

International Journal of Mathematics And its Applications

b-chromatic Number for the Graphs Obtained by Duplicating Edges

Research Article

S.Arockiaraj^{1*} and V.Premalatha^{2†}

1 Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India.

2 Department of Mathematics, Canara First Grade College, Kodialbail, Mangalore, Karnataka, India.

Abstract: A *b*-colouring of a graph *G* is a proper vertex colouring of *G* such that each colour class contains a vertex that has atleast one neighbour in every other colour class and *b*-chromatic number of a graph *G* is the largest integer $\phi(G)$ for which *G* has a *b*-colouring with $\phi(G)$ colours. In this paper, we have obtained the *b*-chromatic number of the graphs E_n, F_n and the graphs obtained by duplicating all the edges of path, cycle, complete graph, wheel graph, Ladder graph L_n by vertices.

MSC: 05C15, 05C38.

Keywords: *b*-colouring, *b*-chromatic number.

© JS Publication.

1. Introduction

Let G be a graph without loops and multiple edges with vertex set V(G) and edge set E(G). A proper k-colouring of graph G is a function C defined from V(G) onto a set of colours $\{1, 2, ..., k\}$ such that any two adjacent vertices have different colours. For every $i, 1 \le i \le k$, the set C_i is an independent set of vertices which is called as the colour class of the colour i. Let P_n be a path with n vertices and n-1 edges. Let C_n be a cycle with n vertices and n edges.

For $n \ge 2$, E_n denotes a graph consisting of (n-1) 3-sided faces, (n-1) 5-sided faces and one external infinite face, embedded in the plane and labeled as in Figure 1 [3]. For $n \ge 2$, F_n denotes a graph consisting of (n-1) 3-sided faces,

Figure 1.

^{*} E-mail: psarockiaraj@gmail.com

[†] E-mail: premalathavpai@yahoo.co.in, Research Scholar of Karpagam University, Coimbatore, Tamilnadu, India.

(n-1) 5-sided faces, (n-1) 6-sided faces and one external infinite face, embedded in the plane and labeled as in Figure 2 [3].

Figure 2.

The Ladder graph L_n is $P_2 \times P_n$. Duplication of an edge e = uv by a new vertex w in a graph G produces a new graph G'such that $N(w) = \{u, v\}$ [8]. We denote the graph obtained by duplicating all the edges of G by vertices as EV(G). The *b*-chromatic number of a graph was introduced by R. W. Irving and D. F. Manlove when considering minimal proper colouring with respect to a partial order defined on the set of all partition of vertices of graph. The *b*-chromatic number of a graph G, denoted by $\phi(G)$ is the largest positive integer t such that there exists a proper colouring for G with t colours in which every colour class contains at least one vertex adjacent to some vertex in all the other colour classes. Such a colouring is called a *b*-colouring.

In [7], K. Thilagavathi et. al. obtained the *b*-colouring of the central graphs of path, cycle and complete bipartite graph. Motivated by these works, we have obtained the *b*-chromatic number of the graphs E_n, F_n and the graphs obtained by duplicating all the edges of path, cycle, complete graph, wheel graph, Ladder graph L_n by vertices.

2. Main Results

Proposition 2.1. $\phi(E_n) = \begin{cases} 3, & n = 1 \\ 4, & 2 \le n \le 5 \\ 5, & n \ge 6 \end{cases}$

Proof. In E_n , $deg(v) \leq 3$ when n = 1 and $deg(v) \leq 4$ otherwise. So $\phi(E_n) \leq 4$ when n = 1 and $\phi(E_n) \leq 5$ otherwise. When $n \geq 6$, at least 5 vertices are of degree 4. So $\phi(E_n) \leq 5$.

Let $u_1, u_2, \ldots, u_{n+1}$ and $v_1, v_2, \ldots, v_{n+1}$ be the vertices on the path of length n and $x_1, x_2, \ldots, x_{n+1}$ be the remaining vertices of E_n so that $x_i u_i, x_i v_i \in E(E_n), i = 1, 2, \ldots, n+1$ and $u_i x_{i+1} \in E(E_n), i = 1, 2, \ldots, n$. Assign the colours for the vertices of E_n as follows:

$$C(u_i) = i \pmod{5}, \quad 1 \le i \le n+1$$

 $C(x_i) = (i+2) \pmod{5}, \quad 1 \le i \le n+1 \text{ and}$
 $C(v_i) = (i+3) \pmod{5}, \quad 1 \le i \le n+1.$

Then u_2, u_3, u_4, u_5 and u_6 are the members of the colour classes 1, 2, 3, 4 and 0 respectively in which they are adjacent to at least one member of all the remaining colour classes. Thus $\phi(E_n) = 5$ for $n \ge 6$.

