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1. Introduction

Ozbakir and Yildirim [6] introduced m-Ig-closed sets in ideal minimal spaces and discussed their properties. In this paper,

in Section 3, we define ∧m-sets and ∨m-sets in minimal spaces and discuss their properties. In Section 4, we define I.∧m-sets

and I.∨m-sets in ideal minimal spaces and discuss their properties. In Section 5, we characterize m-T1-spaces using these

new sets.

2. Preliminaries

Definition 2.1 ([3]). A subfamily mX⊂℘(X) is said to be a minimal structure on X if ∅, X∈mX . The pair (X, mX) is

called a minimal space (or an m-space). A subset A of X is said to be m-open if A∈mX . The complement of an m-open set

is called m-closed set. We set m-int(A)=∪{U : U⊂A, U∈mX} and m-cl(A)=∩{F : A⊂F, X−F∈mX}.

Lemma 2.2 ([3]). Let X be a nonempty set and mX a minimal structure on X. For subsets A and B of X, the following

properties hold:

(1) m-cl(X−A)=X−m-int(A) and m-int(X−A)=X−m-cl(A),
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(2) If X−A∈mX , then m-cl(A)=A and if A∈mX , then m-int(A)=A,

(3) m-cl(∅)=∅, m-cl(X)=X, m-int(∅)=∅ and m-int(X)=X,

(4) If A⊂B, then m-cl(A)⊂m-cl(B) and m-int(A)⊂m-int(B),

(5) A⊂m-cl(A) and m-int(A)⊂A,

(6) m-cl(m-cl(A))=m-cl(A) and m-int(m-int(A))=m-int(A).

A minimal space (X, mX) has the property [U ] if ”the arbitrary union of m-open sets is m-open” [6]. (X, mX) has the

property [I] if ”the any finite intersection of m-open sets is m-open”. [6].

Lemma 2.3 ([6]). Let X be a nonempty set and mX a minimal structure on X satisfying property [U ]. For a subset A of

X, the following properties hold:

(1) A∈mX if and only if m-int(A)=A,

(2) A is m-closed if and only if m-cl(A)=A,

(3) m-int(A)∈mX and m-cl(A) is m-closed.

An ideal I on a minimal space (X, mX) is a non-empty collection of subsets of X which satisfies the following conditions.

(1) A∈I and B⊂A imply B∈I and

(2) A∈I and B∈I imply A∪B∈I.

Definition 2.4 ([6]). Let (X, mX) be a minimal space with an ideal I on X and (.)∗m be a set operator from ℘(X) to ℘(X).

For a subset A⊂X, A∗m (I, mX)={x∈X : Um∩A/∈I for every Um∈µm(x)} where µm(x)={Um∈mX : x∈Um} is called the

minimal local function of A with respect to I and mX . We will simply write A∗m for A∗m(I, mX).

Definition 2.5 ([6]). Let (X, mX) be a minimal space with an ideal I on X. The set operator m-cl∗ is called a minimal

?-closure and is defined as m-cl∗(A)=A∪A∗m for A⊂X. We will denote by m∗x(I, mX) the minimal structure generated by

m-cl∗, that is, m∗x(I, mX)={U⊂X : m-cl∗(X−U)=X−U}. m∗x(I, mX) is called ?-minimal structure which is finer than mX .

The elements of m∗x(I, mX) are called m?-open and the complement of an m?-open set is called m?-closed. The interior of

a subset A in (X, m∗x(I, mX)) is denoted by m-int∗(A).

If I is an ideal on (X, mX), then (X, mX , I) is called an ideal minimal space or ideal m-space.

Lemma 2.6 ([6], Theorem 2.1). Let (X, mX) be a minimal space with I, I
′

ideals on X and A, B be subsets of X. Then

(1) A⊂B ⇒ A∗m⊂B∗m,

(2) I⊂I
′
⇒ A∗m(I

′
)⊂A∗m(I),

(3) A∗m=m-cl(A∗m)⊂m-cl(A),

(4) A∗m∪B∗m⊂(A ∪B)∗m,
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(5) (A∗m)∗m⊂A∗m.

