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1. Introduction

The characterization of the semi-simplicity of an associative unital algebra A brings back its left ideals under investigation.

Indeed, it is well-known which A is semi-simple if, and only if, the intersection as of its maximum left ideals is reduced

{0}. While being based on the fact that the property to be locally bounded, is more essential, for an Banach algebra, that

locally convexity, we were interested in the p-normalized algebras (0 < p < 1) [1]. In this work, we define for an algebra in

involution ∗ (A, ∗) a concept that we call ∗ semi simplicity, it rests on the study of certain ideals. The interest thus is to

restrict with a family of the ideals instead of considering all the left ideals. This concept of ∗semi simplicity will contribute

also under investigation of the problem of the automatic continuity of the linear operators in the topological algebras. The

results of this paper are divided into two sections: In the first section, we give various characterizations of ∗-simple algebras

(respectively ∗-semi-simple.) we show by example that if A is ∗-simple unital algebra that is not simple, then there exists an

simple unital algebra I such that A = I ⊕ I∗ (propsition 2.4). While the second section is devoted to the study of automatic

continuity of Homomorphisms in ∗-simple complete p-normed algebras (respectively-∗semi-simple). We show that if A is

a ∗-semi-simple complete p-normed algebra, then any surjective homomorphism (or dense range) of an algebra complete

p-normed B in A is continuous (Theorem 2.2).
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2. Characterization of ∗-simples Algebras

2.1. ∗-ideals

Definition 2.1. An Involution on a algebra is an application ∗ : A→ A satisfies the following properties:

(i) (x∗)∗ = x, ∀ x ∈ A

(ii) (x+ y)∗ = x ∗+y∗, ∀ x, y ∈ A

(iii) (λx)∗ = λ̄x∗, ∀ x ∈ A and ∀ λ ∈ C

(iv) (xy)∗ = y∗x∗, ∀ x, y ∈ A

Equipped with involution ∗ A is said to be an ∗-algebra. Let A be a unital associative algebra not necessarily commutative.

Along this work, ∗ is an involution on A.

Definition 2.2. It is said that an ideal I of A is a ∗-ideal if I∗ ⊆ I, where I∗ = {a∗/a ∈ I}. We verify that if I is a ∗-ideal

of A, then I is two-sided ideal of A.

Example 2.3.

(1) If I is two-sided ideal, then I + I∗ and I ∩ I∗ are both ∗-ideals of A.

(2) If I is a left ideal (respectively Right ideal), then I.I∗ (respectively I.I∗) is a ∗-ideal of A.

Remark 2.4. Let I be a non-zero ∗-ideal of A. Then, ∗ induces an involution on the quotient algebra A/I, denoted as ∗,

defined by: (a+ I)∗ = (a)∗ + I, for all a ∈ A.

2.2. ∗-simple Algebra

Definition 2.5. A ∗-ideal I is said ∗-minimal (respectively ∗-maximal) of A, if the only ∗-ideal of A contained in I (respec-

tively Containing I) are {0] and I (respectively I and A). If I is a minimum ∗-ideal (maximum respectively), Then I is an

ideal ∗-minimal (respectively ∗-maximum) A. Let I be a two-sided ideal of A. Then, I was especially an A-module. D denote

the set defined by:

D = {T ∈ EndA(I)/ T (ai) = aT (i), ∀ a ∈ A et ∀ i ∈ I}

Where EndA(I) is the set of endomorphism of A-modules I in I.

Definition 2.6. Let I be a ∗-ideal of A and T ∈ EndA(I). We say that T is a ∗-endomorphism and noted let T ∈ End∗A(I)

if T (a∗) = (T (a))∗, for all a ∈ A. D∗ denote the set defined by:

D∗ = {T ∈ End∗A(I)/T (ai) = aT (i), ∀ a ∈ A et ∀ i ∈ I}.

Proposition 2.7. Let I be an ∗-minimal ideal of A. Then, the set D∗ is a division unital sub-algebra of the algebra End∗A(I).
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Proof. The set D is obviously an sub-algebra of End∗A(I), containing the identity operator. Let T ∈ D∗ is not zero. T is

bijective: indeed, ∀a ∈ A and ∀i ∈ I, aT (i) = T (ai) ⊆ T (I), following T (I) is ideal of A. Since T is a *-endomorphism (T(i))*

= T(i*) T(I),, for all i I. So, T (I) is a * -ideal of A contained in I. Or, T (I) 6= {0}, T (I) = I. Let N = {i ∈ I/T (i) = (0)}.