Figure 3. A *b*-colouring of E_6 with $\phi = 5$.

When $2 \le n \le 5$, only n-1 vertices are of degree 4. So $\phi(E_n) < 5$ when $2 \le n \le 5$. In this case, assign the colours for the vertices of E_n as follows:

For $1 \leq i \leq n+1$,

Then u_1, u_2, x_2 and x_3 are the members of colour classes 0, 1, 2 and 3 respectively with the required property. Thus $\phi(E_n) = 4$ for $2 \le n \le 5$.

Figure 4.

Proposition 2.2.
$$\phi(F_n) = \begin{cases} 4, & 1 \le n \le 5 \\ 5, & n \ge 6 \end{cases}$$

Proof. In F_n , $deg(v) \leq 3$ when n = 1 and $deg(v) \leq 4$ otherwise. So $\phi(F_n) \leq 4$ when $1 \leq n \leq 5$ and $\phi(F_n) \leq 5$ otherwise. When $n \geq 6$, at least 5 vertices are of degree 4. So $\phi(F_n) \leq 5$.

Let $u_1, u_2, \ldots, u_{n+1}$ and $v_1, v_2, \ldots, v_{n+1}$ be the vertices on the paths of length n. Let $x_i, y_i, z_i, 1 \le i \le n+1$ be the vertices so that $u_i x_i, x_i y_i, y_i z_i, z_i v_i \in E(F_n), 1 \le i \le n+1$ and $x_i y_{i+1}, v_i z_{i+1} \in E(F_n), 1 \le i \le n$. When $n \ge 6$, assign the colours to the vertices of F_n as follows:

For $1 \leq i \leq n+1$,

$$C(u_i) = (i - 1) \pmod{5},$$

$$C(x_i) = (i + 1) \pmod{5},$$

$$C(y_i) = (i + 2) \pmod{5},$$

$$C(z_i) = (i + 1) \pmod{5} \text{ and}$$

$$C(v_i) = (i - 1) \pmod{5}.$$

Then v_2, v_3, v_4, v_5 and v_6 are the members of the colour classes 1, 2, 3, 4 and 0 respectively in which they are having all the remaining colours as neighbouring colours. Thus $\phi(F_n) = 5$ for $n \ge 6$.

Figure 5. A *b*-colouring of F_6 with $\phi = 5$.

When $1 \le n \le 5$, only n-1 vertices are of degree 4. So $\phi(F_n) < 5$. By assigning the colours as

$$C(u_i) = \begin{cases} 0, & i \text{ is odd} \\ 1, & i \text{ is even} \end{cases}$$
$$C(x_i) = \begin{cases} 3, & i \text{ is odd} \\ 0, & i \text{ is even} \end{cases}$$
$$C(y_i) = \begin{cases} 2, & i \text{ is odd} \\ 1, & i \text{ is even} \end{cases}$$
$$C(z_i) = \begin{cases} 1, & i \text{ is odd} \\ 2, & i \text{ is even} \end{cases}$$

and
$$C(v_i) = \begin{cases} 0, & i \text{ is odd} \\ 3, & i \text{ is even,} \end{cases}$$

for each $i, 1 \le i \le n$, the vertices x_1, y_2, z_2 and v_1 are the members of the colour classes 3, 1, 2 and 0 respectively with the required property. This implies that $\phi(F_n) = 4$ for $1 \le n \le 5$.

Figure 6. A b-colouring of F_n , $1 \le n \le 5$ with $\phi = 4$.

