b-chromatic Number for the Graphs Obtained by Duplicating Edges

Research Article

S.Arockiaraj ${ }^{1 *}$ and V.Premalatha ${ }^{2 \dagger}$
1 Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, India.
2 Department of Mathematics, Canara First Grade College, Kodialbail, Mangalore, Karnataka, India.

Abstract

A b-colouring of a graph G is a proper vertex colouring of G such that each colour class contains a vertex that has atleast one neighbour in every other colour class and b-chromatic number of a graph G is the largest integer $\phi(G)$ for which G has a b-colouring with $\phi(G)$ colours. In this paper, we have obtained the b-chromatic number of the graphs E_{n}, F_{n} and the graphs obtained by duplicating all the edges of path, cycle, complete graph, wheel graph, Ladder graph L_{n} by vertices. MSC: 05C15, 05C38.

Keywords: b-colouring, b-chromatic number.
(C) JS Publication.

1. Introduction

Let G be a graph without loops and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-colouring of graph G is a function C defined from $V(G)$ onto a set of colours $\{1,2, \ldots, k\}$ such that any two adjacent vertices have different colours. For every $i, 1 \leq i \leq k$, the set C_{i} is an independent set of vertices which is called as the colour class of the colour i Let P_{n} be a path with n vertices and $n-1$ edges. Let C_{n} be a cycle with n vertices and n edges.

For $n \geq 2, E_{n}$ denotes a graph consisting of $(n-1) 3$-sided faces, $(n-1) 5$-sided faces and one external infinite face, embedded in the plane and labeled as in Figure 1 [3]. For $n \geq 2, F_{n}$ denotes a graph consisting of ($n-1$) 3-sided faces,

Figure 1.

[^0]($n-1$) 5 -sided faces, $(n-1) 6$-sided faces and one external infinite face, embedded in the plane and labeled as in Figure 2 [3].

Figure 2.

The Ladder graph L_{n} is $P_{2} \times P_{n}$. Duplication of an edge $e=u v$ by a new vertex w in a graph G produces a new graph G^{\prime} such that $N(w)=\{u, v\}[8]$. We denote the graph obtained by duplicating all the edges of G by vertices as $E V(G)$.

The b-chromatic number of a graph was introduced by R. W. Irving and D. F. Manlove when considering minimal proper colouring with respect to a partial order defined on the set of all partition of vertices of graph. The b-chromatic number of a graph G, denoted by $\phi(G)$ is the largest positive integer t such that there exists a proper colouring for G with t colours in which every colour class contains at least one vertex adjacent to some vertex in all the other colour classes. Such a colouring is called a b-colouring.
In [7], K. Thilagavathi et. al. obtained the b-colouring of the central graphs of path, cycle and complete bipartite graph. Motivated by these works, we have obtained the b-chromatic number of the graphs E_{n}, F_{n} and the graphs obtained by duplicating all the edges of path, cycle, complete graph, wheel graph, Ladder graph L_{n} by vertices.

2. Main Results

Proposition 2.1. $\phi\left(E_{n}\right)= \begin{cases}3, & n=1 \\ 4, & 2 \leq n \leq 5 \\ 5, & n \geq 6\end{cases}$
Proof. In $E_{n}, \operatorname{deg}(v) \leq 3$ when $n=1$ and $\operatorname{deg}(v) \leq 4$ otherwise. So $\phi\left(E_{n}\right) \leq 4$ when $n=1$ and $\phi\left(E_{n}\right) \leq 5$ otherwise. When $n \geq 6$, at least 5 vertices are of degree 4 . So $\phi\left(E_{n}\right) \leq 5$.
Let $u_{1}, u_{2}, \ldots, u_{n+1}$ and $v_{1}, v_{2}, \ldots, v_{n+1}$ be the vertices on the path of length n and $x_{1}, x_{2}, \ldots, x_{n+1}$ be the remaining vertices of E_{n} so that $x_{i} u_{i}, x_{i} v_{i} \in E\left(E_{n}\right), i=1,2, \ldots, n+1$ and $u_{i} x_{i+1} \in E\left(E_{n}\right), i=1,2, \ldots, n$. Assign the colours for the vertices of E_{n} as follows:

$$
\begin{aligned}
& C\left(u_{i}\right)=i(\bmod 5), \quad 1 \leq i \leq n+1 \\
& C\left(x_{i}\right)=(i+2)(\bmod 5), \quad 1 \leq i \leq n+1 \text { and } \\
& C\left(v_{i}\right)=(i+3)(\bmod 5), \quad 1 \leq i \leq n+1
\end{aligned}
$$