Then ∀a ∈ A and ∀i ∈ N , T (ai) = aT (i) = (0) (∀i ∈ N), following N is an ideal of A. Since T ∗ is a ∗-endomorphism, it

follows that N is ∗-ideal of A. However, T 6= {0}, from where N 6= I as a result, N = {0}. It was therefore, T invertible the

reverse T−1. In addition,

aT−1(i) = T−1T (aT−1(i)) = T−1(aTT−1(i)) = T−1(ai).

Hence T−1 ∈ D∗

Definition 2.8. It is said that algebra with involution (A,∗ ) is ∗-simple if the only ∗-ideals of A are (0) and A.

Note that if A is a simple algebra equipped with an involution ∗, then A ∗-simple. But the converse is not true in general,

as shown in the following example:

Let A be a simple algebra, A◦ the opposite algebra A. Consider the algebra B = A × A◦. Provided with the exchange

involution defined by: ∗(x, y) = (y, x), B is ∗-simple algebra is not simple.

It is therefore natural to ask under what conditions the converse is true. It is subject to the following proposition:

Proposition 2.9. Let A ∗-simple algebra. If the involution is anisotropic, then A is simple Recall that involution is called

anisotropic if ∀a ∈ A, it a∗a = 0⇒ a = 0.

Proof. Let I be an ideal of A, I ∩ I∗ = {0} or A. If I ∩ I∗ = {0}, then x.x∗ = 0. With ∗ is anisotropic, then x = 0∀x ∈ I,

a result I = {0}. If I ∩ I∗ = A, then I = A.

Proposition 2.10. Let A l is ∗-algebra. Then A is a ∗-simple if, and only if, there a maximal ideal M such that M ∩M∗ =

{0}.

Proof.

⇒ Suppose A is ∗-simple. Let M be a maximal ideal of A. M ∩M∗ is a ∗-ideal of A, M ∩M∗ = {0} or A. If M ∩M∗ = A,

then M = A, which contradicts the fact that M is proper. Hence, M ∩M∗ = {0}.

⇐ Suppose that there exists a maximal ideal M such that M ∩M∗ = {0}. Let I a ∗-ideal of A. If I ⊆M , then I∗ = I ⊆M∗,

where I ⊆M ∩M∗ = {0}. If I, I ⊆M , then M = I +A, and

M∗ + I = (M∗ + I)A = (M∗ + I)(M + I) ⊆M∗M + I = I.

Which implies that M∗I, as a result, M ⊆ I. Since M is maximum ∗-ideal A, so it follows that A = I.

Proposition 2.11. Let A an ∗-simple algebra which is not simple. Then, there exists a sub-algebra simple unit I of A such

that A = I ⊕ I∗.

Proof. Let I a proper ideal of A. I ∩ I∗ is a ∗-ideal, therefore I ∩ I∗ = {0} or I ∩ I∗ = A. If I ∩ I∗ = A then I = A, which

is absurd. From where I ∩ I∗ = {0}. There is also I + I∗ is a ∗ideal, then I + I∗ = {0}, or I + I∗ = A. If I + I∗ = {0}, then

I = {0}, which contradicts the fact that I is proper. Therefore, A = I ⊕ I∗. Let J a ideal of A such as J ⊆ I. According to

109



The Automatic Continuity of Epimorphisms in Certain Classes of Topological Algebras

what precedes, A = J ⊕ J∗. Let i ∈ I, then there exists j, j′ ∈ J such that i = j + j′∗. However i− j = j′∗ ∈ I ∩ I∗ = {0},

from where i = j, therefore I = J . Consequently, I is a minimal ideal of A. Let J an ideal of I, then J is an ideal of A.

Indeed, let a ∈ A and j ∈ J , then it exists i, i′∗ such that a = i + i′∗. From where aj = (i + i′∗)j = ij + i′∗j. However,

i′∗j ∈ I∗I ⊆ II∗ = {0}, consequently aj = ij ∈ J . As I is a minimal ideal, then J = {0} or I = J . Thus, I a simple

sub-algebra. On other hand, I a unital and if 1 indicates the unit of A, then there exists e, e′ ∈ I such that 1 = e+ e′∗. Let

x ∈ I, we are x = x1 = xe+ xe′∗, but x− xe = xe′∗ ∈ I ∩ I∗ = {0}, from where x = xe. In the same way, we checked that

x = xe. Consequently, I an unital of unit e.

Proposition 2.12. Let A be a ∗-algebra and M a maximal ideal of A. Then, M ∩M∗ is a ∗-maximal ideal of A.