Proposition 2.7 ([6]). The set operator m-cl∗ satisfies the following conditions:

(1) A⊂m-cl∗(A),

(2) m-cl∗(∅)=∅ and m-cl∗(X)=X,

(3) If A⊂B, then m-cl∗(A)⊂m-cl∗(B),

(4) m-cl∗(A)∪m-cl∗(B)⊂m-cl∗(A∪B).

Definition 2.8 ([6]). A subset A of an ideal minimal space (X, mX , I) is m?-closed (resp. m?-dense in itself, m?-perfect)

if A∗m⊂A (resp. A⊂A∗m, A∗m=A).

Definition 2.9 ([6]). A subset A of an ideal minimal space (X, mX , I) is m-I-generalized closed (briefly, m-Ig-closed) if

A∗m⊂U whenever A⊂U and U is m-open. A subset A of an ideal minimal space (X, mX , I) is said to be m-I-generalized

open (briefly, m-Ig-open) if X−A is m-Ig-closed.

Lemma 2.10 ([6]). If (X, mX , I) is an ideal minimal space and A⊂X, then A is m-Ig-closed if and only if m-cl*(A)⊂U

whenever A⊂U and U is m-open in X.

Definition 2.11 ([6]). A minimal space (X, mX) is said to be m-T1 if for any pair of distinct points x, y of X, there exist

an m-open set containing x but not y and an m-open set containing y but not x.

Lemma 2.12 ([6]). Let (X, mX) be a minimal space satisfying property [U ]. Then (X, mX) is m-T1 if and only if for each

point x∈X, the singleton {x} is m-closed.

Lemma 2.13 ([6]). Let (X, mX , I) be an ideal minimal space satisfying property [U ] and A⊂X. If (X, mX) is an m-T1

space, then A is m?-closed if and only if A is m-Ig-closed.

Lemma 2.14 ([5]). Let (X, mX , I) be an ideal minimal space and A⊂X. If A is m-Ig-closed then A∗m−A contains no

nonempty m-closed set.

3. ∧m-sets and ∨m-sets

Definition 3.1. Let A be a subset of a minimal space (X, mX). We define subsets A∧m and A∨m as follows:

(1) A∧m=∩{U : A⊂U and U is m-open}.

(2) A∨m=∪{F : F⊂A and F is m-closed}.

Lemma 3.2. For subsets A, B and Ai, i∈∆, of a minimal space (X, mX) the following properties hold:

(1) A⊂A∧m.

(2) A⊂B ⇒ A∧m⊂B∧m.

(3) (A∧m)∧m=A∧m.
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(4) If A is m-open then A=A∧m.

(5) ∪{(Ai)
∧
m : i∈∆} ⊂ (∪{Ai : i ∈ ∆})∧m.

(6) (∩{Ai : i ∈ ∆})∧m ⊂ ∩{(Ai)
∧
m : i∈∆}.

(7) (X −A)∧m=X−A∨m.

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have A∧m⊂(A∧m)∧m. If x/∈A∧m, then there exists an m-open set U such that A⊂U and x/∈U. Hence

A∧m⊂U by Definition 3.1 and so x/∈(A∧m)∧m. Thus (A∧m)∧m⊂A∧m. Hence (A∧m)∧m=A∧m.

(5) Let A=∪{Ai : i∈∆}. By (2) we have ∪{(Ai)
∧
m : i∈∆}⊂A∧m = (∪{Ai : i ∈ ∆})∧m.

Remark 3.3. In Lemma 3.2, the equality in (5) and (6) does not hold as can be seen by the following example.