Then $u_{2}, u_{3}, u_{4}, u_{5}$ and u_{6} are the members of the colour classes $1,2,3,4$ and 0 respectively in which they are adjacent to at least one member of all the remaining colour classes. Thus $\phi\left(E_{n}\right)=5$ for $n \geq 6$.

Figure 3. A b-colouring of E_{6} with $\phi=5$.

When $2 \leq n \leq 5$, only $n-1$ vertices are of degree 4 . So $\phi\left(E_{n}\right)<5$ when $2 \leq n \leq 5$. In this case, assign the colours for the vertices of E_{n} as follows:

For $1 \leq i \leq n+1$,

$$
\begin{aligned}
C\left(u_{i}\right) & = \begin{cases}0, & i \text { is odd } \\
1, & i \text { is even }\end{cases} \\
C\left(x_{i}\right) & = \begin{cases}3, & i \text { is odd } \\
2, & i \text { is even }\end{cases} \\
\text { and } C\left(v_{i}\right) & = \begin{cases}2, & i \text { is odd } \\
3, & i \text { is even. }\end{cases}
\end{aligned}
$$

Then u_{1}, u_{2}, x_{2} and x_{3} are the members of colour classes $0,1,2$ and 3 respectively with the required property. Thus $\phi\left(E_{n}\right)=4$ for $2 \leq n \leq 5$.

Figure 4.

Proposition 2.2. $\phi\left(F_{n}\right)= \begin{cases}4, & 1 \leq n \leq 5 \\ 5, & n \geq 6\end{cases}$
Proof. In $F_{n}, \operatorname{deg}(v) \leq 3$ when $n=1$ and $\operatorname{deg}(v) \leq 4$ otherwise. So $\phi\left(F_{n}\right) \leq 4$ when $1 \leq n \leq 5$ and $\phi\left(F_{n}\right) \leq 5$ otherwise. When $n \geq 6$, at least 5 vertices are of degree 4 . So $\phi\left(F_{n}\right) \leq 5$.

Let $u_{1}, u_{2}, \ldots, u_{n+1}$ and $v_{1}, v_{2}, \ldots, v_{n+1}$ be the vertices on the paths of length n. Let $x_{i}, y_{i}, z_{i}, 1 \leq i \leq n+1$ be the vertices so that $u_{i} x_{i}, x_{i} y_{i}, y_{i} z_{i}, z_{i} v_{i} \in E\left(F_{n}\right), 1 \leq i \leq n+1$ and $x_{i} y_{i+1}, v_{i} z_{i+1} \in E\left(F_{n}\right), 1 \leq i \leq n$. When $n \geq 6$, assign the colours to the vertices of F_{n} as follows:

For $1 \leq i \leq n+1$,

$$
\begin{aligned}
& C\left(u_{i}\right)=(i-1)(\bmod 5), \\
& C\left(x_{i}\right)=(i+1)(\bmod 5), \\
& C\left(y_{i}\right)=(i+2)(\bmod 5), \\
& C\left(z_{i}\right)=(i+1)(\bmod 5) \text { and } \\
& C\left(v_{i}\right)=(i-1)(\bmod 5) .
\end{aligned}
$$

Then $v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} are the members of the colour classes $1,2,3,4$ and 0 respectively in which they are having all the remaining colours as neighbouring colours. Thus $\phi\left(F_{n}\right)=5$ for $n \geq 6$.

Figure 5. A b-colouring of F_{6} with $\phi=5$.

