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1. Introduction

The subject of ideals in topological spaces has been introduced and studied by Kuratowski [4] and Vaidyanathasamy [5]. An

ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) A ∈ I and B ⊂ A implies

B ∈ I and (ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ) with an ideal I on X and if P(X) is

the set of all subsets of X, a set operator (.)?: P(X) → P(X), called the local function [5] of A with respect to τ and I, is

defined as follows: For A ⊂ X, A?(τ, I) = {x ∈ X|U ∩A /∈ I for every open neighbourhood U of x}. A Kuratowski closure

operator Cl?(.) for a topology τ?(τ, I) called the ?-topology, finer than τ is defined by Cl?(A) = A ∪ A?(τ, I) where there

is no chance of confusion, A?(I) is denoted by A?. If I is an ideal on X, then (X, τ, I) is called an ideal topological space.

In this paper, q-I-open sets are used to define some weak separation axioms and to study some of their basic properties.

2. Preliminaries

For a subset A of a topological space (X, τ), we denote the closure of A and the interior of A by Cl(A) and Int(A), respectively.

A subset S of an ideal topological space (X, τ, I) is quasi I-open [1] if S ⊂ Cl(Int(S∗)). The complement of a q-I-open set

is called a q-I-closed set [1]. The intersection of all q-I-closed sets containing S is called the q-I-closure of S and is denoted

by qI Cl(S). The q-I-Interior of S is defined by the union of all q-I-open sets contained in S and is denoted by qI Int(S).

The set of all q-I-open sets of (X, τ, I) is denoted by QIO(X). The set of all q-I-open sets of (X, τ, I) containing a point

x ∈ X is denoted by QIO(X,x).
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Definition 2.1. A function f: (X, τ, I) → (Y, σ,J ) is said to be q-I-continuous [1] (resp. q-I-irresolute [1]) if the inverse

image of every open (resp. q–J -open) set in Y is q-I-open in X.

Definition 2.2. An ideal topological space (X, τ, I) is said to be q-I-regular if for each closed set F of X and each point

x ∈ X\F , there exist disjoint q-I-open sets U and V such that F ⊂ U and x ∈ V .

3. q-I-T0 Spaces

Definition 3.1. An ideal topological space (X, τ, I) is q-I-T0 if for any distinct pair of points in X, there is a q-I-open set

containing one of the points but not the other.

Theorem 3.1. An ideal topological space (X, τ, I) is q-I-T0 if and only if for each pair of distinct points x, y of X,

qI Cl({x}) 6= qI Cl({y}).

Proof. Let (X, τ, I) be a q-I-T0 space and x, y be any two distinct points of X. There exists a q-I-open set G containing

x or y, say, x but not y. Then X\G is a q-I-closed set which does not contain x but contains y. Since ∈ qI Cl({y}) is the

smallest q-I-closed set containing y, qI Cl({y}) ⊂ X\G, and so x /∈ qI Cl({y}). Consequently, qI Cl({x}) 6= qI Cl({y}).

Conversely, let x, y ∈ X, x 6= y and qI Cl({x}) 6= qI Cl({y}). Then there exists a point z ∈ X such that z belongs to one of

the two sets, say, qI Cl({x}) but not to qI Cl({y}). If we suppose that x ∈ qI Cl({y}), then z ∈ qI Cl({x}) ⊂ qI Cl({y}),

which is a contradiction. So x ∈ X\qI Cl({y}), where X\qI Cl({y}) is a q-I-open set and does not contain y. This shows

that (X, τ, I) is q-I-T0.

Definition 3.2 ([2]). Let A and X0 be subsets of an ideal topological space (X, τ, I) such that A ⊂ X0 ⊂ X. Then

(X0, τ|X0
, I|X0

) is an ideal topological space with an ideal I|X0
= {I ∈ I|I ⊂ X0} = {I ∩X0|I ∈ I}.

Lemma 3.1. [[1]] Let A and X0 be subsets of an ideal topological space (X, τ, I). If A ∈ QIO(X) and X0 is open in

(X, τ, I), then A ∩ X0 ∈ QIO(X0).

Theorem 3.2. Every open subspace of a q-I-T0 space is q-I-T0.

