

International Journal of Mathematics And its Applications

Separation Axioms via q- \mathcal{I} -open Sets

Research Article

P.Kalaiselvi¹ and N.Rajesh²*

1 Department of Mathematics, Bharathidasan University College, Orathanadu, Thanjavur, TamilNadu, India.

2 Department of Mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India.

Abstract: In this paper, q-I-open sets are used to define and study some weak separation axioms in ideal topological spaces.MSC: 54D10.

Keywords: Ideal topological spaces, q- \mathcal{I} - T_0 spaces, q- \mathcal{I} - T_1 spaces, q- \mathcal{I} - T_2 spaces. © JS Publication.

1. Introduction

The subject of ideals in topological spaces has been introduced and studied by Kuratowski [4] and Vaidyanathasamy [5]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(.)^* \colon \mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [5] of A with respect to τ and \mathcal{I} , is defined as follows: For $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every open neighbourhood } U \text{ of } x\}$. A Kuratowski closure operator $\operatorname{Cl}^*(.)$ for a topology $\tau^*(\tau, \mathcal{I})$ called the *-topology, finer than τ is defined by $\operatorname{Cl}^*(A) = A \cup A^*(\tau, \mathcal{I})$ where there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. In this paper, q- \mathcal{I} -open sets are used to define some weak separation axioms and to study some of their basic properties.

2. Preliminaries

For a subset A of a topological space (X, τ) , we denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. A subset S of an ideal topological space (X, τ, \mathcal{I}) is quasi \mathcal{I} -open [1] if $S \subset \text{Cl}(\text{Int}(S^*))$. The complement of a q- \mathcal{I} -open set is called a q- \mathcal{I} -closed set [1]. The intersection of all q- \mathcal{I} -closed sets containing S is called the q- \mathcal{I} -closure of S and is denoted by $q\mathcal{I}$ Cl(S). The q- \mathcal{I} -Interior of S is defined by the union of all q- \mathcal{I} -open sets contained in S and is denoted by $q\mathcal{I}$ Int(S). The set of all q- \mathcal{I} -open sets of (X, τ, \mathcal{I}) is denoted by $Q\mathcal{I}O(X)$. The set of all q- \mathcal{I} -open sets of (X, τ, \mathcal{I}) containing a point $x \in X$ is denoted by $Q\mathcal{I}O(X, x)$.

E-mail: nrajesh_topology@yahoo.co.in

Definition 2.1. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is said to be q- \mathcal{I} -continuous [1] (resp. q- \mathcal{I} -irresolute [1]) if the inverse image of every open (resp. q- \mathcal{J} -open) set in Y is q- \mathcal{I} -open in X.

Definition 2.2. An ideal topological space (X, τ, \mathcal{I}) is said to be q- \mathcal{I} -regular if for each closed set F of X and each point $x \in X \setminus F$, there exist disjoint q- \mathcal{I} -open sets U and V such that $F \subset U$ and $x \in V$.

3. q- \mathcal{I} - T_0 Spaces

Definition 3.1. An ideal topological space (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 if for any distinct pair of points in X, there is a q- \mathcal{I} -open set containing one of the points but not the other.

Theorem 3.1. An ideal topological space (X, τ, \mathcal{I}) is $q-\mathcal{I}-T_0$ if and only if for each pair of distinct points x, y of X, $q\mathcal{I}\operatorname{Cl}(\{x\}) \neq q\mathcal{I}\operatorname{Cl}(\{y\}).$

Proof. Let (X, τ, \mathcal{I}) be a q- \mathcal{I} - T_0 space and x, y be any two distinct points of X. There exists a q- \mathcal{I} -open set G containing x or y, say, x but not y. Then $X \setminus G$ is a q- \mathcal{I} -closed set which does not contain x but contains y. Since $\in q\mathcal{I} \operatorname{Cl}(\{y\})$ is the smallest q- \mathcal{I} -closed set containing $y, q\mathcal{I} \operatorname{Cl}(\{y\}) \subset X \setminus G$, and so $x \notin q\mathcal{I} \operatorname{Cl}(\{y\})$. Consequently, $q\mathcal{I} \operatorname{Cl}(\{x\}) \neq q\mathcal{I} \operatorname{Cl}(\{y\})$. Conversely, let $x, y \in X, x \neq y$ and $q\mathcal{I} \operatorname{Cl}(\{x\}) \neq q\mathcal{I} \operatorname{Cl}(\{y\})$. Then there exists a point $z \in X$ such that z belongs to one of the two sets, say, $q\mathcal{I} \operatorname{Cl}(\{x\})$ but not to $q\mathcal{I} \operatorname{Cl}(\{y\})$. If we suppose that $x \in q\mathcal{I} \operatorname{Cl}(\{y\})$, then $z \in q\mathcal{I} \operatorname{Cl}(\{x\}) \subset q\mathcal{I} \operatorname{Cl}(\{y\})$, which is a contradiction. So $x \in X \setminus q\mathcal{I} \operatorname{Cl}(\{y\})$, where $X \setminus q\mathcal{I} \operatorname{Cl}(\{y\})$ is a q- \mathcal{I} -open set and does not contain y. This shows that (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 .

