International Journal of Mathematics And its Applications

## $\mathcal{I} . \vee_{m}$-sets and $\mathcal{I} . \wedge_{m}$-sets

## Research Article

O.Ravi ${ }^{1 *}$, K.Kalpana ${ }^{2}$ and S.Tharmar ${ }^{3}$<br>1 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.<br>2 Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.<br>3 Department of Mathematics, R. V. S College of Engineering and Technology, Dindigul, Tamil Nadu, India.


#### Abstract

We define $\wedge_{m}$-sets and $\vee_{m}$-sets in minimal spaces and discuss their properties. Also define $\mathcal{I}$. $\wedge_{m}$-sets and $\mathcal{I} . \vee_{m}$-sets in ideal minimal spaces and discuss their properties. At the end of the paper, we characterize m- $\mathrm{T}_{1}$-spaces using these new sets.

MSC: $\quad 54 \mathrm{C} 10,54 \mathrm{C} 05,54 \mathrm{~A} 05,54 \mathrm{~A} 10$. Keywords: m- $\mathcal{I}_{g}$-closed set, $\mathcal{I} . \wedge_{m}$-set, $\mathcal{I} . \vee_{m}$-set, m-T $\mathrm{T}_{1}$-space. (C) JS Publication.


## 1. Introduction

Ozbakir and Yildirim [6] introduced $\mathrm{m}-\mathcal{I}_{g}$-closed sets in ideal minimal spaces and discussed their properties. In this paper, in Section 3, we define $\wedge_{m}$-sets and $\vee_{m}$-sets in minimal spaces and discuss their properties. In Section 4 , we define $\mathcal{I}$. $\wedge_{m}$-sets and $\mathcal{I} . \vee_{m}$-sets in ideal minimal spaces and discuss their properties. In Section 5 , we characterize $m$ - $\mathrm{T}_{1}$-spaces using these new sets.

## 2. Preliminaries

Definition 2.1 ([3]). A subfamily $m_{X} \subset \wp(X)$ is said to be a minimal structure on $X$ if $\emptyset, X \in m_{X}$. The pair ( $X, m_{X}$ ) is called a minimal space (or an m-space). A subset $A$ of $X$ is said to be m-open if $A \in m_{X}$. The complement of an m-open set is called m-closed set. We set $m-\operatorname{int}(A)=\cup\left\{U: U \subset A, U \in m_{X}\right\}$ and $m-c l(A)=\cap\left\{F: A \subset F, X-F \in m_{X}\right\}$.

Lemma 2.2 ([3]). Let $X$ be a nonempty set and $m_{X}$ a minimal structure on $X$. For subsets $A$ and $B$ of $X$, the following properties hold:
(1) $m-c l(X-A)=X-m-i n t(A)$ and $m-i n t(X-A)=X-m-c l(A)$,

[^0](2) If $X-A \in m_{X}$, then $m-c l(A)=A$ and if $A \in m_{X}$, then $m-i n t(A)=A$,
(3) $m-c l(\emptyset)=\emptyset, m-c l(X)=X, m-i n t(\emptyset)=\emptyset$ and $m-i n t(X)=X$,
(4) If $A \subset B$, then $m-c l(A) \subset m-\operatorname{cl}(B)$ and $m-i n t(A) \subset m-i n t(B)$,
(5) $A \subset m-c l(A)$ and $m-i n t(A) \subset A$,
(6) $m-c l(m-c l(A))=m-c l(A)$ and $m-\operatorname{int}(m-\operatorname{int}(A))=m-\operatorname{int}(A)$.

A minimal space $\left(X, m_{X}\right)$ has the property $[\mathcal{U}]$ if "the arbitrary union of m-open sets is m-open" [6]. ( $\mathrm{X}, \mathrm{m}_{X}$ ) has the property $[\mathcal{I}]$ if "the any finite intersection of m-open sets is m-open". [6].

Lemma 2.3 ([6]). Let $X$ be a nonempty set and $m_{X}$ a minimal structure on $X$ satisfying property $\left.\mathcal{U}\right]$. For a subset $A$ of $X$, the following properties hold:
(1) $A \in m_{X}$ if and only if $m-\operatorname{int}(A)=A$,
(2) $A$ is $m$-closed if and only if $m-\operatorname{cl}(A)=A$,
(3) $m-\operatorname{int}(A) \in m_{X}$ and $m-c l(A)$ is $m$-closed.

An ideal $\mathcal{I}$ on a minimal space $\left(\mathrm{X}, \mathrm{m}_{X}\right)$ is a non-empty collection of subsets of X which satisfies the following conditions.
(1) $\mathrm{A} \in \mathcal{I}$ and $B \subset A$ imply $B \in \mathcal{I}$ and
(2) $\mathrm{A} \in \mathcal{I}$ and $\mathrm{B} \in \mathcal{I}$ imply $\mathrm{A} \cup B \in \mathcal{I}$.

Definition $2.4([6])$. Let $\left(X, m_{X}\right)$ be a minimal space with an ideal $\mathcal{I}$ on $X$ and $(.)_{m}^{*}$ be a set operator from $\wp(X)$ to $\wp(X)$. For a subset $A \subset X, A_{m}^{*}\left(\mathcal{I}, m_{X}\right)=\left\{x \in X: U_{m} \cap A \notin \mathcal{I}\right.$ for every $\left.U_{m} \in \mu_{m}(x)\right\}$ where $\mu_{m}(x)=\left\{U_{m} \in m_{X}: x \in U_{m}\right\}$ is called the minimal local function of $A$ with respect to $\mathcal{I}$ and $m_{X}$. We will simply write $A_{m}^{*}$ for $A_{m}^{*}\left(\mathcal{I}, m_{X}\right)$.

Definition $2.5([6])$. Let $\left(X, m_{X}\right)$ be a minimal space with an ideal $\mathcal{I}$ on $X$. The set operator $m$-cl ${ }^{*}$ is called a minimal $\star$-closure and is defined as $m$-cl ${ }^{*}(A)=A \cup A_{m}^{*}$ for $A \subset X$. We will denote by $m_{x}^{*}\left(\mathcal{I}, m_{X}\right)$ the minimal structure generated by $m$-cl*, that is, $m_{x}^{*}\left(\mathcal{I}, m_{X}\right)=\left\{U \subset X: m-c l^{*}(X-U)=X-U\right\} . m_{x}^{*}\left(\mathcal{I}, m_{X}\right)$ is called $\star$-minimal structure which is finer than $m_{X}$. The elements of $m_{x}^{*}\left(\mathcal{I}, m_{X}\right)$ are called $m_{\star}$-open and the complement of an $m_{\star}$-open set is called $m_{\star}$-closed. The interior of a subset $A$ in $\left(X, m_{x}^{*}\left(\mathcal{I}, m_{X}\right)\right)$ is denoted by $m$-int ${ }^{*}(A)$.