Proof. Suppose that M 6= M∗. Then A/M ∩ M∗ = M/M ∩ M∗ ⊕ M∗/M ∩ M∗. Indeed, M is a maximal ideal of

A, then M/M ∩M∗ is a ∗ is maximal ideal of A/M ∩M∗. So, A/M ∩M∗ = M/M ∩M∗ + M ∗ /M ∩M∗. Let x̄ ∈

M/M ∩M∗ ∩M∗/M ∩M∗, then there exists m,m′ ∈ M such that x̄ = m + M ∩M∗ and x̄ = m′∗ + M ∩M∗, ∗, which

implies that m −m′∗ ∈ M ∩M∗ ⊂ M . Since, m ∈ M , so m′∗ ∈ M . On the other hand, m′∗ ∈ M∗. Thus, m′∗M ∩M∗.

Then x̄ = 0̄. So by Proposition A/M ∩M∗ is ∗-simple algebra, following M ∩M∗ is ∗-maximal.

Proposition 2.13. Let A be a ∗-algebra and M ∗-maximal ideal which is not maximal. Then there exists a maximal ideal

N of A such that M = N ∩N∗.

Proof. As M is not maximum, there is a maximal ideal N of A such that M ⊂ N . Since M∗ = M ⊂ N∗, where

M ⊂ N ∩N∗. Since N ∩N∗ is a ∗-ideal of A, it follows therefore that M = N ∩N∗.

Definition 2.14. Let A be a ∗-algebra. Called ∗-radical of A, denoted Rad∗(A), the intersection of all ideals ∗- maximum

of A. A is called ∗-semi-simple if Rad∗(A) = {0}.

Example 2.15. Let A be a simple algebra, A◦ the opposite algebra of A. Consider the algebra B = A×A◦. Provided with

the exchange involution defined by ∗(x, y) = (y, x). So B is an algebra ∗-semi-simple.

Proposition 2.16. Let I be a ∗-ideal a ∗-algebra A such that I ⊆ Rad∗(A). So Rad∗(A/I) = Rad∗(A)/I. In particular,

A/Rad∗(A) is a ∗-semi simple.

Proof. M is a ∗-maximum ideal of A. We put Ā = A/I and M̄ = M/I. We have I ⊆ Rad∗(A) ⊆M . So from the following

canonical isomorphism Ā/M̄ ≈ A/M is ∗-simple, it follows that Ā/M̄ is a ∗-simple algebra. Consequently, M/I is a ∗-ideal

∗-maximal of A/I. From where

Rad∗(A/I) = ∩{M̄ : M is∗ −maximum ideal of A}

= ∩{M : is∗ −maximum ideal of A}

= Rad∗(A) = Rad∗(A)/I
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3. Automatic continuity

In this section, we are interested in the study of automatic continuity in ∗-simples complete p-normed ∗-algebras (respectively

∗-semi-Simple). To do this, we first useful preliminary, then we extend the results known in the case of Banach spaces to

complete p-normed spaces.

Definition 3.1. Let T a linear application of a complete p-normed space X in a complete p-normed space Y. Then, the

separating space σ(T ) of Y is the subset of Y defined by

σ(T ) = {y ∈ Y/∃(xn)n X : xn
‖ ‖p−−−→ 0 et T (xn)

‖ ‖p−−−→ y}.

Proposition 3.2. Let X and Y two complete p-normed space, then the separating space (T) of any a linear application

T : X → Y is a closed subspace of Y.

Proof. Evidently σ(T ) is a subspace vector of Y. Let (yk)k a sequence in σ(T ) converging to y of Y. we prove that y ∈ σ(T )

for every k ∈ IN∗, yk ∈ σ(T ). Then there is a sequence (yk,n)n ⊂ X such that xn,k
‖ ‖p−−−→ 0 and T (xn,k)

‖ ‖p−−−→ yk. Let us

choose two sequence (zk)k(yk)k in X such that, for every k ∈ IN∗, ‖zk‖pK < 1/k and ‖T (zk) − y‖p < 1/k. Then, we are

zk
‖ ‖p−−−→ 0 and T (zk) − yk

‖ ‖p−−−→ 0. On other hand, for every k ∈ IN∗, we are T (zk) − y = (T (zk) − yk) + (yk − y). Then,

zk
‖ ‖p−−−→ 0 et T (zk)− y

‖ ‖p−−−→ 0. Consequently, y ∈ σ(T ).

Proposition 3.3. Let X and Y be two complete p-normed spaces and T : X → Y linear application. So we have:

(i) σ(T ) = {0}, if and only if, the graph of T is closed.

