal of Mathematics And its Applications

$\mathcal{I}. \lor_m$ -sets and $\mathcal{I}. \land_m$ -sets

Research Article

O.Ravi^{1*}, K.Kalpana² and S.Tharmar³

1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

3 Department of Mathematics, R. V. S College of Engineering and Technology, Dindigul, Tamil Nadu, India.

Abstract: We define \wedge_m -sets and \vee_m -sets in minimal spaces and discuss their properties. Also define $\mathcal{I}.\wedge_m$ -sets and $\mathcal{I}.\vee_m$ -sets in ideal minimal spaces and discuss their properties. At the end of the paper, we characterize m-T₁-spaces using these new sets.

MSC: 54C10, 54C05, 54A05, 54A10.

Keywords: $m \mathcal{I}_g$ -closed set, $\mathcal{I} . \wedge_m$ -set, $\mathcal{I} . \vee_m$ -set, $m - T_1$ -space. © JS Publication.

1. Introduction

Ozbakir and Yildirim [6] introduced m- \mathcal{I}_g -closed sets in ideal minimal spaces and discussed their properties. In this paper, in Section 3, we define \wedge_m -sets and \vee_m -sets in minimal spaces and discuss their properties. In Section 4, we define $\mathcal{I}.\wedge_m$ -sets and $\mathcal{I}.\vee_m$ -sets in ideal minimal spaces and discuss their properties. In Section 5, we characterize m-T₁-spaces using these new sets.

2. Preliminaries

Definition 2.1 ([3]). A subfamily $m_X \subset \wp(X)$ is said to be a minimal structure on X if \emptyset , $X \in m_X$. The pair (X, m_X) is called a minimal space (or an m-space). A subset A of X is said to be m-open if $A \in m_X$. The complement of an m-open set is called m-closed set. We set m-int $(A) = \cup \{U : U \subset A, U \in m_X\}$ and m-cl $(A) = \cap \{F : A \subset F, X - F \in m_X\}$.

Lemma 2.2 ([3]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

(1) m - cl(X-A) = X - m - int(A) and m - int(X-A) = X - m - cl(A),

^{*} E-mail: siingam@yahoo.com

- (2) If $X A \in m_X$, then m cl(A) = A and if $A \in m_X$, then m int(A) = A,
- (3) m-cl(\emptyset)= \emptyset , m-cl(X)=X, m-int(\emptyset)= \emptyset and m-int(X)=X,
- (4) If $A \subset B$, then $m cl(A) \subset m cl(B)$ and $m int(A) \subset m int(B)$,
- (5) $A \subset m$ -cl(A) and m-int(A) $\subset A$,
- (6) m-cl(m-cl(A))=m-cl(A) and m-int(m-int(A))=m-int(A).

A minimal space (X, m_X) has the property $[\mathcal{U}]$ if "the arbitrary union of m-open sets is m-open" [6]. (X, m_X) has the property $[\mathcal{I}]$ if "the any finite intersection of m-open sets is m-open". [6].

Lemma 2.3 ([6]). Let X be a nonempty set and m_X a minimal structure on X satisfying property $[\mathcal{U}]$. For a subset A of X, the following properties hold:

- (1) $A \in m_X$ if and only if m-int(A) = A,
- (2) A is m-closed if and only if m-cl(A)=A,
- (3) m-int(A) $\in m_X$ and m-cl(A) is m-closed.

An ideal \mathcal{I} on a minimal space (X, m_X) is a non-empty collection of subsets of X which satisfies the following conditions.

- (1) $A \in \mathcal{I}$ and $B \subset A$ imply $B \in \mathcal{I}$ and
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$.

Definition 2.4 ([6]). Let (X, m_X) be a minimal space with an ideal \mathcal{I} on X and $(.)_m^*$ be a set operator from $\wp(X)$ to $\wp(X)$. For a subset $A \subset X$, A_m^* $(\mathcal{I}, m_X) = \{x \in X : U_m \cap A \notin \mathcal{I} \text{ for every } U_m \in \mu_m(x)\}$ where $\mu_m(x) = \{U_m \in m_X : x \in U_m\}$ is called the minimal local function of A with respect to \mathcal{I} and m_X . We will simply write A_m^* for $A_m^*(\mathcal{I}, m_X)$.

Definition 2.5 ([6]). Let (X, m_X) be a minimal space with an ideal \mathcal{I} on X. The set operator m-cl^{*} is called a minimal \star -closure and is defined as m-cl^{*} $(A)=A\cup A_m^*$ for $A\subset X$. We will denote by $m_x^*(\mathcal{I}, m_X)$ the minimal structure generated by m-cl^{*}, that is, $m_x^*(\mathcal{I}, m_X) = \{U\subset X : m$ -cl^{*} $(X-U)=X-U\}$. $m_x^*(\mathcal{I}, m_X)$ is called \star -minimal structure which is finer than m_X . The elements of $m_x^*(\mathcal{I}, m_X)$ are called $m\star$ -open and the complement of an $m\star$ -open set is called $m\star$ -closed. The interior of a subset A in $(X, m_x^*(\mathcal{I}, m_X))$ is denoted by m-int^{*} (A).

If \mathcal{I} is an ideal on (X, m_X) , then (X, m_X, \mathcal{I}) is called an ideal minimal space or ideal m-space.

Lemma 2.6 ([6], Theorem 2.1). Let (X, m_X) be a minimal space with $\mathcal{I}, \mathcal{I}'$ ideals on X and A, B be subsets of X. Then

- (1) $A \subset B \Rightarrow A_m^* \subset B_m^*$,
- $(2) \ \mathcal{I} \subset \mathcal{I}' \Rightarrow A_m^*(\mathcal{I}') \subset A_m^*(\mathcal{I}),$
- $(3) A_m^* = m cl(A_m^*) \subset m cl(A),$
- $(4) \ A_m^* \cup B_m^* \subset (A \cup B)_m^*,$

(5) $(A_m^*)_m^* \subset A_m^*$.