If $\mathcal{I}$ is an ideal on $\left(\mathrm{X}, \mathrm{m}_{X}\right)$, then $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$ is called an ideal minimal space or ideal m -space.
Lemma 2.6 ([6], Theorem 2.1). Let $\left(X, m_{X}\right)$ be a minimal space with $\mathcal{I}, \mathcal{I}^{\prime}$ ideals on $X$ and $A, B$ be subsets of $X$. Then
(1) $A \subset B \Rightarrow A_{m}^{*} \subset B_{m}^{*}$,
(2) $\mathcal{I} \subset \mathcal{I}^{\prime} \Rightarrow A_{m}^{*}\left(\mathcal{I}^{\prime}\right) \subset A_{m}^{*}(\mathcal{I})$,
(3) $A_{m}^{*}=m-\operatorname{cl}\left(A_{m}^{*}\right) \subset m-c l(A)$,
(4) $A_{m}^{*} \cup B_{m}^{*} \subset(A \cup B)_{m}^{*}$,
(5) $\left(A_{m}^{*}\right)_{m}^{*} \subset A_{m}^{*}$.

Proposition 2.7 ([6]). The set operator $m$-cl* satisfies the following conditions:
(1) $A \subset m-c l^{*}(A)$,
(2) $m-c l^{*}(\emptyset)=\emptyset$ and $m-c l^{*}(X)=X$,
(3) If $A \subset B$, then $m-c l^{*}(A) \subset m-c l^{*}(B)$,
(4) $m-c l^{*}(A) \cup m-c l^{*}(B) \subset m-c l^{*}(A \cup B)$.

Definition $2.8([6])$. A subset $A$ of an ideal minimal space ( $X, m_{X}, \mathcal{I}$ ) is $m_{\star}$-closed (resp. $m \star$-dense in itself, $m \star$-perfect) if $A_{m}^{*} \subset A$ (resp. $A \subset A_{m}^{*}, A_{m}^{*}=A$ ).

Definition 2.9 ([6]). A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is $m$ - $\mathcal{I}$-generalized closed (briefly, m- $\mathcal{I}_{g}$-closed) if $A_{m}^{*} \subset U$ whenever $A \subset U$ and $U$ is m-open. A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is said to be m-I-generalized open (briefly, $m$ - $\mathcal{I}_{g}$-open) if $X-A$ is $m-\mathcal{I}_{g}$-closed.

Lemma 2.10 ([6]). If $\left(X, m_{X}, \mathcal{I}\right)$ is an ideal minimal space and $A \subset X$, then $A$ is $m$ - $\mathcal{I}_{g}$-closed if and only if $m$-cl* $(A) \subset U$ whenever $A \subset U$ and $U$ is m-open in $X$.

Definition $2.11([6])$. A minimal space $\left(X, m_{X}\right)$ is said to be $m-T_{1}$ if for any pair of distinct points $x$, $y$ of $X$, there exist an m-open set containing $x$ but not $y$ and an m-open set containing $y$ but not $x$.

Lemma 2.12 ([6]). Let $\left(X, m_{X}\right)$ be a minimal space satisfying property $\left.\mathcal{U}\right]$. Then $\left(X, m_{X}\right)$ is $m_{-} T_{1}$ if and only if for each point $x \in X$, the singleton $\{x\}$ is m-closed.

Lemma 2.13 ([6]). Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space satisfying property $\left.\mathcal{U}\right]$ and $A \subset X$. If $\left(X, m_{X}\right)$ is an $m-T_{1}$ space, then $A$ is $m \star$-closed if and only if $A$ is $m$ - $\mathcal{I}_{g}$-closed.

Lemma 2.14 ([5]). Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space and $A \subset X$. If $A$ is $m$ - $\mathcal{I}_{g}$-closed then $A_{m}^{*}-A$ contains no nonempty m-closed set.

## 3. $\wedge_{m}$-sets and $\vee_{m}$-sets

Definition 3.1. Let $A$ be a subset of a minimal space $\left(X, m_{X}\right)$. We define subsets $A_{m}^{\wedge}$ and $A_{m}^{\vee}$ as follows:
(1) $A_{m}^{\wedge}=\cap\{U: A \subset U$ and $U$ is m-open $\}$.
(2) $A_{m}^{\vee}=\cup\{F: F \subset A$ and $F$ is $m$-closed $\}$.

Lemma 3.2. For subsets $A, B$ and $A_{i}, i \in \Delta$, of a minimal space ( $X, m_{X}$ ) the following properties hold:
(1) $A \subset A_{m}^{\wedge}$.
(2) $A \subset B \Rightarrow A_{m}^{\wedge} \subset B_{m}^{\wedge}$.
(3) $\left(A_{m}^{\wedge}\right)_{m}^{\wedge}=A_{m}^{\wedge}$.
(4) If $A$ is m-open then $A=A_{m}^{\wedge}$.
(5) $\cup\left\{\left(A_{i}\right)_{m}^{\wedge}: i \in \Delta\right\} \subset\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge}$.
(6) $\left(\cap\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge} \subset \cap\left\{\left(A_{i}\right)_{m}^{\wedge}: i \in \Delta\right\}$.
(7) $(X-A)_{m}^{\wedge}=X-A_{m}^{\vee}$.

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 3.1.
(3) From (1) and (2) we have $A_{m}^{\wedge} \subset\left(A_{m}^{\wedge}\right)_{m}^{\wedge}$. If $\mathrm{x} \notin A_{m}^{\wedge}$, then there exists an m-open set U such that $\mathrm{A} \subset \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$. Hence $A_{m}^{\wedge} \subset \mathrm{U}$ by Definition 3.1 and so $\mathrm{x} \notin\left(A_{m}^{\wedge}\right)_{m}^{\wedge}$. Thus $\left(A_{m}^{\wedge}\right)_{m}^{\wedge} \subset A_{m}^{\wedge}$. Hence $\left(A_{m}^{\wedge}\right)_{m}^{\wedge}=A_{m}^{\wedge}$.
(5) Let $\mathrm{A}=\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$. By (2) we have $\cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\} \subset A_{m}^{\wedge}=\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge}$.

Remark 3.3. In Lemma 3.2, the equality in (5) and (6) does not hold as can be seen by the following example.

Example 3.4. Let $X=\{a, b, c\}$ and $m_{X}=\{\emptyset, X,\{a\},\{b\}\}$. Take $A=\{a\}$ and $B=\{b\}$, then $A_{m}^{\wedge} \cup B_{m}^{\wedge}=\{a\} \cup\{b\}=\{a$, b\} and $(A \cup B)_{m}^{\wedge}=X$. Hence $A_{m}^{\wedge} \cup B_{m}^{\wedge}=\{a, b\} \subsetneq X=(A \cup B)_{m}^{\wedge}$. Also take $C=\{a, b\}$ and $D=\{b, c\}$, then $C_{m}^{\wedge} \cap D_{m}^{\wedge}=X$ and $(C \cap D)_{m}^{\wedge}=\{b\}$. Hence $(C \cap D)_{m}^{\wedge}=\{b\} \subsetneq X=C_{m}^{\wedge} \cap D_{m}^{\wedge}$.

Proposition 3.5. Let $\left(X, m_{X}\right)$ be a minimal space satisfying property $\left.\mathcal{U}\right]$ and $A_{i}$, $i \in \Delta$ be subsets of $X$. Then $\cup\left\{\left(A_{i}\right)_{m}^{\wedge}\right.$ : $i \in \Delta\}=\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge}$.

