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1. Introduction

The subject of ideals in topological spaces has been introduced and studied by Kuratowski [4] and Vaidyanathasamy [5]. An
ideal Z on a topological space (X, 7) is a nonempty collection of subsets of X which satisfies (i) A € Z and B C A implies
B e€Zand (ii) A € T and B € T implies A U B € Z. Given a topological space (X, 7) with an ideal Z on X and if P(X) is
the set of all subsets of X, a set operator (.)*: P(X) — P(X), called the local function [5] of A with respect to 7 and Z, is
defined as follows: For A C X, A*(1,7) = {x € X|U N A ¢ T for every open neighbourhood U of z}. A Kuratowski closure
operator C1*(.) for a topology 7*(7,Z) called the %-topology, finer than 7 is defined by Cl*(A) = A U A*(7,Z) where there
is no chance of confusion, A*(Z) is denoted by A*. If Z is an ideal on X, then (X, 7,Z) is called an ideal topological space.

In this paper, ¢-Z-open sets are used to define some weak separation axioms and to study some of their basic properties.

2. Preliminaries

For a subset A of a topological space (X, 7), we denote the closure of A and the interior of A by C1(A) and Int(A), respectively.
A subset S of an ideal topological space (X, 7,Z) is quasi Z-open [1] if S C Cl(Int(S*)). The complement of a g-Z-open set
is called a g-Z-closed set [1]. The intersection of all g-Z-closed sets containing S is called the ¢g-Z-closure of S and is denoted
by ¢Z C1(S). The g-Z-Interior of S is defined by the union of all g-Z-open sets contained in S and is denoted by ¢Z Int(S).
The set of all g-Z-open sets of (X, 7,Z) is denoted by QZO(X). The set of all g-Z-open sets of (X, 7,Z) containing a point
x € X is denoted by QZO(X, x).
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Definition 2.1. A function f: (X,7,Z) — (Y,0,7) is said to be q-Z-continuous [1] (resp. q-Z-irresolute [1]) if the inverse

image of every open (resp. q-J-open) set in'Y is q-Z-open in X.

Definition 2.2. An ideal topological space (X,7,T) is said to be q-Z-regular if for each closed set F' of X and each point

x € X\F, there exist disjoint q-Z-open sets U and V such that F C U and x € V.

3. ¢-I-Ty Spaces

Definition 3.1. An ideal topological space (X, 7,T) is q-Z-To if for any distinct pair of points in X, there is a q-I-open set

containing one of the points but not the other.

Theorem 3.1. An ideal topological space (X,7,Z) is q-Z-Tp if and only if for each pair of distinct points x, y of X,
qZ Cl({z}) # ¢Z Cl({y}).

Proof. Let (X,7,Z) be a ¢-Z-T, space and z, y be any two distinct points of X. There exists a g-Z-open set G containing
x or y, say, z but not y. Then X\G is a ¢-Z-closed set which does not contain = but contains y. Since € ¢Z C1({y}) is the
smallest g-Z-closed set containing y, ¢Z Cl({y}) C X\G, and so z ¢ ¢Z Cl({y}). Consequently, ¢Z C1({z}) # ¢Z C1({y}).
Conversely, let z, y € X, z # y and ¢Z Cl({z}) # ¢Z Cl({y}). Then there exists a point z € X such that z belongs to one of
the two sets, say, ¢Z C1({z}) but not to ¢Z Cl({y}). If we suppose that z € ¢Z Cl({y}), then z € ¢Z Cl({z}) C ¢Z C1({y}),
which is a contradiction. So z € X\¢Z Cl({y}), where X\¢Z C1({y}) is a ¢g-Z-open set and does not contain y. This shows
that (X, 7,7) is ¢-Z-Tp. O

Definition 3.2 ([2]). Let A and Xo be subsets of an ideal topological space (X, T,T) such that A C Xo C X. Then

(Xo, ' Liy,) is an ideal topological space with an ideal I, = {I € Z|I C Xo} ={INXo|l € T}

Tixq

Lemma 3.1. [[1]] Let A and Xo be subsets of an ideal topological space (X,7,Z). If A € QZO(X) and Xo is open in
(X,7,), then AN Xo € QTO(Xo).