Proposition 2.7 ([6]). The set operator m-cl^{*} satisfies the following conditions:

(1) $A \subset m - cl^*(A)$,

- (2) m- $cl^*(\emptyset) = \emptyset$ and m- $cl^*(X) = X$,
- (3) If $A \subset B$, then $m cl^*(A) \subset m cl^*(B)$,
- (4) $m cl^*(A) \cup m cl^*(B) \subset m cl^*(A \cup B).$

Definition 2.8 ([6]). A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is $m\star$ -closed (resp. $m\star$ -dense in itself, $m\star$ -perfect) if $A_m^* \subset A$ (resp. $A \subset A_m^*$, $A_m^* = A$).

Definition 2.9 ([6]). A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is m- \mathcal{I} -generalized closed (briefly, m- \mathcal{I}_g -closed) if $A_m^* \subset U$ whenever $A \subset U$ and U is m-open. A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is said to be m- \mathcal{I} -generalized open (briefly, m- \mathcal{I}_g -open) if X-A is m- \mathcal{I}_g -closed.

Lemma 2.10 ([6]). If (X, m_X, \mathcal{I}) is an ideal minimal space and $A \subset X$, then A is $m \cdot \mathcal{I}_g$ -closed if and only if $m \cdot cl^*(A) \subset U$ whenever $A \subset U$ and U is m-open in X.

Definition 2.11 ([6]). A minimal space (X, m_X) is said to be m- T_1 if for any pair of distinct points x, y of X, there exist an m-open set containing x but not y and an m-open set containing y but not x.

Lemma 2.12 ([6]). Let (X, m_X) be a minimal space satisfying property [\mathcal{U}]. Then (X, m_X) is m-T₁ if and only if for each point $x \in X$, the singleton $\{x\}$ is m-closed.

Lemma 2.13 ([6]). Let (X, m_X, \mathcal{I}) be an ideal minimal space satisfying property $[\mathcal{U}]$ and $A \subset X$. If (X, m_X) is an m-T₁ space, then A is m*-closed if and only if A is m- \mathcal{I}_q -closed.

Lemma 2.14 ([5]). Let (X, m_X, \mathcal{I}) be an ideal minimal space and $A \subset X$. If A is $m \cdot \mathcal{I}_g$ -closed then $A_m^* - A$ contains no nonempty m-closed set.

3. \wedge_m -sets and \vee_m -sets

Definition 3.1. Let A be a subset of a minimal space (X, m_X) . We define subsets A_m^{\wedge} and A_m^{\vee} as follows:

- (1) $A_m^{\wedge} = \cap \{ U : A \subset U \text{ and } U \text{ is } m\text{-open} \}.$
- (2) $A_m^{\vee} = \cup \{F : F \subset A \text{ and } F \text{ is } m\text{-closed}\}.$

Lemma 3.2. For subsets A, B and A_i , $i \in \Delta$, of a minimal space (X, m_X) the following properties hold:

- (1) $A \subset A_m^{\wedge}$.
- $(2) \ A \subset B \Rightarrow A_m^{\wedge} \subset B_m^{\wedge}.$
- (3) $(A_m^{\wedge})_m^{\wedge} = A_m^{\wedge}$.

(4) If A is m-open then $A = A_m^{\wedge}$.

- $(5) \cup \{(A_i)_m^{\wedge} : i \in \Delta\} \subset (\cup \{A_i : i \in \Delta\})_m^{\wedge}.$
- $(6) \ (\cap \{A_i : i \in \Delta\})_m^{\wedge} \subset \cap \{(A_i)_m^{\wedge} : i \in \Delta\}.$

(7) $(X - A)_m^{\wedge} = X - A_m^{\vee}$.

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have A[∧]_m⊂(A[∧]_m)[∧]_m. If x∉A[∧]_m, then there exists an m-open set U such that A⊂U and x∉U. Hence A[∧]_m⊂U by Definition 3.1 and so x∉(A[∧]_m)[∧]_m. Thus (A[∧]_m)[∧]_m⊂A[∧]_m. Hence (A[∧]_m)[∧]_m=A[∧]_m.
(5) Let A=∪{A_i : i∈Δ}. By (2) we have ∪{(A_i)[∧]_m : i∈Δ}⊂A[∧]_m = (∪{A_i : i∈Δ})[∧]_m.

Remark 3.3. In Lemma 3.2, the equality in (5) and (6) does not hold as can be seen by the following example.

Example 3.4. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, X, \{a\}, \{b\}\}$. Take $A = \{a\}$ and $B = \{b\}$, then $A_m^{\wedge} \cup B_m^{\wedge} = \{a\} \cup \{b\} = \{a, b\}$ and $(A \cup B)_m^{\wedge} = X$. Hence $A_m^{\wedge} \cup B_m^{\wedge} = \{a, b\} \subsetneq X = (A \cup B)_m^{\wedge}$. Also take $C = \{a, b\}$ and $D = \{b, c\}$, then $C_m^{\wedge} \cap D_m^{\wedge} = X$ and $(C \cap D)_m^{\wedge} = \{b\}$. Hence $(C \cap D)_m^{\wedge} = \{b\} \subsetneq X = C_m^{\wedge} \cap D_m^{\wedge}$.

Proposition 3.5. Let (X, m_X) be a minimal space satisfying property $[\mathcal{U}]$ and A_i , $i \in \Delta$ be subsets of X. Then $\cup \{(A_i)_m^{\wedge} : i \in \Delta\} = (\cup \{A_i : i \in \Delta\})_m^{\wedge}$.