Proof. Let $\mathrm{A}=\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$. If $\mathrm{x} \notin \cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\}$ then for each $\mathrm{i} \in \Delta$, there exists an m-open set $\mathrm{U}_{i}$ such that $\mathrm{A}_{i} \subset \mathrm{U}_{i}$ and $\mathrm{x} \notin \mathrm{U}_{i}$. If $\mathrm{U}=\cup\left\{\mathrm{U}_{i}: \mathrm{i} \in \Delta\right\}$ then U is m-open set by property $[\mathcal{U}]$ with $A \subset \mathrm{U}$ and $\mathrm{x} \notin \mathrm{U}$. Therefore $\mathrm{x} \notin A_{m}^{\wedge}$. Hence $\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge} \subset \cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\}$.

Lemma 3.6. For subsets $A, B$ and $A_{i}, i \in \Delta$, of a minimal space ( $X, m_{X}$ ) the following properties hold:
(1) $A_{m}^{\vee} \subset A$.
(2) $A \subset B \Rightarrow A_{m}^{\vee} \subset B_{m}^{\vee}$.
(3) $\left(A_{m}^{\vee}\right)_{m}^{\vee}=A_{m}^{\vee}$.
(4) If $A$ is m-closed then $A=A_{m}^{\vee}$.
(5) $\left(\cap\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\vee} \subset \cap\left\{\left(A_{i}\right)_{m}^{\vee}: i \in \Delta\right\}$.
(6) $\cup\left\{\left(A_{i}\right)_{m}^{\vee}: i \in \Delta\right\} \subset\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\vee}$.

Proof. (1), (2), (4) and (6) are immediate consequences of Definition 3.1.
(3) From (1) and (2) we have $\left(A_{m}^{\vee}\right)_{m}^{\vee} \subset A_{m}^{\vee}$. If $\mathrm{x} \in A_{m}^{\vee}$ then for some m-closed set $\mathrm{F} \subset \mathrm{A}, \mathrm{x} \in \mathrm{F}$. Then $\mathrm{F} \subset A_{m}^{\vee}$ by Definition 3.1. Since F is m-closed, again by Definition 3.1, $\mathrm{x} \in\left(A_{m}^{\vee}\right)_{m}^{\vee}$.
(5) Let $\mathrm{A}=\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$. By (2) we have $\left(\cap\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\vee} \subset \cap\left\{\left(A_{i}\right)_{m}^{\vee}: \mathrm{i} \in \Delta\right\}$.

Remark 3.7. In Lemma 3.6, the equality in (5) and (6) does not hold as can be seen by the following example.

Example 3.8. In Example 3.4, take $A=\{a, c\}$ and $B=\{b, c\}$, then $A_{m}^{\vee} \cap B_{m}^{\vee}=\{a, c\} \cap\{b, c\}=\{c\}$ and $(A \cap B)_{m}^{\vee}=\emptyset$. Hence $(A \cap B)_{m}^{\vee}=\emptyset \subsetneq\{c\}=A_{m}^{\vee} \cap B_{m}^{\vee}$. Also take $C=\{a\}$ and $D=\{c\}$, then $C_{m}^{\vee} \cup D_{m}^{\vee}=\emptyset$ and $(C \cup D)_{m}^{\vee}=\{a, c\}$. Hence $C_{m}^{\vee} \cup D_{m}^{\vee}=\emptyset \subsetneq\{a$, $c\}=(C \cup D)_{m}^{\vee}$.

Proposition 3.9. Let $\left(X, m_{X}\right)$ be a minimal space satisfying property $[\mathcal{U}]$ and $A_{i}, i \in \Delta$ be subsets of $X$. Then $\left(\cap\left\{A_{i}: i \in\right.\right.$ $\Delta\})_{m}^{\vee}=\cap\left\{\left(A_{i}\right)_{m}^{\vee}: i \in \Delta\right\}$.

Proof. Let $\mathrm{A}=\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$. If $\mathrm{x} \in \cap\left\{\left(A_{i}\right)_{m}^{\vee}: \mathrm{i} \in \Delta\right\}$, then for each $\mathrm{i} \in \Delta$, there exists a m-closed set $\mathrm{F}_{i}$ such that $\mathrm{F}_{i} \subset \mathrm{~A}_{i}$ and $\mathrm{x} \in \mathrm{F}_{i}$. If $\mathrm{F}=\cap\left\{\mathrm{F}_{i}: \mathrm{i} \in \Delta\right\}$ then F is m-closed by property $[\mathcal{U}]$ with $\mathrm{F} \subset \mathrm{A}$ and $\mathrm{x} \in \mathrm{F}$. Therefore $\mathrm{x} \in A_{m}^{\vee}$. Hence $\cap\left\{\left(A_{i}\right)_{m}^{\vee}\right.$ : $\mathrm{i} \in \Delta\} \subset\left(\cap\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\vee}$.

Definition 3.10. A subset $A$ of a minimal space $\left(X, m_{X}\right)$ is said to be a
(1) $\wedge_{m}$-set if $A=A_{m}^{\wedge}$.
(2) $\vee_{m}$-set if $A=A_{m}^{\vee}$.

Remark 3.11. $\emptyset$ and $X$ are $\wedge_{m}$-sets and $\vee_{m}$-sets.

Theorem 3.12. Let $\left(X, m_{X}\right)$ be a minimal space satisfying property $[\mathcal{U}]$. Then the following hold.
(1) Arbitrary union of $\wedge_{m}$-sets is a $\wedge_{m}$-set.
(2) Arbitrary intersection of $\vee_{m}$-sets is $a \vee_{m}$-set.

Proof.
(1) Let $\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$ be a family of $\wedge_{m}$-sets. If $\mathrm{A}=\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$, then by Proposition 3.5, $A_{m}^{\wedge}=\cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\}=\cup\left\{\mathrm{A}_{i}\right.$ : $\mathrm{i} \in \Delta\}=\mathrm{A}$. Hence A is a $\wedge_{m}$-set.
(2) Let $\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$ be a family of $\vee_{m}$-sets. If $\mathrm{A}=\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$, then by Proposition 3.9, $A_{m}^{\vee}=\cap\left\{\left(A_{i}\right)_{m}^{\vee}: \mathrm{i} \in \Delta\right\}=\cap\left\{\mathrm{A}_{i}\right.$ : $\mathrm{i} \in \Delta\}=\mathrm{A}$. Hence A is a $\vee_{m}$-set.

Remark 3.13. In Theorem 3.12, we cannot drop the property $[\mathcal{U}]$. It is shown in the following example.

Example 3.14. In Example 3.4, $\{a\}$ and $\{b\}$ are $\wedge_{m}$-sets but their union is not $\wedge_{m}$-set. Also, $\{a, c\}$ and $\{b, c\}$ are $\vee_{m}$-sets but their intersection is not $\vee_{m}$-set.

Theorem 3.15. Let $\left(X, m_{X}\right)$ be a minimal space. Then the following hold.
(1) Arbitrary intersection of $\wedge_{m}$-sets is $a \wedge_{m}$-set.
(2) Arbitrary union of $\vee_{m}$-sets is a $\vee_{m}$-set.