Proof. Let Y be an open subspace of a q-I-T0 space (X, τ, I) and x, y be two distinct points of Y . Then there exists a

q-I-open set A in X containing x or y, say, x but not y. Now by Lemma 3.1, A ∩ Y is a q-I-open set in Y containing x but

not y. Hence (Y, τ|Y , I|Y ) is q–I|Y -T0.

Definition 3.3. A function f : (X, τ, I) → (Y, σ) is said to be point q-I-closure one-to-one if and only if x, y ∈ X such

that qI Cl({x}) 6= qI Cl({y}), then qI Cl({f(x)}) 6= qI Cl({f(y)}).

Theorem 3.3. If f : (X, τ, I) → (Y, σ) is point-q-I-closure one-to-one and (X, τ, I) is q-I-T0, then f is one-to-one.

Proof. Let x and y be any two distinct points of X. Since (X, τ, I) is q-I-T0, qI Cl({x}) 6= qI Cl({y}) by Theorem

3.1. But f is point-q-I-closure one-to-one implies that qI Cl({f(x)}) 6= qI Cl({f(y)}). Hence f(x) 6= f(y). Thus, f is

one-to-one.

Theorem 3.4. Let f : (X, τ, I) → (Y, σ) be a function from q-I-T0 space (X, τ, I) into a topological space (Y, σ). Then f

is point-q-I-closure one-to-one if and only if f is one-to-one.

156



P.Kalaiselvi and N.Rajesh

Proof. The proof follows from Theorem 3.3.

Theorem 3.5. Let f : (X, τ, I) → (Y, σ, I) be an injective q-I-irresolute function. If Y is q-I-T0, then (X, τ, I) is q-I-T0.

Proof. Let x, y ∈ X with x 6= y. Since f is injective and Y is q-I-T0, there exists a q-I-open set Vx in Y such that

f(x) ∈ Vx and f(y) /∈ Vx or there exists a q-I-open set Vy in Y such that f(y) ∈ Vy and f(x) /∈ Vy with f(x) 6= f(y). By

q-I-irresoluteness of f , f−1(Vx) is q-I-open set in (X, τ, I) such that x ∈ f−1(Vx) and y /∈ f−1(Vx) or f−1(Vy) is q-I-open

set in (X, τ, I) such that y ∈ f−1(Vy) and x /∈ f−1(Vy). This shows that (X, τ, I) is q-I-T0.

4. q-I-T1 Spaces

Definition 4.1. An ideal topological space (X, τ, I) is q-I-T1 if to each pair of distinct points x, y of X, there exists a pair

of q-I-open sets, one containing x but not y and the other containing y but not x.

Theorem 4.1. For an ideal topological space (X, τ, I), each of the following statements are equivalent:

(1) (X, τ, I) is q-I-T1;

(2) Each one point set is q-I-closed in X;

(3) Each subset of X is the intersection of all q-I-open sets containing it;

(4) The intersection of all q-I-open sets containing the point x ∈ X is the set {x}.

Proof. (1)⇒(2): Let x ∈ X. Then by (1), for any y ∈ X, y 6= x, there exists a q-I-open set Vy containing y but not x.

Hence y ∈ Vy ⊂ X\{x}. Now varying y over X\{x} we get X\{x} = ∪ {Vy: y ∈ X\{x}}. So X\{x} being a union of

q-I-open set. Accordingly {x} is q-I-closed.

(2)⇒(1): Let x, y ∈ X and x 6= y. Then by (2), {x} and {y} are q-I-closed sets. Hence X\{x} is a q-I-open set containing

y but not x and X\{y} is a q-I-open set containing x but not y. Therefore, (X, τ, I) is q-I-T1.

(2)⇒(3): If A ⊂ X, then for each point y /∈ A, there exists a set X\{y} such that A ⊂ X\{y} and each of these sets X\{y}

is q-I-open. Hence A = ∩ { X\{y}: y ∈ X\A} so that the intersection of all q-I-open sets containing A is the set A itself.

(3)⇒(4): Obvious.