Example 3.4. Let X={a, b, c} and mX={∅, X, {a}, {b}}. Take A={a} and B={b}, then A∧m∪B∧m={a}∪{b}={a, b} and

(A∪B)∧m=X. Hence A∧m∪B∧m={a, b}(X=(A∪B)∧m. Also take C={a, b} and D={b, c}, then C∧m∩D∧m=X and (C∩D)∧m={b}.

Hence (C ∩D)∧m={b}(X=C∧m∩D∧m.

Proposition 3.5. Let (X, mX) be a minimal space satisfying property [U ] and Ai, i∈∆ be subsets of X. Then ∪{(Ai)
∧
m :

i∈∆}=(∪{Ai : i ∈ ∆})∧m.

Proof. Let A=∪{Ai : i∈∆}. If x/∈∪{(Ai)
∧
m : i∈∆} then for each i∈∆, there exists an m-open set Ui such that Ai⊂Ui

and x/∈Ui. If U=∪{Ui : i∈∆} then U is m-open set by property [U ] with A⊂U and x/∈U. Therefore x/∈A∧m. Hence

(∪{Ai : i ∈ ∆})∧m⊂∪{(Ai)
∧
m : i∈∆}.

Lemma 3.6. For subsets A, B and Ai, i∈∆, of a minimal space (X, mX) the following properties hold:

(1) A∨m⊂A.

(2) A⊂B ⇒ A∨m⊂B∨m.

(3) (A∨m)∨m=A∨m.

(4) If A is m-closed then A=A∨m.

(5) (∩{Ai : i ∈ ∆})∨m ⊂ ∩{(Ai)
∨
m : i∈∆}.

(6) ∪{(Ai)
∨
m : i∈∆} ⊂ (∪{Ai : i ∈ ∆})∨m.

Proof. (1), (2), (4) and (6) are immediate consequences of Definition 3.1.

(3) From (1) and (2) we have (A∨m)∨m⊂A∨m. If x∈A∨m then for some m-closed set F⊂A, x∈F. Then F⊂A∨m by Definition 3.1.

Since F is m-closed, again by Definition 3.1, x∈(A∨m)∨m.

(5) Let A=∩{Ai : i∈∆}. By (2) we have (∩{Ai : i ∈ ∆})∨m ⊂ ∩{(Ai)
∨
m : i∈∆}.

Remark 3.7. In Lemma 3.6, the equality in (5) and (6) does not hold as can be seen by the following example.
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Example 3.8. In Example 3.4, take A={a, c} and B={b, c}, then A∨m∩B∨m={a, c}∩{b, c}={c} and (A ∩ B)∨m=∅. Hence

(A∩B)∨m=∅({c}=A∨m∩B∨m. Also take C={a} and D={c}, then C∨m∪D∨m=∅ and (C ∪D)∨m={a, c}. Hence C∨m∪D∨m=∅({a,

c}=(C ∪D)∨m.

Proposition 3.9. Let (X, mX) be a minimal space satisfying property [U ] and Ai, i∈∆ be subsets of X. Then (∩{Ai : i ∈

∆})∨m=∩{(Ai)
∨
m : i∈∆}.

Proof. Let A=∩{Ai : i∈∆}. If x∈∩{(Ai)
∨
m : i∈∆}, then for each i∈∆, there exists a m-closed set Fi such that Fi⊂Ai

and x∈Fi. If F=∩{Fi : i∈∆} then F is m-closed by property [U ] with F⊂A and x∈F. Therefore x∈A∨m. Hence ∩{(Ai)
∨
m :

i∈∆}⊂(∩{Ai : i ∈ ∆})∨m.

Definition 3.10. A subset A of a minimal space (X, mX) is said to be a

(1) ∧m-set if A=A∧m.

(2) ∨m-set if A=A∨m.

Remark 3.11. ∅ and X are ∧m-sets and ∨m-sets.

Theorem 3.12. Let (X, mX) be a minimal space satisfying property [U ]. Then the following hold.

(1) Arbitrary union of ∧m-sets is a ∧m-set.

(2) Arbitrary intersection of ∨m-sets is a ∨m-set.