Proof.
(1) Let $\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$ be a family of $\wedge_{m}$-sets. If $\mathrm{A}=\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$, then by Lemma 3.2, $A_{m}^{\wedge} \subset \cap\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\}=\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}=\mathrm{A}$. Again by Lemma 3.2, $\mathrm{A} \subset A_{m}^{\wedge}$. Hence A is a $\wedge_{m}$-set.
(2) Let $\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$ be a family of $\vee_{m}$-sets. If $\mathrm{A}=\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}$, then by Lemma 3.6, $A_{m}^{\vee} \supset \cup\left\{\left(A_{i}\right)_{m}^{\vee}: \mathrm{i} \in \Delta\right\}=\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\}=\mathrm{A}$. Again by Lemma 3.6, $A_{m}^{\vee} \subset \mathrm{A}$. Hence A is a $\vee_{m}$-set.

## 4. Generalized $\wedge_{m}$-sets and $\vee_{m}$-sets in Ideal Minimal Spaces

Definition 4.1. A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is said to be
(1) $\mathcal{I} . \wedge_{m}$-set if $A_{m}^{\wedge} \subset F$ whenever $A \subset F$ and $F$ is $m \star$-closed.
(2) $\mathcal{I} . \vee_{m}$-set if $X-A$ is an $\mathcal{I} . \wedge_{m}$-set.

Proposition 4.2. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space. Then the following hold:
(1) Every $\wedge_{m}$-set is an $\mathcal{I} . \wedge_{m}$-set but not conversely.
(2) Every $\vee_{m}$-set is an $\mathcal{I} . \vee_{m}$-set but not conversely.

Example 4.3. Let $X=\{a, b, c\}, m_{X}=\{\emptyset, X,\{a, b\},\{b, c\}\}$ and $\mathcal{I}=\{\emptyset\}$. Then $\{a, c\}$ is $\mathcal{I} . \wedge_{m}$-set but not $\wedge_{m}$-set and $\{b\}$ is $\mathcal{I} . \vee_{m}$-set but not $\vee_{m}$-set.

Proposition 4.4. Every m-open set is $\mathcal{I} . \wedge_{m}$-set but not conversely.
Proof. Let $\mathrm{A} \subset \mathrm{F}$ and F is $\mathrm{m} \star$-closed. If A is m-open, then $A_{m}^{\wedge}=\mathrm{A} \subset \mathrm{F}$. Hence A is $\mathcal{I} . \wedge_{m}$-set.
Example 4.5. In Example 4.3, $\{b\}$ is $\mathcal{I} . \wedge_{m}$-set but not m-open set.
Theorem 4.6. A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is an $\mathcal{I} . \vee_{m}$-set if and only if $U \subset A_{m}^{\vee}$ whenever $U \subset A$ and $U$ is $m \star$-open.

Proof. Suppose that $\mathrm{A} \subset \mathrm{X}$ is an $\mathcal{I} . \vee_{m}$-set and U is an $\mathrm{m} \star$-open set such that $\mathrm{U} \subset \mathrm{A}$. Then $\mathrm{X}-\mathrm{A} \subset \mathrm{X}-\mathrm{U}$ and $\mathrm{X}-\mathrm{U}$ is $\mathrm{m} \star$-closed. Since $\mathrm{X}-\mathrm{A}$ is an $\mathcal{I} . \wedge_{m}$-set, we have $(X-A)_{m}^{\wedge} \subset \mathrm{X}-\mathrm{U}$ and so $\mathrm{X}-A_{m}^{\vee} \subset \mathrm{X}-\mathrm{U}$, by Lemma 3.2. Therefore, $\mathrm{U} \subset A_{m}^{\vee}$. Conversely, assume that $U \subset A_{m}^{\vee}$ whenever $U \subset A$ and $U$ is $m \star$-open. Suppose $X-A \subset F$ and $F$ is $m \star$-closed. Then, $X-F \subset A$ and $\mathrm{X}-\mathrm{F}$ is $\mathrm{m} \star$-open. Therefore, $\mathrm{X}-\mathrm{F} \subset A_{m}^{\vee}$ and so $\mathrm{X}-A_{m}^{\vee} \subset \mathrm{F}$. By Lemma 3.2, we have $(X-A)_{m}^{\vee} \subset \mathrm{F}$. Hence $\mathrm{X}-\mathrm{A}$ is an $\mathcal{I} . \wedge_{m}$-set and so A is an $\mathcal{I} . \vee_{m}$-set

Theorem 4.7. Let $A$ be an $\mathcal{I} . \vee_{m}$-set in an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$. Then for every $m_{\star}$-closed set $F$ such that $A_{m}^{\vee} \cup(X-A) \subset F, F=X$ holds.

Proof. Let A be an $\mathcal{I} . \vee_{m}$-set in an ideal minimal space $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$. Suppose F is $\mathrm{m} \star$-closed set such that $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{A}) \subset \mathrm{F}$. Then $\mathrm{X}-\mathrm{F} \subset\left(\mathrm{X}-A_{m}^{\vee}\right) \cap \mathrm{A}$. Since A is an $\mathcal{I} . \vee_{m}$-set and the $\mathrm{m} \star$-open set $\mathrm{X}-\mathrm{F} \subset \mathrm{A}$, by Theorem 4.6, $\mathrm{X}-\mathrm{F} \subset A_{m}^{\vee}$. Already, we have $\mathrm{X}-\mathrm{F} \subset \mathrm{X}-A_{m}^{\vee}$ and so $\mathrm{X}-\mathrm{F}=\emptyset$ which implies that $\mathrm{F}=\mathrm{X}$.

Corollary 4.8. Let $A$ be an $\mathcal{I} . \vee_{m}$-set in an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$. Then $A_{m}^{\vee} \cup(X-A)$ is $m_{\star}$-closed if and only if $A$ is $a \vee_{m}$-set.

Proof. Let A be an $\mathcal{I} . \vee_{m}$-set. Suppose $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{A})$ is $\mathrm{m} \star$-closed. Then by Theorem 4.7, $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{A})=\mathrm{X}$ and so $\mathrm{A} \subset A_{m}^{\vee}$. By Lemma 3.6, we have $A_{m}^{\vee} \subset \mathrm{A}$. Hence A is a $\vee_{m}$-set.

Conversely, suppose A is a $\vee_{m}$-set. Then $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{A})=\mathrm{A} \cup(\mathrm{X}-\mathrm{A})=\mathrm{X}$, which is $\mathrm{m} \star$-closed.
Theorem 4.9. Let $A$ be a subset of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ satisfying property $[\mathcal{I}]$ such that $A_{m}^{\vee}$ is a $m \star$-closed set. If $F=X$, whenever $F$ is $m_{\star}$-closed and $A_{m}^{\vee} \cup(X-A) \subset F$, then $A$ is an $\mathcal{I} . \vee_{m}$-set.

Proof. Let U be an $\mathrm{m} \star$-open set such that $\mathrm{U} \subset A$. Since $A_{m}^{\vee}$ is $\mathrm{m} \star$-closed, $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{U})$ is $\mathrm{m} \star$-closed. By hypothesis, $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{U})=\mathrm{X}$. This implies that $\mathrm{U} \subset A_{m}^{\vee}$. Hence A is an $\mathcal{I} . \vee_{m}$-set.

Theorem 4.10. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space. Then each singleton set in $X$ is either $m \star$-open or an $\mathcal{I} . \vee_{m}$-set.