(ii) Where R and S are two continuous operators X and Y, respectively, and if, TR = ST , then S(σ(T ) ⊂ σ(T ).

Proof.

(i) Suppose σ(T ) = {0}, then the graph of T is closed. Indeed let (xn)n be a sequence of elements of X such xn
‖ ‖p−−−→ x and

T (xn)
‖ ‖p−−−→ y. Then we have xn − x

‖ ‖p−−−→ 0 and T (xn − x)
‖ ‖p−−−→ y − T (x), which implies that y − T (x) ∈ σ(T ) = {0},

therefore, y = T (x). The converse is obvious.

(ii) Let y ∈ σ(T ), then there exists a sequence (xn)n be a sequence of elements of X such xn
‖ ‖p−−−→ 0 and T (xn)

‖ ‖p−−−→ y. So

we have R(xn)
‖ ‖p−−−→ 0 and TR(xn) = ST (xn)

‖ ‖p−−−→ S(y). This then results that S(y) ∈ σ(T ).

Proposition 3.4. Let X, Y and Z complete p-normed spaces. Let S : X → Y a linear application and R : Y → Z a

continuous linear application. So we have

(i) RS is continuous if and only if, Rσ(T ) = {0}.

(ii) R(σ(S)) = σ(RS).
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Proof. Suppose that RS is continuous. Let y ∈ σ(S), then there exists a sequence (xn)n of elements of X such xn
‖ ‖p−−−→

0 et S(xn)
‖ ‖p−−−→ y. Then, RS(xn)

‖ ‖p−−−→ R(y) and RS(xn)
‖ ‖p−−−→ 0. As S is separated, the result R(y) = 0. Conversely,

suppose R(σ(S)) = {0}. Let Q : Y → Y/σ(S) the canonical surjective map from Y to Y/σ(S) and the linear application

R0 defined to Y/σ(S) in Z by R0(y + σ(S)) = R(y). Since R0 is continuous, it suffices to show that QS is continuous.

This amounts to show that σ(QS) = {0} (Proposition 3.2 (i)). Let y + σ(S) ∈ σ(QS), there exists a sequence (xn)n be a

sequence of elements of X as xn
‖ ‖p−−−→ 0 in X, and QS(xn)

‖ ‖p−−−→ y + σ(S) in Y/σ(S). Then there exists a sequence (yn)n

elements of σ(S) such that S(xn) − y − yn
‖ ‖p−−−→ 0. We choose a sequence (wn)n of elements of X such that ‖wn‖p < 1/n

and ‖S(wn)− yn‖p < 1/n. So xn − wn
‖ ‖p−−−→ 0 and S(xn − wn)− y

‖ ‖p−−−→ 0 for n large enough, as a result y ∈ σ(S), which

implies that R(σ(S)) = {0}, according to the previous proposal, QS is continuous. We have Rσ(S) ⊂ σ(RS), in effect:

Let y ∈ σ(S), then there exists a sequence (xn)n be a sequence of elements of X such xn
‖ ‖p−−−→ 0 and S(xn)

‖ ‖p−−−→ y. R is

continuous, therefore RS(xn)
‖ ‖p−−−→ R(y).

As σ(RS) is closed (Proposition 1.1), R(σ(S)) ⊆ σ(RS). To show the other inclusion, consider the canonical map Q0 : Z →

Z/R(σ(S)) where, Q0(z) = z+R(σ(S)). Then Q0 is continuous. So Q0R is continuous, on the other hand, Q0(σ(RS)) = (0̄).

From where, σ(RS) ⊆ R(σ(S)).

Remark 3.5. Under the same assumptions of the proposition (3.3), the subspace S−1[σ(S)] is closed in X.

Proof. S−1[σ(S)] = Ker(QS) = (QS)−1{0̄}. As σ(S) is closed, Y/σ(S) is complete p-normed. Therefore, S−1[σ(S)] is in

a closed X.

Proposition 3.6. Let T a linear application of a complete p-normed unital algebra A in a complete p-normed unital algebra

B. Then, if T is surjective, the separating space σ(T ) is proper ideal of Y.

Proof. Let b ∈ B and y ∈ σ(T ). y ∈ σ(T ), there then there exists a sequence (an)n ⊂ A such that: an
‖ ‖p−−−→ 0 et T (an)

‖ ‖p−−−→

y. Suppose that T is surjective, then there exists a A such that T (a) = B; Then, ana
‖ ‖p−−−→ 0 et T (ana) = T (an)(T (a) =

T (an)b
‖ ‖p−−−→ yb, Consequently yb ∈ σ(T ). Let us show that σ(T ) is a proper ideal of B. As A and B are unital, T (eA) = eB .