Definition 3.2 ([2]). Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) such that $A \subset X_0 \subset X$. Then $(X_0, \tau_{|X_0}, \mathcal{I}_{|X_0})$ is an ideal topological space with an ideal $\mathcal{I}_{|X_0} = \{I \in \mathcal{I} | I \subset X_0\} = \{I \cap X_0 | I \in \mathcal{I}\}.$

Lemma 3.1. [[1]] Let A and X_0 be subsets of an ideal topological space (X, τ, \mathcal{I}) . If $A \in Q\mathcal{I}O(X)$ and X_0 is open in (X, τ, \mathcal{I}) , then $A \cap X_0 \in Q\mathcal{I}O(X_0)$.

Theorem 3.2. Every open subspace of a q- \mathcal{I} - T_0 space is q- \mathcal{I} - T_0 .

Proof. Let Y be an open subspace of a q- \mathcal{I} - T_0 space (X, τ, \mathcal{I}) and x, y be two distinct points of Y. Then there exists a q- \mathcal{I} -open set A in X containing x or y, say, x but not y. Now by Lemma 3.1, $A \cap Y$ is a q- \mathcal{I} -open set in Y containing x but not y. Hence $(Y, \tau_{|_Y}, \mathcal{I}_{|_Y})$ is q- $\mathcal{I}_{|_Y}$ - T_0 .

Definition 3.3. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be point q- \mathcal{I} -closure one-to-one if and only if $x, y \in X$ such that $q\mathcal{I}\operatorname{Cl}(\{x\}) \neq q\mathcal{I}\operatorname{Cl}(\{y\})$, then $q\mathcal{I}\operatorname{Cl}(\{f(x)\}) \neq q\mathcal{I}\operatorname{Cl}(\{f(y)\})$.

Theorem 3.3. If $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is point-q- \mathcal{I} -closure one-to-one and (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 , then f is one-to-one.

Proof. Let x and y be any two distinct points of X. Since (X, τ, \mathcal{I}) is $q-\mathcal{I}-T_0$, $q\mathcal{I}\operatorname{Cl}(\{x\}) \neq q\mathcal{I}\operatorname{Cl}(\{y\})$ by Theorem 3.1. But f is point-q- \mathcal{I} -closure one-to-one implies that $q\mathcal{I}\operatorname{Cl}(\{f(x)\}) \neq q\mathcal{I}\operatorname{Cl}(\{f(y)\})$. Hence $f(x) \neq f(y)$. Thus, f is one-to-one.

Theorem 3.4. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ be a function from $q \cdot \mathcal{I} \cdot T_0$ space (X, τ, \mathcal{I}) into a topological space (Y, σ) . Then f is point- $q \cdot \mathcal{I}$ -closure one-to-one if and only if f is one-to-one.

Proof. The proof follows from Theorem 3.3.

Theorem 3.5. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ be an injective q- \mathcal{I} -irresolute function. If Y is q- \mathcal{I} -T₀, then (X, τ, \mathcal{I}) is q- \mathcal{I} -T₀.

Proof. Let $x, y \in X$ with $x \neq y$. Since f is injective and Y is q- \mathcal{I} - T_0 , there exists a q- \mathcal{I} -open set V_x in Y such that $f(x) \in V_x$ and $f(y) \notin V_x$ or there exists a q- \mathcal{I} -open set V_y in Y such that $f(y) \in V_y$ and $f(x) \notin V_y$ with $f(x) \neq f(y)$. By q- \mathcal{I} -irresoluteness of $f, f^{-1}(V_x)$ is q- \mathcal{I} -open set in (X, τ, \mathcal{I}) such that $x \in f^{-1}(V_x)$ and $y \notin f^{-1}(V_x)$ or $f^{-1}(V_y)$ is q- \mathcal{I} -open set in (X, τ, \mathcal{I}) such that $y \in f^{-1}(V_y)$ and $x \notin f^{-1}(V_y)$. This shows that (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 .

4. q- \mathcal{I} - T_1 Spaces

Definition 4.1. An ideal topological space (X, τ, \mathcal{I}) is $q-\mathcal{I}-T_1$ if to each pair of distinct points x, y of X, there exists a pair of $q-\mathcal{I}$ -open sets, one containing x but not y and the other containing y but not x.