Proof. Suppose $\{x\}$ is not $m \star$-open. Then, $X-\{x\}$ is not $m_{\star}$-closed. So the only $m \star$-closed set containing $X-\{x\}$ is $X$. Therefore, $(X-\{x\})_{m}^{\wedge} \subset X$ and so $X-\{x\}$ is an $\mathcal{I} . \wedge_{m}$-set. Hence $\{x\}$ is an $\mathcal{I} . \vee_{m}$-set.

The set of all $\mathcal{I} . \vee_{m}$-sets is denoted by $D_{m \mathcal{I}}^{\vee}$ and the set of all $\mathcal{I} . \wedge_{m}$-sets is denoted by $D_{m \mathcal{I}}^{\wedge}$.

Definition 4.11. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space and $A \subset X$. Then $m-c l \hat{\mathcal{I}}(A)=\cap\left\{U: A \subset U\right.$ and $\left.U \in D_{m \mathcal{I}}^{\wedge}\right\}$ and $m-i n t_{\mathcal{I}}^{\vee}(A)=\cup\left\{F: F \subset A\right.$ and $\left.F \in D_{m \mathcal{I}}^{\vee}\right\}$.

Theorem 4.12. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space satisfying property $[\mathcal{U}]$ and $A_{i}, i \in \Delta$ be subsets of $X$. Then the following hold.
(1) If $A_{i} \in D_{m \mathcal{I}}^{\wedge}$ for all $i \in \Delta$, then $\cup\left\{A_{i}: i \in \Delta\right\} \in D_{m \mathcal{I}}^{\wedge}$.
(2) If $A_{i} \in D_{m \mathcal{I}}^{\vee}$ for all $i \in \Delta$, then $\cap\left\{A_{i}: i \in \Delta\right\} \in D_{m \mathcal{I}}^{\vee}$.

Proof.
(1) Let $\mathrm{A}_{i} \in D_{m \mathcal{I}}^{\wedge}$ for all $\mathrm{i} \in \Delta$. Suppose $\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\} \subset \mathrm{F}$ and F is $\mathrm{m} \star$-closed. Then $\mathrm{A}_{i} \subset \mathrm{~F}$ for all $\mathrm{i} \in \Delta$. So $A_{i}^{\wedge} \subset \mathrm{F}$ for all $\mathrm{i} \in \Delta$. Therefore, $\cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\} \subset$. By Proposition 3.5, $\left(\cup\left\{A_{i}: i \in \Delta\right\}\right)_{m}^{\wedge}=\cup\left\{\left(A_{i}\right)_{m}^{\wedge}: \mathrm{i} \in \Delta\right\} \subset \mathrm{F}$. So $\cup\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\} \in D_{m \mathcal{I}}^{\wedge}$.
(2) Let $\mathrm{A}_{i} \in D_{m \mathcal{I}}^{\vee}$ for all $\mathrm{i} \in \Delta$. Then, $\mathrm{X}-\mathrm{A}_{i} \in D_{m \mathcal{I}}^{\wedge}$ for all $\mathrm{i} \in \Delta$. So, by (1), $\cup\left\{\mathrm{X}-\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\} \in D_{m \mathcal{I}}^{\wedge} . \mathrm{X}-\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\} \in D_{m \mathcal{I}}^{\wedge}$ and so $\cap\left\{\mathrm{A}_{i}: \mathrm{i} \in \Delta\right\} \in D_{m \mathcal{I}}^{\vee}$.

Remark 4.13. In Theorem 4.12, we cannot drop the property $\mathcal{U}]$. It is shown in the following example.

Example 4.14. Let $X=\{a, b, c\}, m_{X}=\{\emptyset, X,\{a\},\{b\}\}$ and $\mathcal{I}=\{\emptyset,\{a\},\{b\},\{a, b\}\}$. Then $D_{m \mathcal{I}}^{\wedge}=\{\emptyset, X,\{a\},\{b\}\}$, take $A=\{a\} \in D_{m \mathcal{I}}^{\wedge}$ and $B=\{b\} \in D_{m \mathcal{I}}^{\wedge}$ but their union $A \cup B=\{a, b\} \notin D_{m \mathcal{I}}^{\wedge}$. Also, $\in D_{m \mathcal{I}}^{\vee}=\{\emptyset, X,\{a, c\},\{b, c\}\}$, take $A=\{a$, $c\} \in D_{m \mathcal{I}}^{\vee}$ and $B=\{b, c\} \in D_{m \mathcal{I}}^{\vee}$ but their intersection $A \cap B=\{c\} \notin D_{m \mathcal{I}}^{\vee}$.

Theorem 4.15. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space satisfying property $[\mathcal{U}]$ and $A, B \subset X$. Then $m$-cl $\hat{\mathcal{I}}$ is a kuratowski closure operator on $X$.

Proof.
(1) Since $\emptyset_{m}^{\wedge}=\emptyset, \emptyset \in D_{m \mathcal{I}}^{\wedge}$ and so $m-c l_{\mathcal{I}}^{\wedge}(\emptyset)=\emptyset$.
(2) From the definition of $m-c l \hat{\mathcal{I}}(\mathrm{~A})$, it is clear that $A \subset m-c l \hat{\mathcal{I}}(\mathrm{~A})$.
(3) We have $\left\{U: A \cup B \subset U, U \in D_{m \mathcal{I}}^{\wedge}\right\} \subset\left\{U: A \subset U, U \in D_{m \mathcal{I}}^{\wedge}\right\}$. So m-cl觖 $(A) \subset m-c l_{\mathcal{I}}^{\wedge}(A \cup B)$. Similarly, m-cl $\hat{\mathcal{I}}(B) \subset m-c l \hat{\mathcal{I}}(A \cup B)$. Therefore, $\mathrm{m}-c l_{\mathcal{I}}(\mathrm{A}) \cup \mathrm{m}-c l_{\mathcal{I}}(\mathrm{B}) \subset \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A} \cup \mathrm{B})$. On the other hand, if $\mathrm{x} \notin \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A}) \cup \mathrm{m}-c l_{\mathcal{I}}(\mathrm{B})$, then $\mathrm{x} \notin \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A})$. So there exists $\mathrm{U}_{1} \in D_{m \mathcal{I}}^{\wedge}$ such that $A \subset \mathrm{U}_{1}$ but $\mathrm{x} \notin \mathrm{U}_{1}$. Similarly, there exists $\mathrm{U}_{2} \in D_{m \mathcal{I}}^{\wedge}$ such that $\mathrm{B} \subset \mathrm{U}_{2}$ but $\mathrm{x} \notin \mathrm{U}_{2}$. Let $\mathrm{U}^{\prime}=\mathrm{U}_{1} \cup \mathrm{U}_{2}$. Then, by Theorem 4.12, $\mathrm{U} \in D_{m \mathcal{I}}^{\wedge}$ such that $\mathrm{A} \cup \mathrm{B} \subset \mathrm{U}$ but $\mathrm{x} \notin \mathrm{U}$. So $\mathrm{x} \notin \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A} \cup B)$. Therefore, $\mathrm{m}-c l_{\mathcal{I}}^{\hat{\mathcal{I}}}(\mathrm{A} \cup B) \subset \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A}) \cup \mathrm{m}-$ $c l_{\mathcal{I}}^{\hat{\mathcal{I}}}(\mathrm{B})$ which implies that $\mathrm{m}-c l_{\mathcal{I}}^{\hat{\mathcal{I}}}(\mathrm{A} \cup \mathrm{B})=\mathrm{m}-c l_{\hat{\mathcal{I}}}^{\hat{( }}(\mathrm{A}) \cup \mathrm{m}-c l_{\mathcal{I}}^{\hat{\mathcal{I}}}(\mathrm{B})$.
(4) Now $\left\{\mathrm{U}: \mathrm{A} \subset \mathrm{U}, \mathrm{U} \in D_{m \mathcal{I}}^{\wedge}\right\}=\left\{\mathrm{U}: \mathrm{m}-c l_{\mathcal{I}}(\mathrm{A}) \subset \mathrm{U}, \mathrm{U} \in D_{m \mathcal{I}}^{\wedge}\right\}$ by the definition of $\mathrm{m}-c l_{\mathcal{I}}$ operator and so $\mathrm{m}-c l_{\mathcal{I}}(\mathrm{A})=\mathrm{m}-c l_{\mathcal{I}}(\mathrm{m}-$ $\left.c l_{\mathcal{I}}(\mathrm{A})\right)$. Hence $\mathrm{m}-c l_{\mathcal{I}}$ is a kuratowski closure operator.