Proof.

(1) Let {Ai : i∈∆} be a family of ∧m-sets. If A=∪{Ai : i∈∆}, then by Proposition 3.5, A∧m=∪{(Ai)
∧
m : i∈∆}=∪{Ai :

i∈∆}=A. Hence A is a ∧m-set.

(2) Let {Ai : i∈∆} be a family of ∨m-sets. If A=∩{Ai : i∈∆}, then by Proposition 3.9, A∨m=∩{(Ai)
∨
m : i∈∆}=∩{Ai :

i∈∆}=A. Hence A is a ∨m-set.

Remark 3.13. In Theorem 3.12, we cannot drop the property [U ]. It is shown in the following example.

Example 3.14. In Example 3.4, {a} and {b} are ∧m-sets but their union is not ∧m-set. Also, {a, c} and {b, c} are ∨m-sets

but their intersection is not ∨m-set.

Theorem 3.15. Let (X, mX) be a minimal space. Then the following hold.

(1) Arbitrary intersection of ∧m-sets is a ∧m-set.

(2) Arbitrary union of ∨m-sets is a ∨m-set.

Proof.

(1) Let {Ai : i∈∆} be a family of ∧m-sets. If A=∩{Ai : i∈∆}, then by Lemma 3.2, A∧m⊂∩{(Ai)
∧
m : i∈∆}=∩{Ai : i∈∆}=A.

Again by Lemma 3.2, A⊂A∧m. Hence A is a ∧m-set.
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(2) Let {Ai : i∈∆} be a family of ∨m-sets. If A=∪{Ai : i∈∆}, then by Lemma 3.6, A∨m⊃∪{(Ai)
∨
m : i∈∆}=∪{Ai : i∈∆}=A.

Again by Lemma 3.6, A∨m⊂A. Hence A is a ∨m-set.

4. Generalized ∧m-sets and ∨m-sets in Ideal Minimal Spaces

Definition 4.1. A subset A of an ideal minimal space (X, mX , I) is said to be

(1) I.∧m-set if A∧m⊂F whenever A⊂F and F is m?-closed.

(2) I.∨m-set if X−A is an I.∧m-set.

Proposition 4.2. Let (X, mX , I) be an ideal minimal space. Then the following hold:

(1) Every ∧m-set is an I.∧m-set but not conversely.

(2) Every ∨m-set is an I.∨m-set but not conversely.

Example 4.3. Let X={a, b, c}, mX={∅, X, {a, b}, {b, c}} and I={∅}. Then {a, c} is I.∧m-set but not ∧m-set and {b}

is I.∨m-set but not ∨m-set.

Proposition 4.4. Every m-open set is I.∧m-set but not conversely.

Proof. Let A⊂F and F is m?-closed. If A is m-open, then A∧m=A⊂F. Hence A is I.∧m-set.

Example 4.5. In Example 4.3, {b} is I.∧m-set but not m-open set.

Theorem 4.6. A subset A of an ideal minimal space (X, mX , I) is an I.∨m-set if and only if U⊂A∨m whenever U⊂A and

U is m?-open.

Proof. Suppose that A⊂X is an I.∨m-set and U is an m?-open set such that U⊂A. Then X−A⊂X−U and X−U is

m?-closed. Since X−A is an I.∧m-set, we have (X −A)∧m⊂X−U and so X−A∨m⊂X−U, by Lemma 3.2. Therefore, U⊂A∨m.

Conversely, assume that U⊂A∨m whenever U⊂A and U is m?-open. Suppose X−A⊂F and F is m?-closed. Then, X−F⊂A

and X−F is m?-open. Therefore, X−F⊂A∨m and so X−A∨m⊂F. By Lemma 3.2, we have (X − A)∨m⊂F. Hence X−A is an

I.∧m-set and so A is an I.∨m-set

Theorem 4.7. Let A be an I.∨m-set in an ideal minimal space (X, mX , I). Then for every m?-closed set F such that

A∨m∪(X−A)⊂F, F=X holds.