When $1 \leq n \leq 5$, only $n-1$ vertices are of degree 4. So $\phi\left(F_{n}\right)<5$. By assigning the colours as

$$
\begin{aligned}
& C\left(u_{i}\right)= \begin{cases}0, & i \text { is odd } \\
1, & i \text { is even }\end{cases} \\
& C\left(x_{i}\right)= \begin{cases}3, & i \text { is odd } \\
0, & i \text { is even }\end{cases} \\
& C\left(y_{i}\right)= \begin{cases}2, & i \text { is odd } \\
1, & i \text { is even }\end{cases} \\
& C\left(z_{i}\right)= \begin{cases}1, & i \text { is odd } \\
2, & i \text { is even }\end{cases}
\end{aligned}
$$

$$
\text { and } C\left(v_{i}\right)= \begin{cases}0, & i \text { is odd } \\ 3, & i \text { is even }\end{cases}
$$

for each $i, 1 \leq i \leq n$, the vertices x_{1}, y_{2}, z_{2} and v_{1} are the members of the colour classes $3,1,2$ and 0 respectively with the required property. This implies that $\phi\left(F_{n}\right)=4$ for $1 \leq n \leq 5$.

Figure 6. A b-colouring of $F_{n}, 1 \leq n \leq 5$ with $\phi=4$.

Proposition 2.3. $\phi\left(E V\left(P_{n}\right)\right)= \begin{cases}3, & 2 \leq n \leq 5 \\ 4, & n=6 \\ 5, & n \geq 7\end{cases}$
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path and $x_{1}, x_{2}, \ldots, x_{n-1}$ be the vertices corresponding to the edges of P_{n} so that $x_{i} v_{i}, x_{i} v_{i+1} \in E\left(E V\left(P_{n}\right)\right), 1 \leq i \leq n-1$. When $n \geq 7$, at least five vertices are of degree $\Delta=4$ and hence $\phi\left(E V\left(P_{n}\right)\right) \leq 5$. Colour the vertices as follows:

$$
\begin{array}{ll}
C\left(v_{i}\right)=(i+3)(\bmod 5), & 1 \leq i \leq n \text { and } \\
C\left(x_{i}\right)=(i+1)(\bmod 5), & 1 \leq i \leq n-1
\end{array}
$$

Then $v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} are the members of the colour classes $0,1,2,3$ and 4 respectively so that each one having all the remaining colours in its neighbours. Thus $\phi\left(E V\left(P_{n}\right)\right)=5$ for $n \geq 7$.

Figure 7. A b-colouring of $E V\left(P_{7}\right)$ with $\phi=5$.

When $n=6$, only 4 vertices are of degree $\Delta=4$ and hence $\phi\left(E V\left(P_{n}\right)\right)<5$. Colour the vertices as follows:

$$
\begin{array}{ll}
C\left(v_{i}\right)=(i+2)(\bmod 4), & 1 \leq i \leq n \text { and } \\
C\left(x_{i}\right)=(i+1)(\bmod 4), & 1 \leq i \leq n-1 .
\end{array}
$$

Then v_{2}, v_{3}, v_{4} and v_{5} are the members of the colour classes $0,1,2$ and 3 respectively with the required property. Hence $\phi\left(E V\left(P_{n}\right)\right)=4$.

Figure 8. A b-colouring of $E V\left(P_{6}\right)$ with $\phi=4$.

When $3 \leq n \leq 5$, only $n-2$ vertices are of degree $\Delta=4$ and no vertex is of degree 3. So $\phi\left(E V\left(P_{n}\right)\right)<4$. Colour the vertices as follows:

$$
\begin{array}{ll}
C\left(v_{i}\right)=(i-1)(\bmod 3), & 1 \leq i \leq n \text { and } \\
C\left(x_{i}\right)=(i+1)(\bmod 3), & 1 \leq i \leq n-1 .
\end{array}
$$

Then v_{1}, v_{2} and v_{3} are the members of the colour classes 0,1 and 2 respectively with the required property.

Figure 9. A b-colouring of $E V\left(P_{n}\right), 3 \leq n \leq 5$ with $\phi=3$.

While $n=2, E V\left(P_{n}\right)=K_{3}$ and $\phi\left(K_{3}\right)=3$. Hence $\phi\left(E V\left(P_{n}\right)\right)=3$ for $2 \leq n \leq 5$.