Proposition 2.3.
$$\phi(EV(P_n)) = \begin{cases} 3, & 2 \le n \le 5 \\ 4, & n = 6 \\ 5, & n \ge 7 \end{cases}$$

Proof. Let v_1, v_2, \ldots, v_n be the vertices on the path and $x_1, x_2, \ldots, x_{n-1}$ be the vertices corresponding to the edges of P_n so that $x_i v_i, x_i v_{i+1} \in E(EV(P_n)), 1 \le i \le n-1$. When $n \ge 7$, at least five vertices are of degree $\Delta = 4$ and hence $\phi(EV(P_n)) \le 5$. Colour the vertices as follows:

$$C(v_i) = (i+3) \pmod{5}, \quad 1 \le i \le n \text{ and}$$

 $C(x_i) = (i+1) \pmod{5}, \quad 1 \le i \le n-1.$

Then v_2, v_3, v_4, v_5 and v_6 are the members of the colour classes 0, 1, 2, 3 and 4 respectively so that each one having all the remaining colours in its neighbours. Thus $\phi(EV(P_n)) = 5$ for $n \ge 7$.

Figure 7. A b-colouring of $EV(P_7)$ with $\phi = 5$.

When n = 6, only 4 vertices are of degree $\Delta = 4$ and hence $\phi(EV(P_n)) < 5$. Colour the vertices as follows:

$$C(v_i) = (i+2) \pmod{4}, \quad 1 \le i \le n \text{ and}$$

 $C(x_i) = (i+1) \pmod{4}, \quad 1 \le i \le n-1.$

Then v_2, v_3, v_4 and v_5 are the members of the colour classes 0, 1, 2 and 3 respectively with the required property. Hence $\phi(EV(P_n)) = 4$.

Figure 8. A *b*-colouring of $EV(P_6)$ with $\phi = 4$.

When $3 \le n \le 5$, only n-2 vertices are of degree $\Delta = 4$ and no vertex is of degree 3. So $\phi(EV(P_n)) < 4$. Colour the vertices as follows:

$$C(v_i) = (i-1) \pmod{3}, \quad 1 \le i \le n \text{ and}$$

 $C(x_i) = (i+1) \pmod{3}, \quad 1 \le i \le n-1.$

Then v_1, v_2 and v_3 are the members of the colour classes 0, 1 and 2 respectively with the required property.

Figure 9. A b-colouring of $EV(P_n), 3 \le n \le 5$ with $\phi = 3$.

While n = 2, $EV(P_n) = K_3$ and $\phi(K_3) = 3$. Hence $\phi(EV(P_n)) = 3$ for $2 \le n \le 5$.

Proposition 2.4. For any $n \ge 3$,

$$\phi(EV(C_n)) = \begin{cases} 3, & n = 3\\ 4, & n = 4\\ 5, & n \ge 5 \end{cases}$$

Proof. Let v_1, v_2, \ldots, v_n be the vertices on the cycle and x_1, x_2, \ldots, x_n be the vertices corresponding to the cycles of C_n so that $v_i x_i, x_i v_{i+1} \in E(EV(C_n)), 1 \leq i \leq n$ where $v_{n+1} = v_1$. When $n \geq 5$, at least five vertices are of degree $\Delta = 4$. So $\phi(EV(C_n)) \leq 5$. For $n \geq 7$, assign the colours 4, 0, 1, 2, 3, 4, 0 to the vertices $v_1, v_2, v_3, v_4, v_5, v_6, v_7$ respectively and 2, 3, 4, 0, 1, 2 to the vertices $x_1, x_2, x_3, x_4, x_5, x_6$ respectively and colour the remaining vertices with a proper colouring using the colours 0, 1, 2, 3 and 4, the vertices v_2, v_3, v_4, v_5 and v_6 are the members of the colour classes 0, 1, 2, 3, 4 respectively in which they are adjacent to at least one number of the remaining colour classes. Hence $\phi(EV(C_n)) = 5$ for $n \geq 7$. The *b*-colouring of $EV(C_5)$ and $EV(C_6)$ are given in Figure 11. So that $\phi(EV(C_5)) = \phi(EV(C_6)) = 5$. When n = 3, 4 the

Figure 11. A *b*-colouring of $EV(C_n)$, n = 5, 6 with $\phi = 5$.

number of vertices of degree $\Delta = 4$ is *n* and hence $\phi(EV(C_n)) < 5$. Also the number of vertices of degree $\Delta = 4$ in $EV(C_3)$ is 3. So $\phi(EV(C_3)) < 4$ and $\phi(EV(C_4)) < 5$. The *b*-colouring of $EV(C_3)$ and $EV(C_4)$ are given in Figure 12 so that $\phi(EV(C_3)) = 3$ and $\phi(EV(C_4)) = 4$.

Figure 12. A *b*-colouring of $EV(C_n)$, n = 3, 4.