Remark 4.16. In Theorem 4.15, we cannot drop the property $\{\mathcal{U}]$. It is shown in the following example.

Example 4.17. In Example 4.14, take $A=\{a\}$ and $B=\{b\}$. Then $m-c l \hat{\mathcal{I}}(A) \cup m-c l \hat{\mathcal{I}}(B)=\{a\} \cup\{b\}=\{a, b\} \subsetneq m-c l \hat{\mathcal{I}}(A \cup B)=X$.

Theorem 4.18. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space. Then $X-m-c l \hat{\mathcal{I}}(A)=m-i n t_{\mathcal{I}}^{\vee}(X-A)$ for every subset $A$ of $X$.
Proof. $\mathrm{X}-\mathrm{m}-c l_{\mathcal{I}}^{\wedge}(\mathrm{A})=\mathrm{X}-\cap\left\{\mathrm{U}: \mathrm{A} \subset \mathrm{U}, \mathrm{U} \in D_{m \mathcal{I}}^{\wedge}\right\}=\cup\left\{\mathrm{X}-\mathrm{U}: \mathrm{X}-\mathrm{U} \subset \mathrm{X}-\mathrm{A}, \mathrm{X}-\mathrm{U} \in D_{m \mathcal{I}}^{\vee}\right\}=\mathrm{m}-i n t_{\mathcal{I}}^{\vee}(\mathrm{X}-\mathrm{A})$.
Theorem 4.19. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space satisfying property $[\mathcal{U}]$. Then every singleton subset of $X$ is an $\mathcal{I} . \wedge_{m}$-set if and only if $G=G_{m}^{\vee}$ holds for every $m \star$-open set $G$.

Proof. Suppose every singleton subset of X is an $\mathcal{I} . \wedge_{m}$-set. Let G be an $\mathrm{m} \star$-open set and $\mathrm{y} \in \mathrm{X}-\mathrm{G}$. Since $\{\mathrm{y}\}$ is $\mathcal{I} . \wedge_{m}$-set, $\{y\}_{m}^{\wedge} \subset \mathrm{X}-\mathrm{G}$. Therefore, $\cup\left\{\{y\}_{m}^{\wedge}: \mathrm{y} \in \mathrm{X}-\mathrm{G}\right\} \subset \mathrm{X}-\mathrm{G}$. By Proposition 3.5, $(\cup\{\{y\}: y \in X-G\})_{m}^{\wedge}=\cup\left\{\{y\}_{m}^{\wedge}: \mathrm{y} \in \mathrm{X}-\mathrm{G}\right\} \subset \mathrm{X}-\mathrm{G}$ and so $(X-G)_{m}^{\wedge} \subset \mathrm{X}-\mathrm{G}$. Therefore, $(X-G)_{m}^{\wedge}=\mathrm{X}-\mathrm{G}$. Since $\mathrm{X}-G_{m}^{\vee}=(X-G)_{m}^{\wedge}=\mathrm{X}-\mathrm{G}$ and so $\mathrm{G}=G_{m}^{\vee}$.
Conversely, let $x \in X$ and $F$ be a $m \star$-closed set containing $x$. Since $X-F$ is $m \star$-open, $X-F=(X-F)_{m}^{\vee}=X-F_{m}^{\wedge}$ and so $\mathrm{F}=F_{m}^{\wedge}$.
Therefore, $\{x\}_{m}^{\wedge} \subset F_{m}^{\wedge}=\mathrm{F}$. Hence $\{\mathrm{x}\}$ is an $\mathcal{I} . \wedge_{m}$-set.
Theorem 4.20. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space satisfying property $[\mathcal{U}]$. Then the following are equivalent.
(1) Every $m_{\star}$-open set is a $\vee_{m}$-set,
(2) $D_{m \mathcal{I}}^{\vee}=\wp(X)$.

Proof. $\quad(1) \Rightarrow(2)$ By Theorem 4.19, every singleton subset of X is an $\mathcal{I}$. $\wedge_{m}$-set. If any subset A of X is written as a union of singleton sets, then by Theorem $4.12(1), \mathrm{A}$ is an $\mathcal{I} . \wedge_{m}$-set and so every subset of X is an $\mathcal{I} . \vee_{m}$-set. Therefore, $D_{m \mathcal{I}}^{\vee}=\wp(\mathrm{X})$. $(2) \Rightarrow(1)$ Let A be an $m \star$-open set. By hypothesis, A is an $\mathcal{I} . \vee_{m}$-set and so by Lemma 3.2(1) and Theorem 4.6, A is a $\vee_{m}$-set.

Theorem 4.21. A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is an $m-\mathcal{I}_{g}$-closed set if and only if $m$-cl* $(A) \subset A_{m}^{\wedge}$.

Proof. Suppose that $\mathrm{A} \subset \mathrm{X}$ is an $\mathrm{m}-\mathcal{I}_{g}$-closed set. Let $\mathrm{x} \in \mathrm{m}-\mathrm{cl} *(\mathrm{~A})$. Suppose $\mathrm{x} \notin A_{m}^{\wedge}$. Then there exists an m-open set U containing A such that $\mathrm{x} \notin \mathrm{U}$. Since $A$ is an $\mathrm{m}-\mathcal{I}_{g}$-closed set, $\mathrm{A} \subset \mathrm{U}$ and U is m-open implies that m-cl*(A) $\subset \mathrm{U}$ and so $\mathrm{x} \notin \mathrm{m}-\mathrm{cl}^{*}(\mathrm{~A})$, a contradiction. Therefore, $\mathrm{m}-\mathrm{cl}^{*}(\mathrm{~A}) \subset A_{m}^{\wedge}$.