Proof. Let A=∪{A_i : i∈Δ}. If $x \notin \cup \{(A_i)_m^{\wedge} : i∈\Delta\}$ then for each i∈Δ, there exists an m-open set U_i such that A_i⊂U_i and $x \notin U_i$. If U=∪{U_i : i∈Δ} then U is m-open set by property [\mathcal{U}] with A⊂U and $x \notin U$. Therefore $x \notin A_m^{\wedge}$. Hence $(\cup \{A_i : i \in \Delta\})_m^{\wedge} \subset \cup \{(A_i)_m^{\wedge} : i∈\Delta\}$.

Lemma 3.6. For subsets A, B and A_i , $i \in \Delta$, of a minimal space (X, m_X) the following properties hold:

- (1) $A_m^{\vee} \subset A$.
- $(2) \ A \subset B \Rightarrow A_m^{\vee} \subset B_m^{\vee}.$
- (3) $(A_m^{\vee})_m^{\vee} = A_m^{\vee}$.
- (4) If A is m-closed then $A = A_m^{\vee}$.
- $(5) \ (\cap \{A_i : i \in \Delta\})_m^{\vee} \subset \cap \{(A_i)_m^{\vee} : i \in \Delta\}.$
- $(6) \cup \{ (A_i)_m^{\vee} : i \in \Delta \} \subset (\cup \{ A_i : i \in \Delta \})_m^{\vee}.$

Proof. (1), (2), (4) and (6) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have $(A_m^{\vee})_m^{\vee} \subset A_m^{\vee}$. If $x \in A_m^{\vee}$ then for some m-closed set $F \subset A$, $x \in F$. Then $F \subset A_m^{\vee}$ by Definition 3.1. Since F is m-closed, again by Definition 3.1, $x \in (A_m^{\vee})_m^{\vee}$.

(5) Let
$$A = \cap \{A_i : i \in \Delta\}$$
. By (2) we have $(\cap \{A_i : i \in \Delta\})_m^{\vee} \subset \cap \{(A_i)_m^{\vee} : i \in \Delta\}$.

Remark 3.7. In Lemma 3.6, the equality in (5) and (6) does not hold as can be seen by the following example.

Example 3.8. In Example 3.4, take $A = \{a, c\}$ and $B = \{b, c\}$, then $A_m^{\vee} \cap B_m^{\vee} = \{a, c\} \cap \{b, c\} = \{c\}$ and $(A \cap B)_m^{\vee} = \emptyset$. Hence $(A \cap B)_m^{\vee} = \emptyset \subsetneq \{c\} = A_m^{\vee} \cap B_m^{\vee}$. Also take $C = \{a\}$ and $D = \{c\}$, then $C_m^{\vee} \cup D_m^{\vee} = \emptyset$ and $(C \cup D)_m^{\vee} = \{a, c\}$. Hence $C_m^{\vee} \cup D_m^{\vee} = \emptyset \subsetneq \{a, c\}$.

Proposition 3.9. Let (X, m_X) be a minimal space satisfying property $[\mathcal{U}]$ and A_i , $i \in \Delta$ be subsets of X. Then $(\cap \{A_i : i \in \Delta\})_m^{\vee} = \cap \{(A_i)_m^{\vee} : i \in \Delta\}$.

Proof. Let $A = \cap \{A_i : i \in \Delta\}$. If $x \in \cap \{(A_i)_m^{\vee} : i \in \Delta\}$, then for each $i \in \Delta$, there exists a m-closed set F_i such that $F_i \subset A_i$ and $x \in F_i$. If $F = \cap \{F_i : i \in \Delta\}$ then F is m-closed by property $[\mathcal{U}]$ with $F \subset A$ and $x \in F$. Therefore $x \in A_m^{\vee}$. Hence $\cap \{(A_i)_m^{\vee} : i \in \Delta\} \subset (\cap \{A_i : i \in \Delta\})_m^{\vee}$.

Definition 3.10. A subset A of a minimal space (X, m_X) is said to be a

- (1) \wedge_m -set if $A = A_m^{\wedge}$.
- (2) \vee_m -set if $A = A_m^{\vee}$.

Remark 3.11. \emptyset and X are \wedge_m -sets and \vee_m -sets.

Theorem 3.12. Let (X, m_X) be a minimal space satisfying property $[\mathcal{U}]$. Then the following hold.

- (1) Arbitrary union of \wedge_m -sets is a \wedge_m -set.
- (2) Arbitrary intersection of \vee_m -sets is a \vee_m -set.

Proof.

- (1) Let $\{A_i : i \in \Delta\}$ be a family of \wedge_m -sets. If $A = \cup \{A_i : i \in \Delta\}$, then by Proposition 3.5, $A_m^{\wedge} = \cup \{(A_i)_m^{\wedge} : i \in \Delta\} = \cup \{A_i : i \in \Delta\} = A$. Hence A is a \wedge_m -set.
- (2) Let $\{A_i : i \in \Delta\}$ be a family of \vee_m -sets. If $A = \cap \{A_i : i \in \Delta\}$, then by Proposition 3.9, $A_m^{\vee} = \cap \{(A_i)_m^{\vee} : i \in \Delta\} = \cap \{A_i : i \in \Delta\} = A$. Hence A is a \vee_m -set.

Remark 3.13. In Theorem 3.12, we cannot drop the property $[\mathcal{U}]$. It is shown in the following example.

Example 3.14. In Example 3.4, $\{a\}$ and $\{b\}$ are \wedge_m -sets but their union is not \wedge_m -set. Also, $\{a, c\}$ and $\{b, c\}$ are \vee_m -sets but their intersection is not \vee_m -set.

Theorem 3.15. Let (X, m_X) be a minimal space. Then the following hold.

- (1) Arbitrary intersection of \wedge_m -sets is a \wedge_m -set.
- (2) Arbitrary union of \vee_m -sets is a \vee_m -set.

Proof.