Proof. Let A be an I.∨m-set in an ideal minimal space (X, mX , I). Suppose F is m?-closed set such that A∨m∪(X−A)⊂F.

Then X−F⊂(X−A∨m)∩A. Since A is an I.∨m-set and the m?-open set X−F⊂A, by Theorem 4.6, X−F⊂A∨m. Already, we

have X−F⊂X−A∨m and so X−F=∅ which implies that F=X.

Corollary 4.8. Let A be an I.∨m-set in an ideal minimal space (X, mX , I). Then A∨m∪(X−A) is m?-closed if and only if

A is a ∨m-set.
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Proof. Let A be an I.∨m-set. Suppose A∨m∪(X−A) is m?-closed. Then by Theorem 4.7, A∨m∪(X−A)=X and so A⊂A∨m.

By Lemma 3.6, we have A∨m⊂A. Hence A is a ∨m-set.

Conversely, suppose A is a ∨m-set. Then A∨m∪(X−A)=A∪(X−A)=X, which is m?-closed.

Theorem 4.9. Let A be a subset of an ideal minimal space (X, mX , I) satisfying property [I] such that A∨m is a m?-closed

set. If F=X, whenever F is m?-closed and A∨m∪(X−A)⊂F, then A is an I.∨m-set.

Proof. Let U be an m?-open set such that U⊂A. Since A∨m is m?-closed, A∨m∪(X−U) is m?-closed. By hypothesis,

A∨m∪(X−U)=X. This implies that U⊂A∨m. Hence A is an I.∨m-set.

Theorem 4.10. Let (X, mX , I) be an ideal minimal space. Then each singleton set in X is either m?-open or an I.∨m-set.

Proof. Suppose {x} is not m?-open. Then, X−{x} is not m?-closed. So the only m?-closed set containing X−{x} is X.

Therefore, (X−{x})∧m⊂X and so X−{x} is an I.∧m-set. Hence {x} is an I.∨m-set.

The set of all I.∨m-sets is denoted by D∨mI and the set of all I.∧m-sets is denoted by D∧mI .

Definition 4.11. Let (X, mX , I) be an ideal minimal space and A⊂X. Then m-cl∧I (A) =∩{U : A⊂U and U∈D∧mI} and

m-int∨I (A)=∪{F : F⊂A and F∈D∨mI}.

Theorem 4.12. Let (X, mX , I) be an ideal minimal space satisfying property [U ] and Ai, i∈∆ be subsets of X. Then the

following hold.

(1) If Ai∈D∧mI for all i ∈∆, then ∪{Ai: i∈∆}∈D∧mI .

(2) If Ai∈D∨mI for all i∈∆, then ∩{Ai: i∈∆}∈D∨mI .

Proof.

(1) Let Ai∈D∧mI for all i∈∆. Suppose ∪{Ai : i∈∆}⊂F and F is m?-closed. Then Ai⊂F for all i∈∆. So A∧i ⊂F for all i∈∆.

Therefore, ∪{(Ai)
∧
m : i∈∆}⊂F. By Proposition 3.5, (∪{Ai : i ∈ ∆})∧m=∪{(Ai)

∧
m : i∈∆}⊂F. So ∪{Ai : i∈∆}∈D∧mI .

(2) Let Ai∈D∨mI for all i∈∆. Then, X−Ai∈D∧mI for all i∈∆. So, by (1), ∪{X−Ai : i∈∆}∈D∧mI . X−∩{Ai : i∈∆}∈D∧mI

and so ∩{Ai : i∈∆}∈D∨mI .

Remark 4.13. In Theorem 4.12, we cannot drop the property [U ]. It is shown in the following example.