Figure 10. A b-colouring of $E V\left(P_{2}\right)$ with $\phi=3$.

Proposition 2.4. For any $n \geq 3$,

$$
\phi\left(E V\left(C_{n}\right)\right)= \begin{cases}3, & n=3 \\ 4, & n=4 \\ 5, & n \geq 5\end{cases}
$$

Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the cycle and $x_{1}, x_{2}, \ldots, x_{n}$ be the vertices corresponding to the cycles of C_{n} so that $v_{i} x_{i}, x_{i} v_{i+1} \in E\left(E V\left(C_{n}\right)\right), 1 \leq i \leq n$ where $v_{n+1}=v_{1}$. When $n \geq 5$, at least five vertices are of degree $\Delta=4$. So $\phi\left(E V\left(C_{n}\right)\right) \leq 5$. For $n \geq 7$, assign the colours $4,0,1,2,3,4,0$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ respectively and $2,3,4,0,1,2$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ respectively and colour the remaining vertices with a proper colouring using the colours $0,1,2,3$ and 4 , the vertices $v_{2}, v_{3}, v_{4}, v_{5}$ and v_{6} are the members of the colour classes $0,1,2,3,4$ respectively in which they are adjacent to at least one number of the remaining colour classes. Hence $\phi\left(E V\left(C_{n}\right)\right)=5$ for $n \geq 7$. The b-colouring of $E V\left(C_{5}\right)$ and $E V\left(C_{6}\right)$ are given in Figure 11. So that $\phi\left(E V\left(C_{5}\right)\right)=\phi\left(E V\left(C_{6}\right)\right)=5$. When $n=3,4$ the

Figure 11. A b-colouring of $E V\left(C_{n}\right), n=5,6$ with $\phi=5$.
number of vertices of degree $\Delta=4$ is n and hence $\phi\left(E V\left(C_{n}\right)\right)<5$. Also the number of vertices of degree $\Delta=4$ in $E V\left(C_{3}\right)$ is 3. So $\phi\left(E V\left(C_{3}\right)\right)<4$ and $\phi\left(E V\left(C_{4}\right)\right)<5$. The b-colouring of $E V\left(C_{3}\right)$ and $E V\left(C_{4}\right)$ are given in Figure 12 so that $\phi\left(E V\left(C_{3}\right)\right)=3$ and $\phi\left(E V\left(C_{4}\right)\right)=4$.

Figure 12. A b-colouring of $E V\left(C_{n}\right), n=3,4$.

Proposition 2.5. For any $n \geq 1, \phi\left(E V\left(K_{n}\right)\right)=n$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of K_{n} in $E V\left(K_{n}\right)$ and $x_{1}, x_{2}, \ldots, x_{m}, m=\binom{n}{2}$, be the vertices corresponding to the edges of K_{n}. Since $E V\left(K_{n}\right)$ has n vertices of degree $\Delta=2 n-2, \phi\left(E V\left(K_{n}\right)\right) \leq n$.

By assigning the colours $0,1,2, \ldots,(n-1)$ to the vertices $v_{1}, v_{2}, \ldots, v_{n}$ respectively and giving the proper colouring to the remaining vertices, it follows that $\phi\left(E V\left(K_{n}\right)\right)=n$.

$E V\left(K_{3}\right)$

Figure 13. A b-colouring of $E V\left(K_{5}\right)$ with $\phi=5$.

Proposition 2.6. For any $n \geq 2, \phi\left(E V\left(K_{1, n}\right)\right)=3$.

Proof. Let v_{0} be the central vertex and $v_{1}, v_{2}, \ldots, v_{n}$ be the pendant vertices of $K_{1, n}$. Let x_{i} be the vertex corresponding to the edge $v_{0} v_{i}, 1 \leq i \leq n$ in $E V\left(K_{1, n}\right)$. In $E V\left(K_{1, n}\right), 2 n$ vertices are of degree 2 and v_{0} is the only vertex with degree $2 n$. Hence $\phi\left(E V\left(K_{1, n}\right)\right) \leq 3$. By assigning the colour 0 to $v_{0}, 1$ to v_{i} 's and 2 for all x_{i} 's, the result follows:

Figure 14. A b-colouring of $E V\left(K_{1,6}\right)$ with $\phi=3$.