(1) Let $\{A_i : i \in \Delta\}$ be a family of \wedge_m -sets. If $A = \cap \{A_i : i \in \Delta\}$, then by Lemma 3.2, $A_m^{\wedge} \subset \cap \{(A_i)_m^{\wedge} : i \in \Delta\} = \cap \{A_i : i \in \Delta\} = A$. Again by Lemma 3.2, $A \subset A_m^{\wedge}$. Hence A is a \wedge_m -set. (2) Let $\{A_i : i \in \Delta\}$ be a family of \vee_m -sets. If $A = \bigcup \{A_i : i \in \Delta\}$, then by Lemma 3.6, $A_m^{\vee} \supset \bigcup \{(A_i)_m^{\vee} : i \in \Delta\} = \bigcup \{A_i : i \in \Delta\} = A$. Again by Lemma 3.6, $A_m^{\vee} \subset A$. Hence A is a \vee_m -set.

4. Generalized \wedge_m -sets and \vee_m -sets in Ideal Minimal Spaces

Definition 4.1. A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is said to be

(1) $\mathcal{I}.\wedge_m$ -set if $A_m^\wedge \subset F$ whenever $A \subset F$ and F is $m \star$ -closed.

(2) $\mathcal{I}.\lor_m$ -set if X-A is an $\mathcal{I}.\land_m$ -set.

Proposition 4.2. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then the following hold:

(1) Every \wedge_m -set is an $\mathcal{I}.\wedge_m$ -set but not conversely.

(2) Every \vee_m -set is an $\mathcal{I}.\vee_m$ -set but not conversely.

Example 4.3. Let $X = \{a, b, c\}$, $m_X = \{\emptyset, X, \{a, b\}, \{b, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\{a, c\}$ is $\mathcal{I}.\wedge_m$ -set but not \wedge_m -set and $\{b\}$ is $\mathcal{I}.\vee_m$ -set but not \vee_m -set.

Proposition 4.4. Every *m*-open set is $\mathcal{I}.\wedge_m$ -set but not conversely.

Proof. Let $A \subseteq F$ and F is $m \star$ -closed. If A is m-open, then $A_m^{\wedge} = A \subseteq F$. Hence A is $\mathcal{I} \land_m$ -set.

Example 4.5. In Example 4.3, $\{b\}$ is $\mathcal{I} \land h_m$ -set but not m-open set.

Theorem 4.6. A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is an $\mathcal{I}.\vee_m$ -set if and only if $U \subset A_m^{\vee}$ whenever $U \subset A$ and U is m*-open.

Proof. Suppose that A⊂X is an $\mathcal{I}.\lor_m$ -set and U is an m*-open set such that U⊂A. Then X−A⊂X−U and X−U is m*-closed. Since X−A is an $\mathcal{I}.\land_m$ -set, we have $(X - A)_m^{\wedge} ⊂$ X−U and so X− $A_m^{\vee} ⊂$ X−U, by Lemma 3.2. Therefore, U⊂ A_m^{\vee} . Conversely, assume that U⊂ A_m^{\vee} whenever U⊂A and U is m*-open. Suppose X−A⊂F and F is m*-closed. Then, X−F⊂A and X−F is m*-open. Therefore, X−F⊂ A_m^{\vee} and so X− $A_m^{\vee} ⊂$ F. By Lemma 3.2, we have $(X - A)_m^{\vee} ⊂$ F. Hence X−A is an $\mathcal{I}.\land_m$ -set and so A is an $\mathcal{I}.\lor_m$ -set

Theorem 4.7. Let A be an $\mathcal{I}.\vee_m$ -set in an ideal minimal space (X, m_X, \mathcal{I}) . Then for every $m\star$ -closed set F such that $A_m^{\vee} \cup (X-A) \subset F$, F=X holds.

Proof. Let A be an $\mathcal{I}.\vee_m$ -set in an ideal minimal space (X, m_X, \mathcal{I}) . Suppose F is m*-closed set such that $A_m^{\vee} \cup (X-A) \subset F$. Then $X-F \subset (X-A_m^{\vee}) \cap A$. Since A is an $\mathcal{I}.\vee_m$ -set and the m*-open set $X-F \subset A$, by Theorem 4.6, $X-F \subset A_m^{\vee}$. Already, we have $X-F \subset X-A_m^{\vee}$ and so $X-F = \emptyset$ which implies that F = X.

Corollary 4.8. Let A be an $\mathcal{I}.\vee_m$ -set in an ideal minimal space (X, m_X, \mathcal{I}) . Then $A_m^{\vee} \cup (X-A)$ is $m \star$ -closed if and only if A is a \vee_m -set.

Proof. Let A be an $\mathcal{I}.\vee_m$ -set. Suppose $A_m^{\vee} \cup (X-A)$ is m*-closed. Then by Theorem 4.7, $A_m^{\vee} \cup (X-A) = X$ and so $A \subset A_m^{\vee}$. By Lemma 3.6, we have $A_m^{\vee} \subset A$. Hence A is a \vee_m -set.

Conversely, suppose A is a \vee_m -set. Then $A_m^{\vee} \cup (X-A) = A \cup (X-A) = X$, which is m*-closed.

Theorem 4.9. Let A be a subset of an ideal minimal space (X, m_X, \mathcal{I}) satisfying property $[\mathcal{I}]$ such that A_m^{\lor} is a m*-closed set. If F=X, whenever F is m*-closed and $A_m^{\lor} \cup (X-A) \subset F$, then A is an $\mathcal{I} . \lor_m$ -set.

Proof. Let U be an m*-open set such that U \subset A. Since A_m^{\vee} is m*-closed, $A_m^{\vee} \cup (X-U)$ is m*-closed. By hypothesis, $A_m^{\vee} \cup (X-U) = X$. This implies that $U \subset A_m^{\vee}$. Hence A is an $\mathcal{I} . \lor_m$ -set.