(4)⇒(1): Let x, y ∈ X and x 6= y. Hence there exists a q-I-open set Ux such that x ∈ Ux and y /∈ Ux. Similarly, there

exists a q-I-open set Uy such that y ∈ Uy and x /∈ Uy. Hence (X, τ, I) is q-I-T1.

Theorem 4.2. Every open subspace of a q-I-T1 space is q-I-T1.

Proof. Let A be an open subspace of a q-I-T1 space (X, τ, I). Let x ∈ A. Since (X, τ, I) is q-I-T1, X\{x} is q-I-open in

(X, τ, I). Now, A being open, A ∩ (X\{x}) = A\{x} is q-I-open in A by Lemma 3.1. Consequently, {x} is q-I-closed in A.

Hence by Theorem 4.1, A is q-I-T1.

Theorem 4.3. Let X be a T1 space and f : (X, τ) → (Y, σ, I) a q-I-closed surjective function. Then (Y, σ, I) is q-I-T1.

Proof. Suppose y ∈ Y . Since f is surjective, there exists a point x ∈ X such that y = f(x). Since X is T1, {x} is closed

in X. Again by hypothesis, f({x}) = {y} is q-I-closed in Y . Hence by Theorem 4.1, Y is q-I-T1.
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Definition 4.2. A point x ∈ X is said to be a q-I-limit point of A if and only if for each V ∈ QIO(X), U ∩ (A \ {x}) 6=

∅ and the set of all q-I-limit points of A is called the q-I-derived set of A and is denoted by q-Id(A).

Theorem 4.4. If (X, τ, I) is q-I-T1 and x ∈ q-Id(A) for some A ⊂ X, then every q-I-neighbourhood of x contains infinitely

many points of A.

Proof. Suppose U is a q-I-neighbourhood of x such that U ∩ A is finite. Let U ∩ A = {x1, x2,. . .xn} = B. Clearly B is

a q-I-closed set. Hence V = (U ∩A)\(B\{x}) is a q-I-neighbourhood of point x and V ∩ (A\{x}) = ∅, which implies that

x ∈ q-Id(A), which contradicts our assumption. Therefore, the given statement in the theorem is true.

Theorem 4.5. In a q-I-T1 space (X, τ, I), q-Id(A) is q-I-closed for any subset A of X.

Proof. As the proof of the theorem is easy, it is omitted.

Theorem 4.6. Let f : (X, τ, I) → (Y, σ, I) be an injective and q-I-irresolute function. If (Y, σ, I) is q-I-T1, then (X, τ, I)

is q-I-T1.

Proof. Proof is similar to Theorem 3.5

Definition 4.3. An ideal topological space (X, τ, I) is said to be q-I-R0 [3] if and only if for every q-I-open sets contains

the q-I-closure of each of its singletons.

Theorem 4.7. An ideal topological space (X, τ, I) is q-I-T1 if and only if it is q-I-T0 and q-I-R0.

Proof. Let (X, τ, I) be a q-I-T1 space. Then by definition and as every q-I-T1 space is q-I-R0, it is clear that (X, τ, I)

is q-I-T0 and q-I-R0 space. Conversely, suppose that (X, τ, I) is both q-I-T0 and q-I-R0. Now, we show that (X, τ, I) is

q-I-T1 space. Let x, y ∈ X be any pair of distinct points. Since (X, τ, I) is q-I-T0, there exists a q-I-open set G such that

x ∈ G and y /∈ G or there exists a q-I-open set H such that y ∈ H and x /∈ H. Suppose x ∈ G and y /∈ G. As x ∈ G

implies the qI Cl({x}) ⊂ G. As y /∈ G, y /∈ qI Cl({x}). Hence y ∈ H = X\qI Cl({x}) and it is clear that x /∈ H. Hence,

it follows that there exist q-I-open sets G and H containing x and y respectively such that y /∈ G and x /∈ H. This implies

that (X, τ, I) is q-I-T1.

5. q-I-T2 Spaces

Definition 5.1. An ideal topological space (X, τ, I) is said to be q-I-T2 space if for each pair of distinct points x, y of X,

there exists a pair of disjoint q-I-open sets, one containing x and the other containing y.