Proposition 2.7. $\phi\left(E V\left(W_{n}\right)\right)= \begin{cases}7, & \text { for } n \geq 6 \\ n+1, & \text { for } 3 \leq n \leq 5\end{cases}$
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the cycle and v_{0} be the central vertex of W_{n}. Let x_{i} be the vertex corresponding to the edge $v_{i} v_{i+1}, 1 \leq i \leq n-1, x_{n}$ be the vertex corresponding to the edge $v_{n} v_{1}$ and $x_{n+i}, 1 \leq i \leq n$ be the vertex corresponding to the edge $v_{0} v_{i}$ in $E V\left(W_{n}\right)$. Assume that $n \geq 6$. In $E V\left(W_{n}\right)$, one vertex namely v_{0} is of degree $2 n, n$ vertices are of degree 6 and the remaining $2 n$ vertices are of degree 2 . So $\phi\left(E V\left(W_{n}\right)\right) \leq 7$. Colour the vertex v_{0} by $0, v_{i}, 1 \leq i \leq 6$ by i and the remaining v_{i} 's by the sequence of colours $3,4,5,6,3,4,5,6, \ldots$, colour the vertices $x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}$ by $5,6,5,6,1,2,1,2, \ldots, 1,2$, while n is even and $3,4,5,6,1,2,1,2, \ldots, 2,1$ while n is odd. Colour the vertices $x_{n+1}, x_{n+2}, \ldots, x_{n+8}$ by $5,6,1,2,3,4,5,6$ while n is even and $4,4,1,2,3,4,5,6$ while n is odd and the remaining x_{i} 's, $n+9 \leq i \leq 2 n$ are assigned by a proper colouring. Then $v_{0}, v_{1}, \ldots, v_{6}$ be the members of the respective colour classes of the colours $0,1,2,3,4,5,6$ so that it has exactly one neighbour in the remaining colour classes. Therefore $\phi\left(E V\left(W_{n}\right)\right)=7$ for $n \geq 6$.

Figure 15. A b-colouring of $E V\left(W_{10}\right)$ with $\phi=6$.

Figure 16. A b-colouring of $E V\left(W_{13}\right)$ with $\phi=6$.

When $3 \leq n \leq 5$ the number of vertices with degree 6 is n and one vertex is of degree $2 n$. So $\phi\left(E V\left(W_{n}\right)\right) \leq n+1$. A b-colouring for $E V\left(W_{n}\right), 3 \leq n \leq 5$ is shown in Figure 17. Hence $\phi\left(E V\left(W_{n}\right)\right)=n+1$, for $3 \leq n \leq 5$.

Figure 17. A b-colouring of $E V\left(W_{n}\right), 3 \leq n \leq 5$ with $\phi=n+1$.

Proposition 2.8. $\phi\left(E V\left(L_{n}\right)\right)= \begin{cases}7, & \text { for } n \geq 6 \\ 6, & \text { for } n=5 \\ 5, & \text { for } n=3,4 \\ 4, & \text { for } n=2 .\end{cases}$
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path of length $n-1$. Let x_{i} and y_{i} be the duplicating vertices of the edges $u_{i} u_{i+1}$ and $v_{i} v_{i+1}$ respectively, $1 \leq i \leq n-1$ and z_{i} be the duplicating vertex of the edge $u_{i} v_{i}, 1 \leq i \leq n$. When $n \geq 3$, the maximum degree of $E V\left(L_{n}\right)$ is 6 and the number of vertices having the degree 6 is $2(n-1)$. Hence $\phi\left(E V\left(L_{n}\right)\right) \leq 7$. Assume that $n \geq 9$. Assign the colours to the vertices as follows:

$$
\begin{array}{ll}
C\left(u_{i}\right)=(i+5)(\bmod 7), & 1 \leq i \leq n \\
C\left(v_{i}\right)=(i+2)(\bmod 7), & 1 \leq i \leq n \\
C\left(x_{i}\right)=(i+1)(\bmod 7), & 1 \leq i \leq n-1 \\
C\left(y_{i}\right)=C\left(x_{i}\right), & 1 \leq i \leq n-1 \text { and } \\
C\left(z_{i}\right)=(i+3)(\bmod 7), & 1 \leq i \leq n .
\end{array}
$$