Theorem 4.10. Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then each singleton set in X is either $m\star$ -open or an $\mathcal{I}.\lor_m$ -set.

Proof. Suppose $\{x\}$ is not m*-open. Then, $X-\{x\}$ is not m*-closed. So the only m*-closed set containing $X-\{x\}$ is X. Therefore, $(X-\{x\})^{\wedge}_{m}\subset X$ and so $X-\{x\}$ is an $\mathcal{I}.\wedge_{m}$ -set. Hence $\{x\}$ is an $\mathcal{I}.\vee_{m}$ -set.

The set of all $\mathcal{I}.\vee_m$ -sets is denoted by $D_{m\mathcal{I}}^{\vee}$ and the set of all $\mathcal{I}.\wedge_m$ -sets is denoted by $D_{m\mathcal{I}}^{\wedge}$.

Definition 4.11. Let (X, m_X, \mathcal{I}) be an ideal minimal space and $A \subset X$. Then $m - cl_{\mathcal{I}}^{\wedge}(A) = \cap \{U : A \subset U \text{ and } U \in D_{m\mathcal{I}}^{\wedge}\}$ and $m - int_{\mathcal{I}}^{\vee}(A) = \cup \{F : F \subset A \text{ and } F \in D_{m\mathcal{I}}^{\vee}\}.$

Theorem 4.12. Let (X, m_X, \mathcal{I}) be an ideal minimal space satisfying property $[\mathcal{U}]$ and A_i , $i \in \Delta$ be subsets of X. Then the following hold.

- (1) If $A_i \in D_{m\mathcal{I}}^{\wedge}$ for all $i \in \Delta$, then $\cup \{A_i: i \in \Delta\} \in D_{m\mathcal{I}}^{\wedge}$.
- (2) If $A_i \in D_{m\mathcal{I}}^{\vee}$ for all $i \in \Delta$, then $\cap \{A_i : i \in \Delta\} \in D_{m\mathcal{I}}^{\vee}$.

Proof.

- (1) Let $A_i \in D_{m\mathcal{I}}^{\wedge}$ for all $i \in \Delta$. Suppose $\cup \{A_i : i \in \Delta\} \subset F$ and F is m*-closed. Then $A_i \subset F$ for all $i \in \Delta$. So $A_i^{\wedge} \subset F$ for all $i \in \Delta$. Therefore, $\cup \{(A_i)_m^{\wedge} : i \in \Delta\} \subset F$. By Proposition 3.5, $(\cup \{A_i : i \in \Delta\})_m^{\wedge} = \cup \{(A_i)_m^{\wedge} : i \in \Delta\} \subset F$. So $\cup \{A_i : i \in \Delta\} \in D_{m\mathcal{I}}^{\wedge}$.
- (2) Let $A_i \in D_{m\mathcal{I}}^{\vee}$ for all $i \in \Delta$. Then, $X A_i \in D_{m\mathcal{I}}^{\wedge}$ for all $i \in \Delta$. So, by (1), $\cup \{X A_i : i \in \Delta\} \in D_{m\mathcal{I}}^{\wedge}$. $X \cap \{A_i : i \in \Delta\} \in D_{m\mathcal{I}}^{\wedge}$ and so $\cap \{A_i : i \in \Delta\} \in D_{m\mathcal{I}}^{\vee}$.

Remark 4.13. In Theorem 4.12, we cannot drop the property $[\mathcal{U}]$. It is shown in the following example.

Example 4.14. Let $X = \{a, b, c\}, m_X = \{\emptyset, X, \{a\}, \{b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $D_{m\mathcal{I}}^{\wedge} = \{\emptyset, X, \{a\}, \{b\}\}$, take $A = \{a\} \in D_{m\mathcal{I}}^{\wedge}$ and $B = \{b\} \in D_{m\mathcal{I}}^{\wedge}$ but their union $A \cup B = \{a, b\} \notin D_{m\mathcal{I}}^{\wedge}$. Also, $\in D_{m\mathcal{I}}^{\vee} = \{\emptyset, X, \{a, c\}, \{b, c\}\}$, take $A = \{a, c\} \in D_{m\mathcal{I}}^{\vee}$ and $B = \{b, c\} \in D_{m\mathcal{I}}^{\vee}$ but their intersection $A \cap B = \{c\} \notin D_{m\mathcal{I}}^{\vee}$.

Theorem 4.15. Let (X, m_X, \mathcal{I}) be an ideal minimal space satisfying property $[\mathcal{U}]$ and $A, B \subset X$. Then $m\text{-}cl_{\mathcal{I}}^{\wedge}$ is a kuratowski closure operator on X.

Proof.