Theorem 4.1. For an ideal topological space (X, τ, \mathcal{I}) , each of the following statements are equivalent:

- (1) (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 ;
- (2) Each one point set is q- \mathcal{I} -closed in X;
- (3) Each subset of X is the intersection of all q- \mathcal{I} -open sets containing it;
- (4) The intersection of all q- \mathcal{I} -open sets containing the point $x \in X$ is the set $\{x\}$.

Proof. (1) \Rightarrow (2): Let $x \in X$. Then by (1), for any $y \in X$, $y \neq x$, there exists a q- \mathcal{I} -open set V_y containing y but not x. Hence $y \in V_y \subset X \setminus \{x\}$. Now varying y over $X \setminus \{x\}$ we get $X \setminus \{x\} = \bigcup \{V_y: y \in X \setminus \{x\}\}$. So $X \setminus \{x\}$ being a union of q- \mathcal{I} -open set. Accordingly $\{x\}$ is q- \mathcal{I} -closed.

 $(2) \Rightarrow (1)$: Let $x, y \in X$ and $x \neq y$. Then by $(2), \{x\}$ and $\{y\}$ are q- \mathcal{I} -closed sets. Hence $X \setminus \{x\}$ is a q- \mathcal{I} -open set containing y but not x and $X \setminus \{y\}$ is a q- \mathcal{I} -open set containing x but not y. Therefore, (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 .

 $(2)\Rightarrow(3)$: If $A \subset X$, then for each point $y \notin A$, there exists a set $X \setminus \{y\}$ such that $A \subset X \setminus \{y\}$ and each of these sets $X \setminus \{y\}$ is q- \mathcal{I} -open. Hence $A = \cap \{X \setminus \{y\}: y \in X \setminus A\}$ so that the intersection of all q- \mathcal{I} -open sets containing A is the set A itself. (3) \Rightarrow (4): Obvious.

(4) \Rightarrow (1): Let $x, y \in X$ and $x \neq y$. Hence there exists a q- \mathcal{I} -open set U_x such that $x \in U_x$ and $y \notin U_x$. Similarly, there exists a q- \mathcal{I} -open set U_y such that $y \in U_y$ and $x \notin U_y$. Hence (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 .

Theorem 4.2. Every open subspace of a q- \mathcal{I} - T_1 space is q- \mathcal{I} - T_1 .

Proof. Let A be an open subspace of a q- \mathcal{I} - T_1 space (X, τ, \mathcal{I}) . Let $x \in A$. Since (X, τ, \mathcal{I}) is q- \mathcal{I} - $T_1, X \setminus \{x\}$ is q- \mathcal{I} -open in (X, τ, \mathcal{I}) . Now, A being open, $A \cap (X \setminus \{x\}) = A \setminus \{x\}$ is q- \mathcal{I} -open in A by Lemma 3.1. Consequently, $\{x\}$ is q- \mathcal{I} -closed in A. Hence by Theorem 4.1, A is q- \mathcal{I} - T_1 .

Theorem 4.3. Let X be a T_1 space and $f: (X, \tau) \to (Y, \sigma, \mathcal{I})$ a q- \mathcal{I} -closed surjective function. Then (Y, σ, \mathcal{I}) is q- \mathcal{I} - \mathcal{I}_1 .

Proof. Suppose $y \in Y$. Since f is surjective, there exists a point $x \in X$ such that y = f(x). Since X is T_1 , $\{x\}$ is closed in X. Again by hypothesis, $f(\{x\}) = \{y\}$ is q- \mathcal{I} -closed in Y. Hence by Theorem 4.1, Y is q- \mathcal{I} - T_1 .

157

Definition 4.2. A point $x \in X$ is said to be a q- \mathcal{I} -limit point of A if and only if for each $V \in Q\mathcal{I}O(X)$, $U \cap (A \setminus \{x\}) \neq \emptyset$ and the set of all q- \mathcal{I} -limit points of A is called the q- \mathcal{I} -derived set of A and is denoted by q- $\mathcal{I}d(A)$.

Theorem 4.4. If (X, τ, \mathcal{I}) is $q-\mathcal{I}-T_1$ and $x \in q-\mathcal{I}d(A)$ for some $A \subset X$, then every $q-\mathcal{I}$ -neighbourhood of x contains infinitely many points of A.

Proof. Suppose U is a q- \mathcal{I} -neighbourhood of x such that $U \cap A$ is finite. Let $U \cap A = \{x_1, x_2, \dots, x_n\} = B$. Clearly B is a q- \mathcal{I} -closed set. Hence $V = (U \cap A) \setminus (B \setminus \{x\})$ is a q- \mathcal{I} -neighbourhood of point x and $V \cap (A \setminus \{x\}) = \emptyset$, which implies that $x \in q$ - $\mathcal{I}d(A)$, which contradicts our assumption. Therefore, the given statement in the theorem is true.