By assigning these colours, the vertices $v_{2}, v_{3}, \ldots, v_{8}$ are the members of the respective colour classes $0,1,2, \ldots, 7$ in which they are adjacent to at least one member of all the remaining colour classes. Hence $\phi\left(E V\left(L_{n}\right)\right)=7$ for all $n \geq 9$.

When $6 \leq n \leq 8$, at least 7 vertices are of degree 6 and the b-colouring for these values of n are given in Figure 18. Hence $\phi\left(E V\left(L_{n}\right)\right)=6,6 \leq n \leq 8$.

Figure 18. A b-colouring of $E V\left(L_{n}\right), 6 \leq n \leq 8$.

When $n=5$, since there are only 6 vertices are of degree $6, \phi\left(E V\left(L_{n}\right)\right)<7$. A b-colouring with 6 colours for $E V\left(L_{5}\right)$ is given in Figure 19. Hence $\phi\left(E V\left(L_{5}\right)\right)=6$.

Figure 19. A b-colouring of $E V\left(L_{5}\right)$ with $\phi=6$.

When $n=4$ (or 3), 4 (or 2) vertices are having degree 6 and 4 vertices are of degree 4 . So b-colouring with 6 colours is not possible. A b-colouring with 5 colours is given in Figure 20. Hence $\phi\left(E V\left(L_{n}\right)\right)=5, n=3,4$.

Figure 20. A b-colouring of $E V\left(L_{n}\right), n=3,4$ with $\phi=5$.

When $n=2,4$ vertices are having the maximum degree 4 . Hence $\phi\left(E V\left(L_{2}\right)\right) \leq 4$. A b-colouring with 4 colours is given in Figure 21.

Figure 21. A b-colouring of $E V\left(L_{2}\right)$ with $\phi=4$.

References

[^1][2] I.W.Irving and D.F.Manlove, The b-chromatic number of a graph, Discrete Appl. Math., 91(1999), 127-141.
[3] KM.Kathiresan and S.Gokulakrishnan, On magic labeling of type $(1,1,1)$ for the special classes of plane graphs, Util. Math., 63(2003), 25-32.
[4] J.Kratochvil, Zs.Tuza and M.Voigt, On the b-chromatic number of graphs, Lecturer Notes in Computer Science, Springer Berlin, 2573 (2002), 310-320.
[5] M.Kouider, b-chromatic number of a graph, subgraphs, degrees, Res. Rep. 1392, LRI, Univ. Orsay, France, (2004).
[6] R.Javedi and B.Omoomi, On b-coloring of Cartesian product of graphs, Ars Combin., 107(2012), 521-536.
[7] K.Thilagavathi, D.Vijayalakshmi and N.Roopesh, b-coloring of central graphs, International Journal of Computer Applications, 3(11) (2010), 27-29.
[8] S.K.Vaidya and Lekha Bijukumar, Some New families of Mean Graphs, Journal of Mathematics Research, 2(3)(2010), 169-176.
[9] M.Venkatachalam, and Vivin.J.Vernold, The b-chromatic number of star graph families, LE Mathematiche, 65(2010), 119-125.
[10] Vivin.J.Vernold and M.Venkatachalam, The b-chromatic number of corona graphs, Util. Math., 88(2012), 299-307.
[11] D.Vijayalakshmi and K.Thilagavathi, b-coloring in the context of some graph operations, International Journal of Mathematical Archive, 3(4)(2012), 1439-1442.

[^0]: * E-mail: psarockiaraj@gmail.com
 \dagger E-mail: premalathavpai@yahoo.co.in, Research Scholar of Karpagam University, Coimbatore, Tamilnadu, India.

[^1]: [1] N.Alon and B.Mohar, The chromatic number of graph power, Combinatorics Probability and Computing, 11(1993), 1-10.