Theorem 3.2. Every open subspace of a q-Z-Ty space is q-Z-Tp.

Proof. Let Y be an open subspace of a ¢-Z-Ty space (X, 7,Z) and z, y be two distinct points of Y. Then there exists a
g-Z-open set A in X containing x or y, say,  but not y. Now by Lemma 3.1, A N'Y is a g-Z-open set in Y containing x but

not y. Hence (Y, 7,7}, ) is ¢-Z;, -To. O

Definition 3.3. A function f: (X,7,Z) — (Y,0) is said to be point q-Z-closure one-to-one if and only if x, y € X such
that qZ Cl({z}) # qZ Cl({y}), then ¢Z C1({f(z)}) # aZ CI({f(y)})-

Theorem 3.3. If f: (X,7,Z) — (Y, 0) is point-qg-Z-closure one-to-one and (X, 7,Z) is g-Z-To, then f is one-to-one.

Proof. Let z and y be any two distinct points of X. Since (X, 7,Z) is ¢-Z-To, ¢Z Cl({z}) # ¢Z Cl({y}) by Theorem
3.1. But f is point-g-Z-closure one-to-one implies that ¢Z C1({f(z)}) # ¢Z Cl({f(y)}). Hence f(z) # f(y). Thus, f is

one-to-one. O
Theorem 3.4. Let f: (X,7,Z) — (Y,0) be a function from q-Z-Ty space (X, 7,T) into a topological space (Y,c). Then f
is point-q-Z-closure one-to-one if and only if f is one-to-one.
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Proof. The proof follows from Theorem 3.3. O
Theorem 3.5. Let f: (X,7,Z) — (Y,0,Z) be an injective g-L-irresolute function. If Y is q-IZ-Ty, then (X, 7,Z) is ¢-Z-Tp.

Proof. Let z, y € X with z # y. Since f is injective and Y is ¢-Z-Tp, there exists a g-Z-open set V, in Y such that
f(z) € V; and f(y) ¢ V, or there exists a g-Z-open set V, in Y such that f(y) € V, and f(z) ¢ V, with f(z) # f(y). By
g-Z-irresoluteness of f, f~*(V,) is ¢-Z-open set in (X, 7,T) such that z € f~*(Vy) and y ¢ f~* (Vi) or f~(V,) is g-Z-open
set in (X,7,7) such that y € f71(V,) and = ¢ f~*(V4). This shows that (X, 7,Z) is ¢-Z-Tp. O

4. ¢-Z-T Spaces

Definition 4.1. An ideal topological space (X, 7,7T) is ¢-Z-T1 if to each pair of distinct points x, y of X, there exists a pair

of q-Z-open sets, one containing x but not y and the other containing y but not x.

Theorem 4.1. For an ideal topological space (X, 7,T), each of the following statements are equivalent:
(1) (X,7,7) is ¢-Z-T1;

(2) Each one point set is g-L-closed in X ;

(3) Each subset of X is the intersection of all g-I-open sets containing it;

(4) The intersection of all ¢-I-open sets containing the point x € X is the set {z}.

Proof. (1)=(2): Let = € X. Then by (1), for any y € X, y # =, there exists a g-Z-open set V,, containing y but not x.
Hence y € V,, C X\{z}. Now varying y over X\{z} we get X\{z} = U {V,: y € X\{z}}. So X\{z} being a union of
g-Z-open set. Accordingly {z} is ¢-Z-closed.

(2)=(1): Let 2, y € X and = # y. Then by (2), {z} and {y} are g-Z-closed sets. Hence X\{z} is a ¢g-Z-open set containing
y but not  and X\{y} is a ¢-Z-open set containing x but not y. Therefore, (X, 7,7) is ¢-Z-T}.

(2)=(3): If A C X, then for each point y ¢ A, there exists a set X \{y} such that A C X\{y} and each of these sets X\{y}
is g-Z-open. Hence A = N { X\{y}: y € X\ A} so that the intersection of all g-Z-open sets containing A is the set A itself.
(3)=(4): Obvious.