Proposition 2.5. For any $n \ge 1$, $\phi(EV(K_n)) = n$.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of K_n in $EV(K_n)$ and $x_1, x_2, \ldots, x_m, m = \binom{n}{2}$, be the vertices corresponding to the edges of K_n . Since $EV(K_n)$ has n vertices of degree $\Delta = 2n - 2$, $\phi(EV(K_n)) \leq n$.

By assigning the colours 0, 1, 2, ..., (n-1) to the vertices $v_1, v_2, ..., v_n$ respectively and giving the proper colouring to the remaining vertices, it follows that $\phi(EV(K_n)) = n$.

Figure 13. A *b*-colouring of $EV(K_5)$ with $\phi = 5$.

Proposition 2.6. For any $n \ge 2$, $\phi(EV(K_{1,n})) = 3$.

Proof. Let v_0 be the central vertex and v_1, v_2, \ldots, v_n be the pendant vertices of $K_{1,n}$. Let x_i be the vertex corresponding to the edge $v_0v_i, 1 \le i \le n$ in $EV(K_{1,n})$. In $EV(K_{1,n}), 2n$ vertices are of degree 2 and v_0 is the only vertex with degree 2n. Hence $\phi(EV(K_{1,n})) \le 3$. By assigning the colour 0 to $v_0, 1$ to v_i 's and 2 for all x_i 's, the result follows:

Figure 14. A *b*-colouring of $EV(K_{1,6})$ with $\phi = 3$.

Proposition 2.7. $\phi(EV(W_n)) = \begin{cases} 7, & \text{for } n \ge 6\\ n+1, & \text{for } 3 \le n \le 5 \end{cases}$

Proof. Let v_1, v_2, \ldots, v_n be the vertices on the cycle and v_0 be the central vertex of W_n . Let x_i be the vertex corresponding to the edge $v_i v_{i+1}, 1 \leq i \leq n-1$, x_n be the vertex corresponding to the edge $v_n v_1$ and $x_{n+i}, 1 \leq i \leq n$ be the vertex corresponding to the edge $v_0 v_i$ in $EV(W_n)$. Assume that $n \geq 6$. In $EV(W_n)$, one vertex namely v_0 is of degree 2n, n vertices are of degree 6 and the remaining 2n vertices are of degree 2. So $\phi(EV(W_n)) \leq 7$. Colour the vertex v_0 by $0, v_i, 1 \leq i \leq 6$ by i and the remaining v_i 's by the sequence of colours $3, 4, 5, 6, 3, 4, 5, 6, \ldots$, colour the vertices $x_n, x_1, x_2, \ldots, x_{n-1}$ by $5, 6, 5, 6, 1, 2, 1, 2, \ldots, 1, 2$, while n is even and $3, 4, 5, 6, 1, 2, 1, 2, \ldots, 2, 1$ while n is odd. Colour the vertices $x_{n+1}, x_{n+2}, \ldots, x_{n+8}$ by 5, 6, 1, 2, 3, 4, 5, 6 while n is even and 4, 4, 1, 2, 3, 4, 5, 6 while n is odd and the remaining x_i 's, $n + 9 \leq i \leq 2n$ are assigned by a proper colouring. Then v_0, v_1, \ldots, v_6 be the members of the respective colour classes of the colours 0, 1, 2, 3, 4, 5, 6 so that it has exactly one neighbour in the remaining colour classes. Therefore $\phi(EV(W_n)) = 7$ for $n \geq 6$.

Figure 15. A *b*-colouring of $EV(W_{10})$ with $\phi = 6$.

Figure 16. A *b*-colouring of $EV(W_{13})$ with $\phi = 6$.

When $3 \le n \le 5$ the number of vertices with degree 6 is n and one vertex is of degree 2n. So $\phi(EV(W_n)) \le n + 1$. A *b*-colouring for $EV(W_n), 3 \le n \le 5$ is shown in Figure 17. Hence $\phi(EV(W_n)) = n + 1$, for $3 \le n \le 5$.

Figure 17. A b-colouring of $EV(W_n), 3 \le n \le 5$ with $\phi = n + 1$.