Example 4.14. Let X={a, b, c}, mX={∅, X, {a}, {b}} and I={∅, {a}, {b}, {a, b}}. Then D∧mI={∅, X, {a}, {b}},

take A={a}∈D∧mI and B={b}∈D∧mI but their union A∪B={a, b}/∈D∧mI . Also, ∈ D∨mI={∅, X, {a, c}, {b, c}}, take A={a,

c}∈D∨mI and B={b, c}∈D∨mI but their intersection A∩B={c}/∈D∨mI .

Theorem 4.15. Let (X, mX , I) be an ideal minimal space satisfying property [U ] and A, B⊂X. Then m-cl∧I is a kuratowski

closure operator on X.

Proof.
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(1) Since ∅∧m=∅, ∅∈D∧mI and so m-cl∧I (∅)=∅.

(2) From the definition of m-cl∧I (A), it is clear that A⊂m-cl∧I (A).

(3) We have {U : A∪B⊂U, U∈D∧mI}⊂{U : A⊂U, U∈D∧mI}. So m-cl∧I (A)⊂m-cl∧I (A∪B). Similarly, m-cl∧I (B)⊂m-cl∧I (A∪B).

Therefore, m-cl∧I (A)∪m-cl∧I (B) ⊂m-cl∧I (A∪B). On the other hand, if x/∈m-cl∧I (A)∪m-cl∧I (B), then x/∈m-cl∧I (A). So there

exists U1∈D∧mI such that A⊂U1 but x/∈U1. Similarly, there exists U2∈D∧mI such that B⊂U2 but x/∈U2. Let U=U1∪U2.

Then, by Theorem 4.12, U∈D∧mI such that A∪B⊂U but x/∈U. So x/∈m-cl∧I (A∪B). Therefore, m-cl∧I (A∪B)⊂m-cl∧I (A)∪m-

cl∧I (B) which implies that m-cl∧I (A∪B) = m-cl∧I (A)∪m-cl∧I (B).

(4) Now {U : A⊂U, U∈D∧mI}={U : m-cl∧I (A)⊂U, U∈D∧mI} by the definition of m-cl∧I operator and so m-cl∧I (A) = m-cl∧I (m-

cl∧I (A)). Hence m-cl∧I is a kuratowski closure operator.

Remark 4.16. In Theorem 4.15, we cannot drop the property [U ]. It is shown in the following example.

Example 4.17. In Example 4.14, take A={a} and B={b}. Then m-cl∧I (A)∪m-cl∧I (B) = {a}∪{b} = {a, b}(m-cl∧I (A∪B)=X.

Theorem 4.18. Let (X, mX , I) be an ideal minimal space. Then X−m-cl∧I (A) = m-int∨I (X−A) for every subset A of X.

Proof. X−m-cl∧I (A)=X−∩{U : A⊂U, U∈D∧mI} = ∪{X−U : X−U⊂X−A, X−U∈D∨mI} = m-int∨I (X−A).

Theorem 4.19. Let (X, mX , I) be an ideal minimal space satisfying property [U ]. Then every singleton subset of X is an

I.∧m-set if and only if G=G∨m holds for every m?-open set G.

Proof. Suppose every singleton subset of X is an I.∧m-set. Let G be an m?-open set and y∈X−G. Since {y} is I.∧m-set,

{y}∧m⊂X−G. Therefore, ∪{{y}∧m : y∈X−G}⊂ X−G. By Proposition 3.5, (∪{{y} : y ∈ X−G})∧m=∪{{y}∧m : y∈X−G}⊂X−G

and so (X −G)∧m⊂X−G. Therefore, (X −G)∧m=X−G. Since X−G∨m=(X −G)∧m=X−G and so G=G∨m.

Conversely, let x∈X and F be a m?-closed set containing x. Since X−F is m?-open, X−F=(X−F )∨m=X−F∧m and so F=F∧m.

Therefore, {x}∧m⊂F∧m=F. Hence {x} is an I.∧m-set.

Theorem 4.20. Let (X, mX , I) be an ideal minimal space satisfying property [U ]. Then the following are equivalent.