(4)=(1): Let =, y € X and = # y. Hence there exists a ¢g-Z-open set U, such that z € U, and y ¢ U,. Similarly, there

exists a g-Z-open set Uy such that y € U, and = ¢ U,. Hence (X, 7,Z) is ¢-Z-T1. O
Theorem 4.2. FEvery open subspace of a q-Z-T1 space is q-Z-T1.

Proof. Let A be an open subspace of a ¢-Z-T; space (X, 7,Z). Let z € A. Since (X, 7,Z) is ¢-Z-T1, X\{z} is ¢-Z-open in
(X,7,7). Now, A being open, AN (X\{x}) = A\{z} is ¢-Z-open in A by Lemma 3.1. Consequently, {z} is ¢-Z-closed in A.
Hence by Theorem 4.1, A is ¢-Z-T1. O

Theorem 4.3. Let X be a Ty space and f: (X,7) — (Y,0,Z) a g-I-closed surjective function. Then (Y,0,T) is q-Z-T1.

Proof. Suppose y € Y. Since f is surjective, there exists a point € X such that y = f(z). Since X is T1, {z} is closed
in X. Again by hypothesis, f({z}) = {y} is ¢-Z-closed in Y. Hence by Theorem 4.1, Y is ¢-Z-T1. O
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Definition 4.2. A point x € X is said to be a g-Z-limit point of A if and only if for each V € QZO(X), U N (A \ {z}) #
@ and the set of all g-Z-limit points of A is called the q-Z-derived set of A and is denoted by q-Zd(A).

Theorem 4.4. If (X, 7,Z) is q¢-Z-Th and x € q-Zd(A) for some A C X, then every g-Z-neighbourhood of = contains infinitely

many points of A.

Proof. Suppose U is a ¢g-Z-neighbourhood of x such that U N A is finite. Let U N A = {z1, x2,...2,} = B. Clearly B is
a g-Z-closed set. Hence V = (U N A)\(B\{z}) is a ¢-Z-neighbourhood of point  and V N (A\{z}) = @, which implies that

z € ¢-Zd(A), which contradicts our assumption. Therefore, the given statement in the theorem is true. O
Theorem 4.5. In a ¢-Z-T1 space (X, 7,Z), q-Zd(A) is q-Z-closed for any subset A of X.
Proof.  As the proof of the theorem is easy, it is omitted. O

Theorem 4.6. Let f: (X,7,Z) — (Y,0,Z) be an injective and q-Z-irresolute function. If (Y,0,Z) is ¢-Z-T1, then (X, 7,7)
is q-Z-T1.

Proof.  Proof is similar to Theorem 3.5 O

Definition 4.3. An ideal topological space (X, T,T) is said to be ¢-IZ-Ro [3] if and only if for every q-I-open sets contains

the q-Z-closure of each of its singletons.
Theorem 4.7. An ideal topological space (X, 7,Z) is ¢-Z-T1 if and only if it is ¢-Z-To and q-Z-Ro.

Proof. Let (X,7,7) be a ¢-Z-T) space. Then by definition and as every ¢-Z-T} space is ¢-Z-Ry, it is clear that (X, 7,7)
is ¢-Z-To and ¢-Z-Ry space. Conversely, suppose that (X, 7,Z) is both ¢-Z-To and ¢-Z-Ro. Now, we show that (X,7,7) is
g-Z-T space. Let x, y € X be any pair of distinct points. Since (X, 7,T) is ¢-Z-Tp, there exists a g-Z-open set G such that
z € G and y ¢ G or there exists a ¢g-Z-open set H such that y € H and ¢ ¢ H. Suppose v € Gand y ¢ G. Asz € G
implies the ¢ZCl({z}) C G. Asy ¢ G, y ¢ ¢ZCl({z}). Hence y € H = X\qZ Cl({z}) and it is clear that © ¢ H. Hence,
it follows that there exist g-Z-open sets G and H containing x and y respectively such that y ¢ G and = ¢ H. This implies
that (X, 7,7) is ¢-Z-T1. O

5. ¢-Z-T5 Spaces

Definition 5.1. An ideal topological space (X, T,T) is said to be ¢-I-T> space if for each pair of distinct points x, y of X,

there exists a pair of disjoint q-L-open sets, one containing x and the other containing y.
Theorem 5.1. For an ideal topological space (X, T,ZT), the following statements are equivalent:
(1) (X,7,7) is qg-Z-T>;

(2) Let x € X. For each y # x, there exists U € QZO(X,z) and y € ¢Z CL(U).