Conversely, suppose m-cl${ }^{*}(\mathrm{~A}) \subset A_{m}^{\wedge}$. If $\mathrm{A} \subset \mathrm{U}$ and U is m-open, then $A_{m}^{\wedge} \subset U_{m}^{\wedge}=\mathrm{U}$ and so m-cl${ }^{*}(\mathrm{~A}) \subset A_{m}^{\wedge} \subset \mathrm{U}$. Therefore, A is $\mathrm{m}-\mathcal{I}_{g}$-closed.

Corollary 4.22. A subset $A$ of an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is $m$ - $\mathcal{I}_{g}$-open if and only if $A_{m}^{\vee} \subset m$-int* $(A)$.

Proof. $\quad \mathrm{A} \subset \mathrm{X}$ is $\mathrm{m}-\mathcal{I}_{g}$-open if and only if $\mathrm{X}-\mathrm{A}$ is $\mathrm{m}-\mathcal{I}_{g}$-closed if and only if $\mathrm{m}-\mathrm{cl}^{*}(\mathrm{X}-\mathrm{A}) \subset(X-A)_{m}^{\wedge}$ if and only if $\mathrm{X}-\mathrm{m}$ int* $(\mathrm{A}) \subset \mathrm{X}-A_{m}^{\vee}$ if and only if $A_{m}^{\vee} \subset \mathrm{m}-\mathrm{int}^{*}(\mathrm{~A})$.

Theorem 4.23. If $A$ is an $m$ - $\mathcal{I}_{g}$-open set in an ideal minimal space ( $X, m_{X}, \mathcal{I}$ ), then $U=X$ whenever $U$ is $m$-open and $m$-int* $(A) \cup(X-A) \subset U$.

Proof. Assume that A is m- $\mathcal{I}_{g}$-open in X . Let U be an m-open set in X such that m -int* $(\mathrm{A}) \cup(\mathrm{X}-\mathrm{A}) \subset \mathrm{U}$, then $\mathrm{X}-\mathrm{U} \subset \mathrm{X}-(\mathrm{m}-$ $\left.\operatorname{int}^{*}(\mathrm{~A}) \cup(\mathrm{X}-\mathrm{A})\right)=\left(\mathrm{X}-\mathrm{m}-\operatorname{int}^{*}(\mathrm{~A})\right) \cap \mathrm{A}=\mathrm{m}-\mathrm{cl}^{*}(\mathrm{X}-\mathrm{A})-(\mathrm{X}-\mathrm{A})$. Since $\mathrm{X}-\mathrm{A}$ is $\mathrm{m}-\mathcal{I}_{g}$-closed, then by Lemma 2.14, $(X-$ $A)_{m}^{*}-(\mathrm{X}-\mathrm{A})$ contains no nonempty m-closed set. But m-cl* $(\mathrm{X}-\mathrm{A})-(\mathrm{X}-\mathrm{A})=(X-A)_{m}^{*}-(\mathrm{X}-\mathrm{A})$ and so m-cl* $(\mathrm{X}-\mathrm{A})-(\mathrm{X}-\mathrm{A})$ contains no nonempty m-closed set. Since $X-U$ is $m$-closed, then $X-U=\emptyset$ and so $U=X$.

Corollary 4.24. $A \wedge_{m}$-set $A$ in an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is $m$ - $\mathcal{I}_{g}$-closed if and only if $A$ is $m \star$-closed.

Proof. Let A be a $\wedge_{m}$-set. If A is $\mathrm{m}-\mathcal{I}_{g}$-closed, then by Theorem $4.21, \mathrm{~m}-\mathrm{cl}{ }^{*}(\mathrm{~A}) \subset A_{m}^{\wedge}$ and so m-cl$*(\mathrm{~A}) \subset \mathrm{A}$ which implies that A is $\mathrm{m} \star$-closed.

Conversely, it is clear, since every $m \star$-closed set is $m$ - $\mathcal{I}_{g}$-closed.

Corollary 4.25. An m-open set $A$ in an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ is $m$ - $\mathcal{I}_{g}$-closed if and only if $A$ is $m \star$-closed.

Proof. The proof follows from the fact that every m-open set is a $\wedge_{m}$-set.

Theorem 4.26. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space and $A \subset X$. If $A_{m}^{\wedge}$ is an $m$ - $\mathcal{I}_{g}$-closed set, then $A$ is an $m$ - $\mathcal{I}_{g}$-closed set.

Proof. Let $A_{m}^{\wedge}$ be $\mathrm{m}-\mathcal{I}_{g}$-closed set. By Theorem 4.21, m-cl* $\left(A_{m}^{\wedge}\right) \subset\left(A_{m}^{\wedge}\right)_{m}^{\wedge}=A_{m}^{\wedge}$. Since $\mathrm{A} \subset A_{m}^{\wedge}$ and so m-cl* $(\mathrm{A}) \subset \mathrm{m}-$ $\mathrm{cl}^{*}\left(A_{m}^{\wedge}\right) \subset A_{m}^{\wedge}$. Again, by Theorem 4.21, A is $\mathrm{m}-\mathcal{I}_{g}$-closed.

Remark 4.27. The converse of Theorem 4.26 need not be true as shown by the following example.

Example 4.28. In Example 4.3, $A=\{a\}$ is $m$ - $\mathcal{I}_{g}$-closed set but $A_{m}^{\wedge}$ is not $m$ - $\mathcal{I}_{g}$-closed set.

## 5. Characterizations of $\mathrm{m}-\mathrm{T}_{1}$-spaces

Definition 5.1. Let $\left(X, m_{X}, \mathcal{I}\right)$ be an ideal minimal space and $A \subset X$. Then $m_{\mathcal{I}}$ is defined as follows: $m_{\hat{\mathcal{I}}}=\{A \subset X: m$ $c l \hat{\mathcal{I}}(X-A)=X-A\} . m_{\hat{\mathcal{I}}}$ is called $\wedge$-minimal structure on $X$ generated by $m$-cl教. Each element of $m_{\hat{\mathcal{I}}}$ is called $m_{\mathcal{\mathcal { I }}}$-open and the complement of an $m_{\mathcal{I}}$-open set is called $m_{\hat{\mathcal{I}}}$-closed. We observe that $m_{\mathcal{I}}$ is always finer than $D_{m \mathcal{I}}^{\vee}$ and $m_{\mathcal{I}}{ }^{c}$ is always finer than $D_{m \mathcal{I}}^{\wedge}$.

Theorem 5.2. In an ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ satisfying property $[\mathcal{U}]$, the following are equivalent.
(1) $\left(X, m_{X}, \mathcal{I}\right)$ is a $m$ - $T_{1}$-space,
(2) Every $\mathcal{I} . \vee_{m}$-set is $a \vee_{m}$-set,
(3) Every $m_{\hat{\mathcal{I}}}$-open set is $a \vee_{m}$-set.