For all, a ∈ A, Sp(T (a)) ⊂ Sp(a). Then rB(T (a)) ≤ rA(a), a ∈ A. Let c an element of center of B, then rB(T (a)) ≤

rB(c − T (a)) + rB(T (a)) ≤ ‖c − T (a)‖p + ‖a‖p. Suppose that eB ∈ σ(T ). Then, there exists a(an)n ⊂ A such that:

an
‖ ‖p−−−→ 0 et T (an)

‖ ‖p−−−→ eB. As eB is an element of center of B, rB(T (eA)) = rB(eB) ≤ ‖eB − T (an)‖p + ‖an‖p
‖ ‖p−−−→ 0.

What contradicts the fact that rB(eB) = 1.

Proposition 3.7. Let A be a complete p-normed algebra, then any modular maximal left ideal M of A is closed.

Proof. Let M be a modular maximal left ideal unital the right unit e. Suppose that there is a element x of M such that

‖e − x‖p < 1. Let u =
∞∑
1

(e − x)n. So u − u(e − x) = e − x, consequently e = x = ux = u − ue ∈ M . So M = A, which

contradicts the fact that M is proper ideal. Therefore M ∩ {x ∈ A : ‖e− x‖p < 1} = φ. It follows that, M̄ is a modular left

proper ideal, closed and contains M. Since M is maximum, therefore M = M̄ .

Proposition 3.8. Let A be a complete p-normed ∗-algebra A, then all ∗-maximal ∗-ideal M of A is closed.

Proof. If M is a maximal ideal of A, then M is closed. Otherwise, if M not Maximal, there is a maximal ideal N of A such

that M = N ∩N∗ (proposition 2.6). Since N (respectively N∗) is closed, it is deduced that M is closed in A.
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Proposition 3.9. Let T a homomorphism of a complete p-normed algebra A on a complete p-normed algebra B then, if B

is simple and if T is surjective (or with dense range), T is continuous.

Proof. Letσ(T ) the separator ideal of Tin B is simple, so σ(T ) = {0} or σ(T ) = B. If eB ∈ σ(T ). which contradicts the

proposition (3.4). From where σ(T ) = {0}. As a result, T is continuous.

Theorem 3.10. Let T a homomorphism of a complete p-normed algebra A on an complete p-normed ∗algebra B then, if B

is ∗simple and if T is surjective (or with dense range), T is continuous.

Proof. Let B is an algebra ∗simple, there exists simple unital subalgebra I of B such that B = I ⊕ I∗ (Proposition 2.4);

following algebraic isomorphism B ≈ B/I∗, one deduces that I am a maximum ideal of B. From where I (respectively

I∗) is closed in B. Consequently, I (respectively I∗) is a complete p-normed subalgebra. Let us consider Pr1 : B → I

(respectively Pr2 : B → I∗) the canonical projection of B on I (respectively of B on I∗). Since Pr1 (respectively Pr2) is a

continuous epimorphism, then according to the proposition (3.3) Pr1 o T (respectively Pr2 o T ) is continuous. Consequently,

T = (Pr1 + Pr2) o T = Pr1 o T + Pr2 o T is continuous.

Theorem 3.11. Let T is a homomorphism of a complete p-normed algebra A on a complete p-normed algebra B. If B is

∗-semi-simple and if T is surjective (or dense range), then T is continuous.

Proof. Let M∗-maximal ideal of B and Q : B → B/M the canonical surjection. Since Q is continuous, it results that Q o T

is a dense range. In addition, B/M is a ∗-simple complete p-normed ∗-algebra. By Theorem (3.1), Q o T is continuous. As

a result that, σ(Q o T ) = {0}. Since (Q o T ) = Q(σ(Y )) [3], we deduce that σ(Q(T )) = {0}. Hence, σ(T ) ⊂ M . As M is

arbitrary, then σ(T ) ⊂ ∩M . However ∩M = Rad∗(B) = {0}, where σ(T ) = {0}. Consequently, T is continuous.

Corollary 3.12. Let (A, ‖.‖p) an complete p-normed ∗ semi-simple algebra. Then, we have

(i) All the complete complete p-normed on A are equivalent.

(ii) The involution ∗ is automatically continuous.

Proof.

(i) It is enough to apply the previous theorem to the Identity of A.

(ii) That is to say q the linear application of A in IR+ defined by q(x) = ‖x∗‖p (x ∈ A). We checks easily that Q is a

complete p-normed on A. And according i), Q is equivalent to ‖.‖p.
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