(8) For each x € X, N{qZ CY(Uy) : U, is a q-I-neighbourhood of z} = {x}.

(4) The diagonal A = {(z,x) : x € X} is ¢-I-closed in X x X.
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Proof. (1)=(2): Let z € X and y # z. Then there exist disjoint g-Z-open sets U and V such that z € U and y € V.
Clearly, X\V is ¢-Z-closed, ¢Z C1(U) C X\V and therefore y ¢ ¢Z CI(U).

(2)=(3): If y # =, then there exists U € QZO(X,z) and y ¢ ¢Z Cl(U). Soy ¢ N{¢ZCI(U) : U € QIO(X,x)}.

(3)=(4): We prove that X\A is ¢-Z-open. Let (z,y) ¢ A. Then y # = and since N{¢Z C1(U) : U € QZO(X,z)} = {«},
there is some U € QZO(X,z) and y ¢ ¢Z Cl(U). Since U N X\¢Z Cl(U) = 0, U x (X\¢Z CI(U)) is g-Z-open set such that
(z,y) € U x (X\gZCI(U)) C X\A.

(4)=(5): If y # x, then (z,y) ¢ A and thus there exist U,V € QZO(X) such that (z,y) € U x V and (U x V)N A = .
Clearly, for the g-Z-open sets U and V we have x e U,y € V and UNV = . O

Corollary 5.1. An ideal toological space is (X,7,Z) q-Z-T> if and only if each singleton subsets of X is q-Z-closed.
Corollary 5.2. An ideal toological space (X, 7,T) is ¢-Z-T% if and only if two distinct points of X have disjoint q-Z-closure.
Theorem 5.2. Fvery q-Z-regular Ty-space is q-Z-15.

Proof. Let (X,7,Z) be a ¢g-Z-regular T space and z, y € X such that z # y. Since X is To, there exists an open set V
containing one of the points, say, x but not y. Then y € X\V, X\V is closed and x ¢ X\V. By ¢-Z-regularity of X, there
exist g-Z-open sets G and H such that z € G, y € X\V C H and G N H = @. Hence (X, 7,7) is ¢-Z-T>. O

Theorem 5.3. FEvery open subspace of a q-Z-T> space is q-Z-T5.
Proof. Proof is similar to Theorem 4.2 O
Theorem 5.4. If f: (X,7,Z) — (Y, 0) is injective, open and q-Z-continuous and Y is To, then (X, 1,Z) is ¢-Z-T>.

Proof. Since f is injective, f(z) # f(y) for each z, y € X and = # y. Now Y being T%, there exist open sets GG, H in
Y such that f(z) € G, f(y) € Hand GNH = @. Let U = f~'(G) and V = f~'(H). Then by hypothesis, U and V are
g-Z-openin X. Alsox € f~HG)=U,yc fFYH)=Vand UNV = f~HG) N f~'(H) = 2. Hence (X,7,T) is ¢-Z-To. O

Definition 5.2. A function f : (X,7,7) — (Y,0,J) is called strongly q-I-open if the image of every q-I-open subset of
(X,7,Z) is ¢-TJ-oen in (Y,0,7).
Theorem 5.5. Let (X,7,Z) be an ideal topological space, R an equivalence relation in X and p : (X,7,Z7) — X|R the

identification function. If R C (X x X) and p is a strongly q-Z-open function, then X|R is q-Z-T»

Proof. Let p(xz) and p(y) be the distinct members of X|R. Since x and y are not related, R C (X x X) is g-Z-closed in
X x X. There are g-Z-open sets U and V such that € U and y € V and U x V C X\R. Thus p(U) and p(V) are disjoint

g-Z-open sets in X|R since p is strongly g-Z-open. O
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