Theorem 5.1. For an ideal topological space (X, τ, I), the following statements are equivalent:

(1) (X, τ, I) is q-I-T2;

(2) Let x ∈ X. For each y 6= x, there exists U ∈ QIO(X,x) and y ∈ qI Cl(U).

(3) For each x ∈ X, ∩{qI Cl(Ux) : Ux is a q-I-neighbourhood of x} = {x}.

(4) The diagonal 4 = {(x, x) : x ∈ X} is q-I-closed in X × X.
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Proof. (1)⇒(2): Let x ∈ X and y 6= x. Then there exist disjoint q-I-open sets U and V such that x ∈ U and y ∈ V .

Clearly, X\V is q-I-closed, qI Cl(U) ⊂ X\V and therefore y /∈ qI Cl(U).

(2)⇒(3): If y 6= x, then there exists U ∈ QIO(X,x) and y /∈ qI Cl(U). So y /∈ ∩{qI Cl(U) : U ∈ QIO(X,x)}.

(3)⇒(4): We prove that X\4 is q-I-open. Let (x, y) /∈ 4. Then y 6= x and since ∩{qI Cl(U) : U ∈ QIO(X,x)} = {x},

there is some U ∈ QIO(X,x) and y /∈ qI Cl(U). Since U ∩X\qI Cl(U) = ∅, U × (X\qI Cl(U)) is q-I-open set such that

(x, y) ∈ U × (X\qI Cl(U)) ⊂ X\4.

(4)⇒(5): If y 6= x, then (x, y) /∈ 4 and thus there exist U, V ∈ QIO(X) such that (x, y) ∈ U × V and (U × V ) ∩ 4 = ∅.

Clearly, for the q-I-open sets U and V we have x ∈ U , y ∈ V and U ∩ V = ∅.

Corollary 5.1. An ideal toological space is (X, τ, I) q-I-T2 if and only if each singleton subsets of X is q-I-closed.

Corollary 5.2. An ideal toological space (X, τ, I) is q-I-T2 if and only if two distinct points of X have disjoint q-I-closure.

Theorem 5.2. Every q-I-regular T0-space is q-I-T2.

Proof. Let (X, τ, I) be a q-I-regular T0 space and x, y ∈ X such that x 6= y. Since X is T0, there exists an open set V

containing one of the points, say, x but not y. Then y ∈ X\V , X\V is closed and x /∈ X\V . By q-I-regularity of X, there

exist q-I-open sets G and H such that x ∈ G, y ∈ X\V ⊂ H and G ∩ H = ∅. Hence (X, τ, I) is q-I-T2.

Theorem 5.3. Every open subspace of a q-I-T2 space is q-I-T2.

Proof. Proof is similar to Theorem 4.2

Theorem 5.4. If f : (X, τ, I) → (Y, σ) is injective, open and q-I-continuous and Y is T2, then (X, τ, I) is q-I-T2.

Proof. Since f is injective, f(x) 6= f(y) for each x, y ∈ X and x 6= y. Now Y being T2, there exist open sets G, H in

Y such that f(x) ∈ G, f(y) ∈ H and G ∩H = ∅. Let U = f−1(G) and V = f−1(H). Then by hypothesis, U and V are

q-I-open in X. Also x ∈ f−1(G) = U , y ∈ f−1(H) = V and U ∩ V = f−1(G) ∩ f−1(H) = ∅. Hence (X, τ, I) is q-I-T2.

Definition 5.2. A function f : (X, τ, I) → (Y, σ,J ) is called strongly q-I-open if the image of every q-I-open subset of

(X, τ, I) is q–J -oen in (Y, σ,J ).

Theorem 5.5. Let (X, τ, I) be an ideal topological space, R an equivalence relation in X and p : (X, τ, I) → X|R the

identification function. If R ⊂ (X ×X) and p is a strongly q-I-open function, then X|R is q-I-T2

Proof. Let p(x) and p(y) be the distinct members of X|R. Since x and y are not related, R ⊂ (X ×X) is q-I-closed in

X ×X. There are q-I-open sets U and V such that x ∈ U and y ∈ V and U × V ⊂ X\R. Thus p(U) and p(V ) are disjoint

q-I-open sets in X|R since p is strongly q-I-open.
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