Proposition 2.8.
$$\phi(EV(L_n)) = \begin{cases} 7, & \text{for } n \ge 6\\ 6, & \text{for } n = 5\\ 5, & \text{for } n = 3, 4\\ 4, & \text{for } n = 2. \end{cases}$$

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length n - 1. Let x_i and y_i be the duplicating vertices of the edges $u_i u_{i+1}$ and $v_i v_{i+1}$ respectively, $1 \le i \le n - 1$ and z_i be the duplicating vertex of the edge $u_i v_i, 1 \le i \le n$. When $n \ge 3$, the maximum degree of $EV(L_n)$ is 6 and the number of vertices having the degree 6 is 2(n - 1). Hence $\phi(EV(L_n)) \le 7$. Assume that $n \ge 9$. Assign the colours to the vertices as follows:

$$C(u_i) = (i+5) \pmod{7}, \quad 1 \le i \le n$$

$$C(v_i) = (i+2) \pmod{7}, \quad 1 \le i \le n$$

$$C(x_i) = (i+1) \pmod{7}, \quad 1 \le i \le n-1$$

$$C(y_i) = C(x_i), \quad 1 \le i \le n-1 \text{ and}$$

$$C(z_i) = (i+3) \pmod{7}, \quad 1 \le i \le n.$$

By assigning these colours, the vertices v_2, v_3, \ldots, v_8 are the members of the respective colour classes $0, 1, 2, \ldots, 7$ in which they are adjacent to at least one member of all the remaining colour classes. Hence $\phi(EV(L_n)) = 7$ for all $n \ge 9$. When $6 \le n \le 8$, at least 7 vertices are of degree 6 and the *b*-colouring for these values of *n* are given in Figure 18. Hence

 $\phi(EV(L_n)) = 6, 6 \le n \le 8.$

Figure 18. A b-colouring of $EV(L_n), 6 \le n \le 8$.

When n = 5, since there are only 6 vertices are of degree 6, $\phi(EV(L_n)) < 7$. A b-colouring with 6 colours for $EV(L_5)$ is given in Figure 19. Hence $\phi(EV(L_5)) = 6$.

Figure 19. A b-colouring of $EV(L_5)$ with $\phi = 6$.

When $n = 4(or \ 3), 4(or \ 2)$ vertices are having degree 6 and 4 vertices are of degree 4. So b-colouring with 6 colours is not possible. A b-colouring with 5 colours is given in Figure 20. Hence $\phi(EV(L_n)) = 5, n = 3, 4$.

Figure 20. A b-colouring of $EV(L_n)$, n = 3, 4 with $\phi = 5$.

When n = 2, 4 vertices are having the maximum degree 4. Hence $\phi(EV(L_2)) \leq 4$. A *b*-colouring with 4 colours is given in Figure 21.

Figure 21. A b-colouring of $EV(L_2)$ with $\phi = 4$.

References

N.Alon and B.Mohar, The chromatic number of graph power, Combinatorics Probability and Computing, 11(1993), 1–10.

^[2] I.W.Irving and D.F.Manlove, The b-chromatic number of a graph, Discrete Appl. Math., 91(1999), 127-141.

- [3] KM.Kathiresan and S.Gokulakrishnan, On magic labeling of type (1,1,1) for the special classes of plane graphs, Util. Math., 63(2003), 25–32.
- [4] J.Kratochvil, Zs.Tuza and M.Voigt, On the b-chromatic number of graphs, Lecturer Notes in Computer Science, Springer Berlin, 2573 (2002), 310–320.
- [5] M.Kouider, b-chromatic number of a graph, subgraphs, degrees, Res. Rep. 1392, LRI, Univ. Orsay, France, (2004).
- [6] R.Javedi and B.Omoomi, On b-coloring of Cartesian product of graphs, Ars Combin., 107(2012), 521–536.
- [7] K.Thilagavathi, D.Vijayalakshmi and N.Roopesh, b-coloring of central graphs, International Journal of Computer Applications, 3(11) (2010), 27–29.
- [8] S.K.Vaidya and Lekha Bijukumar, Some New families of Mean Graphs, Journal of Mathematics Research, 2(3)(2010), 169–176.
- [9] M.Venkatachalam, and Vivin.J.Vernold, The b-chromatic number of star graph families, LE Mathematiche, 65(2010), 119–125.
- [10] Vivin.J.Vernold and M.Venkatachalam, The b-chromatic number of corona graphs, Util. Math., 88(2012), 299–307.
- [11] D.Vijayalakshmi and K.Thilagavathi, b-coloring in the context of some graph operations, International Journal of Mathematical Archive, 3(4)(2012), 1439–1442.