(1) Every m?-open set is a ∨m-set,

(2) D∨mI=℘(X).

Proof. (1)⇒(2) By Theorem 4.19, every singleton subset of X is an I.∧m-set. If any subset A of X is written as a union of

singleton sets, then by Theorem 4.12(1), A is an I.∧m-set and so every subset of X is an I.∨m-set. Therefore, D∨mI=℘(X).

(2)⇒(1) Let A be an m?-open set. By hypothesis, A is an I.∨m-set and so by Lemma 3.2(1) and Theorem 4.6, A is a

∨m-set.

Theorem 4.21. A subset A of an ideal minimal space (X, mX , I) is an m-Ig-closed set if and only if m-cl*(A)⊂A∧m.
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Proof. Suppose that A⊂X is an m-Ig-closed set. Let x∈m-cl*(A). Suppose x/∈A∧m. Then there exists an m-open set

U containing A such that x/∈U. Since A is an m-Ig-closed set, A⊂U and U is m-open implies that m-cl*(A)⊂U and so

x/∈m-cl*(A), a contradiction. Therefore, m-cl*(A)⊂A∧m.

Conversely, suppose m-cl*(A)⊂A∧m. If A⊂U and U is m-open, then A∧m⊂U∧m=U and so m-cl*(A)⊂A∧m⊂U. Therefore, A is

m-Ig-closed.

Corollary 4.22. A subset A of an ideal minimal space (X, mX , I) is m-Ig-open if and only if A∨m⊂m-int*(A).

Proof. A⊂X is m-Ig-open if and only if X−A is m-Ig-closed if and only if m-cl*(X−A) ⊂(X − A)∧m if and only if X−m-

int*(A)⊂X−A∨m if and only if A∨m⊂m-int*(A).

Theorem 4.23. If A is an m-Ig-open set in an ideal minimal space (X, mX , I), then U=X whenever U is m-open and

m-int*(A)∪(X−A)⊂U.

Proof. Assume that A is m-Ig-open in X. Let U be an m-open set in X such that m-int*(A)∪(X−A)⊂U, then X−U⊂X−(m-

int*(A)∪(X−A)) = (X−m-int*(A))∩A = m-cl*(X−A)−(X−A). Since X−A is m-Ig-closed, then by Lemma 2.14, (X −

A)∗m−(X−A) contains no nonempty m-closed set. But m-cl*(X−A)−(X−A)=(X−A)∗m−(X−A) and so m-cl*(X−A)−(X−A)

contains no nonempty m-closed set. Since X−U is m-closed, then X−U=∅ and so U=X.

Corollary 4.24. A ∧m-set A in an ideal minimal space (X, mX , I) is m-Ig-closed if and only if A is m?-closed.

Proof. Let A be a ∧m-set. If A is m-Ig-closed, then by Theorem 4.21, m-cl*(A)⊂A∧m and so m-cl*(A)⊂A which implies

that A is m?-closed.

Conversely, it is clear, since every m?-closed set is m-Ig-closed.

Corollary 4.25. An m-open set A in an ideal minimal space (X, mX , I) is m-Ig-closed if and only if A is m?-closed.

Proof. The proof follows from the fact that every m-open set is a ∧m-set.

Theorem 4.26. Let (X, mX , I) be an ideal minimal space and A⊂X. If A∧m is an m-Ig-closed set, then A is an m-Ig-closed

set.

Proof. Let A∧m be m-Ig-closed set. By Theorem 4.21, m-cl*(A∧m)⊂(A∧m)∧m=A∧m. Since A⊂A∧m and so m-cl*(A)⊂m-

cl*(A∧m)⊂A∧m. Again, by Theorem 4.21, A is m-Ig-closed.

Remark 4.27. The converse of Theorem 4.26 need not be true as shown by the following example.

Example 4.28. In Example 4.3, A={a} is m-Ig-closed set but A∧m is not m-Ig-closed set.