- (1) Since $\emptyset_m^{\wedge} = \emptyset$, $\emptyset \in D_{m\mathcal{I}}^{\wedge}$ and so $\operatorname{m-}cl_{\mathcal{I}}^{\wedge}(\emptyset) = \emptyset$.
- (2) From the definition of $m-cl^{\wedge}_{\mathcal{I}}(A)$, it is clear that $A \subset m-cl^{\wedge}_{\mathcal{I}}(A)$.
- (3) We have $\{U : A \cup B \subset U, U \in D_{m\mathcal{I}}^{\wedge}\} \subset \{U : A \subset U, U \in D_{m\mathcal{I}}^{\wedge}\}$. So $m \cdot cl_{\mathcal{I}}^{\wedge}(A) \subset m cl_{\mathcal{I}}^{\wedge}(A \cup B)$. Similarly, $m \cdot cl_{\mathcal{I}}^{\wedge}(B) \subset m cl_{\mathcal{I}}^{\wedge}(A \cup B)$. Therefore, $m \cdot cl_{\mathcal{I}}^{\wedge}(A) \cup m - cl_{\mathcal{I}}^{\wedge}(B) \subset m - cl_{\mathcal{I}}^{\wedge}(A \cup B)$. On the other hand, if $x \notin m - cl_{\mathcal{I}}^{\wedge}(A) \cup m - cl_{\mathcal{I}}^{\wedge}(B)$, then $x \notin m - cl_{\mathcal{I}}^{\wedge}(A)$. So there exists $U_1 \in D_{m\mathcal{I}}^{\wedge}$ such that $A \subset U_1$ but $x \notin U_1$. Similarly, there exists $U_2 \in D_{m\mathcal{I}}^{\wedge}$ such that $B \subset U_2$ but $x \notin U_2$. Let $U = U_1 \cup U_2$. Then, by Theorem 4.12, $U \in D_{m\mathcal{I}}^{\wedge}$ such that $A \cup B \subset U$ but $x \notin U$. So $x \notin m - cl_{\mathcal{I}}^{\wedge}(A \cup B)$. Therefore, $m - cl_{\mathcal{I}}^{\wedge}(A \cup B) \subset m - cl_{\mathcal{I}}^{\wedge}(A) \cup m - cl_{\mathcal{I}}^{\wedge}(B)$ which implies that $m - cl_{\mathcal{I}}^{\wedge}(A \cup B) = m - cl_{\mathcal{I}}^{\wedge}(B)$.
- (4) Now {U : A ⊂ U, U ∈ $D_{m\mathcal{I}}^{\wedge}$ }={U : m- $cl_{\mathcal{I}}^{\wedge}(A)$ ⊂U, U ∈ $D_{m\mathcal{I}}^{\wedge}$ } by the definition of m- $cl_{\mathcal{I}}^{\wedge}$ operator and so m- $cl_{\mathcal{I}}^{\wedge}(A)$ = m- $cl_{\mathcal{I}}$

Remark 4.16. In Theorem 4.15, we cannot drop the property $[\mathcal{U}]$. It is shown in the following example.

Example 4.17. In Example 4.14, take $A = \{a\}$ and $B = \{b\}$. Then $m \cdot cl_{\mathcal{I}}^{\wedge}(A) \cup m \cdot cl_{\mathcal{I}}^{\wedge}(B) = \{a\} \cup \{b\} = \{a, b\} \subsetneq m \cdot cl_{\mathcal{I}}^{\wedge}(A \cup B) = X$. **Theorem 4.18.** Let (X, m_X, \mathcal{I}) be an ideal minimal space. Then $X - m \cdot cl_{\mathcal{I}}^{\wedge}(A) = m \cdot int_{\mathcal{I}}^{\vee}(X - A)$ for every subset A of X.

$$Proof. \quad \mathbf{X}-\mathbf{m}-cl_{\mathcal{I}}^{\wedge}(\mathbf{A})=\mathbf{X}-\cap\{\mathbf{U}:\mathbf{A}\subset\mathbf{U},\ \mathbf{U}\in D_{m\mathcal{I}}^{\wedge}\}=\cup\{\mathbf{X}-\mathbf{U}:\mathbf{X}-\mathbf{U}\subset\mathbf{X}-\mathbf{A},\ \mathbf{X}-\mathbf{U}\in D_{m\mathcal{I}}^{\vee}\}=\mathbf{m}-int_{\mathcal{I}}^{\vee}(\mathbf{X}-\mathbf{A}).$$

Theorem 4.19. Let (X, m_X, \mathcal{I}) be an ideal minimal space satisfying property $[\mathcal{U}]$. Then every singleton subset of X is an $\mathcal{I}.\wedge_m$ -set if and only if $G=G_m^{\vee}$ holds for every $m\star$ -open set G.

Proof. Suppose every singleton subset of X is an \mathcal{I} .∧_m-set. Let G be an m*-open set and y∈X–G. Since {y} is \mathcal{I} .∧_m-set, $\{y\}_m^{\wedge} \subset X$ –G. Therefore, $\cup \{\{y\}_m^{\wedge} : y \in X - G\} \subset X$ –G. By Proposition 3.5, $(\cup \{\{y\} : y \in X - G\})_m^{\wedge} = \cup \{\{y\}_m^{\wedge} : y \in X - G\} \subset X - G$ and so $(X - G)_m^{\wedge} \subset X$ –G. Therefore, $(X - G)_m^{\wedge} = X$ –G. Since $X - G_m^{\vee} = (X - G)_m^{\wedge} = X$ –G and so $G = G_m^{\vee}$.

Conversely, let $x \in X$ and F be a m*-closed set containing x. Since X-F is m*-open, $X-F=(X-F)_m^{\vee}=X-F_m^{\wedge}$ and so $F=F_m^{\wedge}$. Therefore, $\{x\}_m^{\wedge} \subset F_m^{\wedge}=F$. Hence $\{x\}$ is an $\mathcal{I}.\wedge_m$ -set.

Theorem 4.20. Let (X, m_X, \mathcal{I}) be an ideal minimal space satisfying property $[\mathcal{U}]$. Then the following are equivalent.

(1) Every $m\star$ -open set is a \vee_m -set,

(2)
$$D_{m\mathcal{I}}^{\vee} = \wp(X).$$

Proof. $(1)\Rightarrow(2)$ By Theorem 4.19, every singleton subset of X is an $\mathcal{I}.\wedge_m$ -set. If any subset A of X is written as a union of singleton sets, then by Theorem 4.12(1), A is an $\mathcal{I}.\wedge_m$ -set and so every subset of X is an $\mathcal{I}.\vee_m$ -set. Therefore, $D_{m\mathcal{I}}^{\vee}=\wp(X)$. (2) \Rightarrow (1) Let A be an m*-open set. By hypothesis, A is an $\mathcal{I}.\vee_m$ -set and so by Lemma 3.2(1) and Theorem 4.6, A is a \vee_m -set.