Proof. $\quad(1) \Rightarrow(2)$ Suppose there exists an $\mathcal{I} . \vee_{m}$-set A which is not $\vee_{m}$-set. Then $A_{m}^{\vee} \subsetneq \mathrm{A}$. Therefore, there exists an element $\mathrm{x} \in \mathrm{A}$ such that $\mathrm{x} \notin A_{m}^{\vee}$. Then, $\{\mathrm{x}\}$ is not m-closed, the definition of $A_{m}^{\vee}$, a contradiction to Lemma 2.12. This proves (2).
$(2) \Rightarrow(1)$ Suppose that $\left(X, m_{X}, \mathcal{I}\right)$ is not a $m$ - $T_{1}$-space. Then by Lemma 2.13 there exists an $m-\mathcal{I}_{g}$-closed set A which is not $m \star$-closed. So, there exists an element $x \in X$ such that $x \in m-c l^{*}(A)$ but $x \notin A$. By Theorem $4.10,\{x\}$ is either $m \star$-open or an $\mathcal{I} . \vee_{m}$-set. When $\{\mathrm{x}\}$ is $\mathrm{m} \star$-open, $\{\mathrm{x}\} \cap \mathrm{A}=\emptyset, \mathrm{m}-\mathrm{cl}{ }^{*}(\mathrm{~A}) \subset \mathrm{m}-\mathrm{cl} *(\mathrm{X}-\{\mathrm{x}\})=\mathrm{X}-\{\mathrm{x}\}$ which is a contradiction to the fact that $\mathrm{x} \in \mathrm{m}-\mathrm{cl}^{*}(\mathrm{~A})$. When $\{\mathrm{x}\}$ is an $\mathcal{I} . \vee_{m}$-set, by our assumption, $\{\mathrm{x}\}$ is a $\vee_{m}$-set and hence $\{\mathrm{x}\}$ is m-closed. Therefore, $\mathrm{A} \subset \mathrm{X}-\{\mathrm{x}\}$ and $X-\{x\}$ is m-open. Since $A$ is $m-\mathcal{I}_{g}$-closed, $m-c^{*}(A) \subset X-\{x\}$. This is also a contradiction to the fact that $x \in m-l^{*}(A)$. Therefore, every m - $\mathcal{I}_{g}$-closed set is $\mathrm{m} \star$-closed and hence $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$ is a $m-\mathrm{T}_{1}$-space.
$(2) \Rightarrow(3)$ Suppose that every $\mathcal{I} . \vee_{m}$-set is a $\vee_{m}$-set. Then, a subset $F$ is a $\mathcal{I} . \vee_{m}$-set if and only if F is a $\vee_{m}$-set. Let $\mathrm{A} \in m_{\mathcal{I}} \hat{\text {. }}$ Then $\mathrm{A}=\mathrm{m}-i n t_{\mathcal{I}}^{\vee}(\mathrm{A})=\cup\left\{\mathrm{F}: \mathrm{F} \subset \mathrm{A}\right.$ and $\left.\mathrm{F} \in D_{m \mathcal{I}}^{\vee}\right\}=\cup \cup \mathrm{F}: \mathrm{F} \subset \mathrm{A}$ and F is a $\vee_{m}$-set $\}$. Now $A_{m}^{\vee}=\left(m-i n t_{\mathcal{I}}^{\vee}(A)\right)_{m}^{\vee}=(\cup\{F: F \subset$ $A$ and $\left.\left.F=F_{m}^{\vee}\right\}\right)_{m}^{\vee} \supset \cup\left\{F_{m}^{\vee}: \mathrm{F} \subset \mathrm{A}\right.$ and $\left.\mathrm{F}=F_{m}^{\vee}\right\}=\cup\left\{\mathrm{F}: \mathrm{F} \subset \mathrm{A}\right.$ and $\left.\mathrm{F}=F_{m}^{\vee}\right\}=\cup\left\{\mathrm{F}: \mathrm{F} \subset \mathrm{A}\right.$ and $\left.\mathrm{F} \in D_{m \mathcal{I}}^{\vee}\right\}=\mathrm{m}-i n t_{\mathcal{I}}^{\vee}(\mathrm{A})=\mathrm{A}$. Always $A_{m}^{\vee} \subset \mathrm{A}$ and so $A_{m}^{\vee}=\mathrm{A}$. Hence A is a $\vee_{m}$-set.
$(3) \Rightarrow(2)$ Let A be an $\mathcal{I} . \vee_{m}$-set. Then, by definition of $m-i n t_{\mathcal{I}}^{\vee}(\mathrm{A}), m-i n t_{\mathcal{I}}^{\vee}(\mathrm{A})=\mathrm{A}$ and so $\mathrm{A} \in m_{\mathcal{I}} \hat{\mathcal{I}}$. By (3), A is a $\vee_{m}$-set.
Corollary 5.3. An ideal minimal space $\left(X, m_{X}, \mathcal{I}\right)$ satisfying property $\left.\mathcal{U}\right]$ is a $m$ - $T_{1}$-space if and only if every singleton set is either $m \star$-open or $m$-closed.

Proof. Assume that $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$ is a $\mathrm{m}^{-} \mathrm{T}_{1}$-space. Let $\mathrm{x} \in \mathrm{X}$. Suppose $\{\mathrm{x}\}$ is not $\mathrm{m} \star$-open. By Theorem 4.10, it is an $\mathcal{I} . \vee_{m}$-set. Since X is a m - $\mathrm{T}_{1}$-space, by Theorem $5.2(2),\{\mathrm{x}\}$ is a $\vee_{m}$-set and hence is m-closed.

Conversely, suppose $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$ is not a $m$ - $\mathrm{T}_{1}$-space. Then, there exists an $\mathcal{I}$. $\vee_{m}$-set A which is not a $\vee_{m}$-set, by Theorem 5.2(2). So there exists an element $\mathrm{x} \in \mathrm{A}$ such that $\mathrm{x} \notin A_{m}^{\vee}$. If $\{\mathrm{x}\}$ is m-closed, then $A_{m}^{\vee}$ contains the m-closed set $\{\mathrm{x}\}$, which is not possible. If $\{\mathrm{x}\}$ is $\mathrm{m} \star$-open, then the $\mathrm{m} \star$-closed set $\mathrm{X}-\{\mathrm{x}\}$ contains $A_{m}^{\vee} \cup(\mathrm{X}-\mathrm{A})$. By Theorem 4.7, $\mathrm{X}-\{\mathrm{x}\}=\mathrm{X}$, which is not possible. So $\{x\}$ is neither $m \star$-open nor $m$-closed, which is contradiction to our assumption. Therefore, $\left(\mathrm{X}, \mathrm{m}_{X}, \mathcal{I}\right)$ is a m - $\mathrm{T}_{1}$-space.

## References

[1] M.Ganster, S.Jafari and T.Noiri, On pre-^-sets and pre-V-sets, Acta Math. Hungar., 95(4)(2002), 337-343.
[2] H.Maki, J.Umehara and K.Yamamura, Characterizations of $T_{\frac{1}{2}}$-spaces using generalized $\vee$-sets, Indian J. Pure Appl. Math., 19(7)(1988), 634-640.
[3] H.Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, Yatsushiro College of Technology, (1996), 13-18.
[4] M.Navaneethakrishnan and D.Sivaraj, $\mathcal{I}_{g}$-closed sets and $T_{\mathcal{I}}$-spaces, Journal of Advanced Research in Pure Mathematics, 1(2)(2009), 41-49.
[5] O.Ravi, S.Tharmar and S.Ganesan, Some locally closed sets in ideal minimal spaces, International Journal of Advances in Pure and Applied Mathematics, 1(1)(2011), 89-105.
[6] O.B.Ozbakir and E.D.Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., 125(3)(2009), 227-235.


[^0]:    * E-mail: siingam@yahoo.com