5. Characterizations of m-T1-spaces

Definition 5.1. Let (X, mX , I) be an ideal minimal space and A⊂X. Then m∧I is defined as follows: m∧I={A⊂X : m-

cl∧I (X−A)=X−A}. m∧I is called ∧-minimal structure on X generated by m-cl∧I . Each element of m∧I is called m∧I -open and

the complement of an m∧I -open set is called m∧I -closed. We observe that m∧I is always finer than D∨mI and m∧I
c is always

finer than D∧mI .
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Theorem 5.2. In an ideal minimal space (X, mX , I) satisfying property [U ], the following are equivalent.

(1) (X, mX , I) is a m-T1-space,

(2) Every I.∨m-set is a ∨m-set,

(3) Every m∧I -open set is a ∨m-set.

Proof. (1)⇒(2) Suppose there exists an I.∨m-set A which is not ∨m-set. Then A∨m(A. Therefore, there exists an element

x∈A such that x/∈A∨m. Then, {x} is not m-closed, the definition of A∨m, a contradiction to Lemma 2.12. This proves (2).

(2)⇒(1) Suppose that (X, mX , I) is not a m-T1-space. Then by Lemma 2.13 there exists an m-Ig-closed set A which is

not m?-closed. So, there exists an element x∈X such that x∈m-cl*(A) but x/∈A. By Theorem 4.10, {x} is either m?-open or

an I.∨m-set. When {x} is m?-open, {x}∩A=∅, m-cl*(A)⊂m-cl*(X−{x}) = X−{x} which is a contradiction to the fact that

x∈m-cl*(A). When {x} is an I.∨m-set, by our assumption, {x} is a ∨m-set and hence {x} is m-closed. Therefore, A⊂X−{x}

and X−{x} is m-open. Since A is m-Ig-closed, m-cl*(A)⊂X−{x}. This is also a contradiction to the fact that x∈m-cl*(A).

Therefore, every m-Ig-closed set is m?-closed and hence (X, mX , I) is a m-T1-space.

(2)⇒(3) Suppose that every I.∨m-set is a ∨m-set. Then, a subset F is a I.∨m-set if and only if F is a ∨m-set. Let A∈m∧I .

Then A=m-int∨I (A)=∪{F: F⊂A and F∈D∨mI}=∪{F : F⊂A and F is a ∨m-set}. Now A∨m=(m-int∨I (A))∨m=(∪{F : F ⊂

A and F = F∨m})∨m⊃∪{F∨m : F⊂A and F=F∨m}=∪{F : F⊂A and F=F∨m}=∪{F : F⊂A and F∈D∨mI}=m-int∨I (A)=A. Always

A∨m⊂A and so A∨m=A. Hence A is a ∨m-set.

(3)⇒(2) Let A be an I.∨m-set. Then, by definition of m-int∨I (A), m-int∨I (A)=A and so A∈m∧I . By (3), A is a ∨m-set.

Corollary 5.3. An ideal minimal space (X, mX , I) satisfying property [U ] is a m-T1-space if and only if every singleton

set is either m?-open or m-closed.

Proof. Assume that (X, mX , I) is a m-T1-space. Let x∈X. Suppose {x} is not m?-open. By Theorem 4.10, it is an

I.∨m-set. Since X is a m-T1-space, by Theorem 5.2(2), {x} is a ∨m-set and hence is m-closed.

Conversely, suppose (X, mX , I) is not a m-T1-space. Then, there exists an I.∨m-set A which is not a ∨m-set, by Theorem

5.2(2). So there exists an element x∈A such that x/∈A∨m. If {x} is m-closed, then A∨m contains the m-closed set {x}, which

is not possible. If {x} is m?-open, then the m?-closed set X−{x} contains A∨m∪(X−A). By Theorem 4.7, X−{x}=X, which

is not possible. So {x} is neither m?-open nor m-closed, which is contradiction to our assumption. Therefore, (X, mX , I)

is a m-T1-space.
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