Theorem 4.21. A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is an $m \mathcal{I}_q$ -closed set if and only if $m \text{-}cl^*(A) \subset A_m^{\wedge}$.

Proof. Suppose that $A \subset X$ is an $m \cdot \mathcal{I}_g$ -closed set. Let $x \in m \cdot cl^*(A)$. Suppose $x \notin A_m^{\wedge}$. Then there exists an m-open set U containing A such that $x \notin U$. Since A is an $m \cdot \mathcal{I}_g$ -closed set, $A \subset U$ and U is m-open implies that $m \cdot cl^*(A) \subset U$ and so $x \notin m \cdot cl^*(A)$, a contradiction. Therefore, $m \cdot cl^*(A) \subset A_m^{\wedge}$.

Conversely, suppose m-cl*(A) $\subset A_m^{\wedge}$. If A \subset U and U is m-open, then $A_m^{\wedge} \subset U_m^{\wedge} =$ U and so m-cl*(A) $\subset A_m^{\wedge} \subset$ U. Therefore, A is m- \mathcal{I}_g -closed.

Corollary 4.22. A subset A of an ideal minimal space (X, m_X, \mathcal{I}) is $m \mathcal{I}_g$ -open if and only if $A_m^{\vee} \subset m$ -int*(A).

Proof. A \subset X is m- \mathcal{I}_g -open if and only if X-A is m- \mathcal{I}_g -closed if and only if m-cl*(X-A) \subset (X - A)^{\wedge}_m if and only if X-m-int*(A) \subset X-A^{\vee}_m if and only if A^{\vee}_m \subset m-int*(A).

Theorem 4.23. If A is an m- \mathcal{I}_g -open set in an ideal minimal space (X, m_X, \mathcal{I}) , then U=X whenever U is m-open and m-int* $(A) \cup (X-A) \subset U$.

Proof. Assume that A is m- \mathcal{I}_g -open in X. Let U be an m-open set in X such that m-int*(A) \cup (X-A) \subset U, then X-U \subset X-(m-int*(A) \cup (X-A)) = (X-m-int*(A)) \cap A = m-cl*(X-A)-(X-A). Since X-A is m- \mathcal{I}_g -closed, then by Lemma 2.14, (X - A)_m^{*}-(X-A) contains no nonempty m-closed set. But m-cl*(X-A)-(X-A)=(X-A)_m^{*}-(X-A) and so m-cl*(X-A)-(X-A) contains no nonempty m-closed set. Since X-U is m-closed, then X-U=Ø and so U=X.

Corollary 4.24. $A \wedge_m$ -set A in an ideal minimal space (X, m_X, \mathcal{I}) is $m-\mathcal{I}_q$ -closed if and only if A is m-closed.

Proof. Let A be a \wedge_m -set. If A is m- \mathcal{I}_g -closed, then by Theorem 4.21, m-cl*(A) $\subset A_m^{\wedge}$ and so m-cl*(A) $\subset A$ which implies that A is m*-closed.

Conversely, it is clear, since every m*-closed set is m- \mathcal{I}_q -closed.

Corollary 4.25. An m-open set A in an ideal minimal space (X, m_X, \mathcal{I}) is $m-\mathcal{I}_q$ -closed if and only if A is $m\star$ -closed.

Proof. The proof follows from the fact that every m-open set is a \wedge_m -set.

Theorem 4.26. Let (X, m_X, \mathcal{I}) be an ideal minimal space and $A \subset X$. If A_m^{\wedge} is an m- \mathcal{I}_g -closed set, then A is an m- \mathcal{I}_g -closed set.

Proof. Let A_m^{\wedge} be m- \mathcal{I}_g -closed set. By Theorem 4.21, m-cl* $(A_m^{\wedge}) \subset (A_m^{\wedge})_m^{\wedge} = A_m^{\wedge}$. Since $A \subset A_m^{\wedge}$ and so m-cl* $(A) \subset m$ -cl* $(A_m^{\wedge}) \subset A_m^{\wedge}$. Again, by Theorem 4.21, A is m- \mathcal{I}_g -closed.

Remark 4.27. The converse of Theorem 4.26 need not be true as shown by the following example.

Example 4.28. In Example 4.3, $A = \{a\}$ is $m \cdot \mathcal{I}_g$ -closed set but A_m^{\wedge} is not $m \cdot \mathcal{I}_g$ -closed set.

5. Characterizations of m-T₁-spaces

Definition 5.1. Let (X, m_X, \mathcal{I}) be an ideal minimal space and $A \subset X$. Then $m_{\mathcal{I}}^{\wedge}$ is defined as follows: $m_{\mathcal{I}}^{\wedge} = \{A \subset X : m - cl_{\mathcal{I}}^{\wedge}(X-A) = X-A\}$. $m_{\mathcal{I}}^{\wedge}$ is called \wedge -minimal structure on X generated by $m - cl_{\mathcal{I}}^{\wedge}$. Each element of $m_{\mathcal{I}}^{\wedge}$ is called $m_{\mathcal{I}}^{\wedge}$ -open and the complement of an $m_{\mathcal{I}}^{\wedge}$ -open set is called $m_{\mathcal{I}}^{\wedge}$ -closed. We observe that $m_{\mathcal{I}}^{\wedge}$ is always finer than $D_{m\mathcal{I}}^{\vee}$ and $m_{\mathcal{I}}^{\wedge c}$ is always finer than $D_{m\mathcal{I}}^{\wedge}$.

Theorem 5.2. In an ideal minimal space (X, m_X, \mathcal{I}) satisfying property $[\mathcal{U}]$, the following are equivalent.

- (1) (X, m_X, \mathcal{I}) is a m-T₁-space,
- (2) Every $\mathcal{I}.\lor_m$ -set is a \lor_m -set,
- (3) Every $m_{\mathcal{I}}^{\wedge}$ -open set is a \vee_m -set.

Proof. (1)⇒(2) Suppose there exists an $\mathcal{I}.\vee_m$ -set A which is not \vee_m -set. Then $A_m^{\vee} \subseteq A$. Therefore, there exists an element $x \in A$ such that $x \notin A_m^{\vee}$. Then, {x} is not m-closed, the definition of A_m^{\vee} , a contradiction to Lemma 2.12. This proves (2). (2)⇒(1) Suppose that (X, m_X, \mathcal{I}) is not a m-T₁-space. Then by Lemma 2.13 there exists an m- \mathcal{I}_g -closed set A which is not m*-closed. So, there exists an element $x \in X$ such that $x \in m\text{-cl}^*(A)$ but $x \notin A$. By Theorem 4.10, {x} is either m*-open or an $\mathcal{I}.\vee_m$ -set. When {x} is m*-open, {x}∩A=\emptyset, m-cl^*(A)⊂m-cl^*(X-{x}) = X-{x} which is a contradiction to the fact that $x \in m\text{-cl}^*(A)$. When {x} is an $\mathcal{I}.\vee_m$ -set, by our assumption, {x} is a \vee_m -set and hence {x} is m-closed. Therefore, $A \subset X - {x}$ and $X - {x}$ is m-open. Since A is $m-\mathcal{I}_g$ -closed, $m-cl^*(A) \subset X - {x}$. This is also a contradiction to the fact that $x \in m-cl^*(A)$. Therefore, every $m-\mathcal{I}_g$ -closed set is m*-closed and hence (X, m_X, \mathcal{I}) is a $m-T_1$ -space.

 $(2) \Rightarrow (3) \text{ Suppose that every } \mathcal{I}.\lor_m\text{-set is a } \lor_m\text{-set. Then, a subset F is a } \mathcal{I}.\lor_m\text{-set if and only if F is a } \lor_m\text{-set. Let } A \in m_{\mathcal{I}}^{\wedge}.$ Then A=m- $int_{\mathcal{I}}^{\vee}(A) = \cup \{F: F \subset A \text{ and } F \in D_{m\mathcal{I}}^{\vee}\} = \cup \{F: F \subset A \text{ and F is a } \lor_m\text{-set}\}.$ Now $A_m^{\vee} = (m - int_{\mathcal{I}}^{\vee}(A))_m^{\vee} = (\cup \{F: F \subset A \text{ and } F = F_m^{\vee}\})_m^{\vee} \supset \cup \{F_m^{\vee}: F \subset A \text{ and } F = F_m^{\vee}\} = \cup \{F: F \subset A \text{ and } F = F_m^{\vee}\} = \cup \{F: F \subset A \text{ and } F = F_m^{\vee}\} = \cup \{F: F \subset A \text{ and } F \in D_{m\mathcal{I}}^{\vee}\} = m - int_{\mathcal{I}}^{\vee}(A) = A.$ Always $A_m^{\vee} \subset A \text{ and so } A_m^{\vee} = A.$ Hence A is a \lor_m -set.

 $(3) \Rightarrow (2)$ Let A be an $\mathcal{I}. \vee_m$ -set. Then, by definition of $\text{m-}int^{\vee}_{\mathcal{I}}(A)$, $\text{m-}int^{\vee}_{\mathcal{I}}(A) = A$ and so $A \in m^{\wedge}_{\mathcal{I}}$. By (3), A is a \vee_m -set. \Box

Corollary 5.3. An ideal minimal space (X, m_X, \mathcal{I}) satisfying property $[\mathcal{U}]$ is a m-T₁-space if and only if every singleton set is either m*-open or m-closed.

Proof. Assume that (X, m_X, \mathcal{I}) is a m-T₁-space. Let $x \in X$. Suppose $\{x\}$ is not m*-open. By Theorem 4.10, it is an $\mathcal{I} \cup _m$ -set. Since X is a m-T₁-space, by Theorem 5.2(2), $\{x\}$ is a \vee_m -set and hence is m-closed.

Conversely, suppose (X, m_X, \mathcal{I}) is not a m-T₁-space. Then, there exists an $\mathcal{I}.\vee_m$ -set A which is not a \vee_m -set, by Theorem 5.2(2). So there exists an element $x \in A$ such that $x \notin A_m^{\vee}$. If $\{x\}$ is m-closed, then A_m^{\vee} contains the m-closed set $\{x\}$, which is not possible. If $\{x\}$ is m*-open, then the m*-closed set X- $\{x\}$ contains $A_m^{\vee} \cup (X-A)$. By Theorem 4.7, X- $\{x\}=X$, which is not possible. So $\{x\}$ is neither m*-open nor m-closed, which is contradiction to our assumption. Therefore, (X, m_X, \mathcal{I}) is a m-T₁-space.

References

^[1] M.Ganster, S.Jafari and T.Noiri, On pre-A-sets and pre-V-sets, Acta Math. Hungar., 95(4)(2002), 337-343.

 ^[2] H.Maki, J.Umehara and K.Yamamura, Characterizations of T_{1/2}-spaces using generalized ∨-sets, Indian J. Pure Appl. Math., 19(7)(1988), 634-640.

 ^[3] H.Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, Yatsushiro College of Technology, (1996), 13-18.

^[4] M.Navaneethakrishnan and D.Sivaraj, \mathcal{I}_g -closed sets and $T_{\mathcal{I}}$ -spaces, Journal of Advanced Research in Pure Mathematics, 1(2)(2009), 41-49.

- [5] O.Ravi, S.Tharmar and S.Ganesan, Some locally closed sets in ideal minimal spaces, International Journal of Advances in Pure and Applied Mathematics, 1(1)(2011), 89-105.
- [6] O.B.Ozbakir and E.D.Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3)(2009), 227-235.