Theorem 4.5. In a q- \mathcal{I} - T_1 space (X, τ, \mathcal{I}) , q- $\mathcal{I}d(A)$ is q- \mathcal{I} -closed for any subset A of X.

Proof. As the proof of the theorem is easy, it is omitted.

Theorem 4.6. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{I})$ be an injective and q- \mathcal{I} -irresolute function. If (Y, σ, \mathcal{I}) is q- \mathcal{I} - T_1 , then (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 .

Proof. Proof is similar to Theorem 3.5

Definition 4.3. An ideal topological space (X, τ, \mathcal{I}) is said to be $q-\mathcal{I}-R_0$ [3] if and only if for every $q-\mathcal{I}$ -open sets contains the $q-\mathcal{I}$ -closure of each of its singletons.

Theorem 4.7. An ideal topological space (X, τ, \mathcal{I}) is $q \cdot \mathcal{I} - T_1$ if and only if it is $q - \mathcal{I} - T_0$ and $q - \mathcal{I} - R_0$.

Proof. Let (X, τ, \mathcal{I}) be a q- \mathcal{I} - T_1 space. Then by definition and as every q- \mathcal{I} - T_1 space is q- \mathcal{I} - R_0 , it is clear that (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 and q- \mathcal{I} - R_0 space. Conversely, suppose that (X, τ, \mathcal{I}) is both q- \mathcal{I} - T_0 and q- \mathcal{I} - R_0 . Now, we show that (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 space. Let $x, y \in X$ be any pair of distinct points. Since (X, τ, \mathcal{I}) is q- \mathcal{I} - T_0 , there exists a q- \mathcal{I} -open set G such that $x \in G$ and $y \notin G$ or there exists a q- \mathcal{I} -open set H such that $y \in H$ and $x \notin H$. Suppose $x \in G$ and $y \notin G$. As $x \in G$ implies the $q\mathcal{I}$ Cl($\{x\}$) $\subset G$. As $y \notin G$, $y \notin q\mathcal{I}$ Cl($\{x\}$). Hence $y \in H = X \setminus q\mathcal{I}$ Cl($\{x\}$) and it is clear that $x \notin H$. Hence, it follows that there exist q- \mathcal{I} -open sets G and H containing x and y respectively such that $y \notin G$ and $x \notin H$. This implies that (X, τ, \mathcal{I}) is q- \mathcal{I} - T_1 .

5. q- \mathcal{I} - T_2 Spaces

Definition 5.1. An ideal topological space (X, τ, \mathcal{I}) is said to be q- \mathcal{I} - T_2 space if for each pair of distinct points x, y of X, there exists a pair of disjoint q- \mathcal{I} -open sets, one containing x and the other containing y.

Theorem 5.1. For an ideal topological space (X, τ, \mathcal{I}) , the following statements are equivalent:

(1) (X, τ, \mathcal{I}) is q- \mathcal{I} - T_2 ;

- (2) Let $x \in X$. For each $y \neq x$, there exists $U \in QIO(X, x)$ and $y \in qI \operatorname{Cl}(U)$.
- (3) For each $x \in X$, $\cap \{q\mathcal{I} \operatorname{Cl}(U_x) : U_x \text{ is a } q \cdot \mathcal{I} \text{-neighbourhood of } x\} = \{x\}.$
- (4) The diagonal $\triangle = \{(x, x) : x \in X\}$ is q-*I*-closed in $X \times X$.

Proof. (1) \Rightarrow (2): Let $x \in X$ and $y \neq x$. Then there exist disjoint q- \mathcal{I} -open sets U and V such that $x \in U$ and $y \in V$. Clearly, $X \setminus V$ is q- \mathcal{I} -closed, $q\mathcal{I} \operatorname{Cl}(U) \subset X \setminus V$ and therefore $y \notin q\mathcal{I} \operatorname{Cl}(U)$.

 $(2) \Rightarrow (3): \text{ If } y \neq x, \text{ then there exists } U \in QIO(X, x) \text{ and } y \notin qI \operatorname{Cl}(U). \text{ So } y \notin \cap \{qI \operatorname{Cl}(U) : U \in QIO(X, x)\}.$

 $(3) \Rightarrow (4): \text{ We prove that } X \land \Delta \text{ is } q\text{-}\mathcal{I}\text{-open. Let } (x, y) \notin \Delta. \text{ Then } y \neq x \text{ and since } \cap \{q\mathcal{I}\operatorname{Cl}(U) : U \in Q\mathcal{I}O(X, x)\} = \{x\}, \text{ there is some } U \in Q\mathcal{I}O(X, x) \text{ and } y \notin q\mathcal{I}\operatorname{Cl}(U). \text{ Since } U \cap X \land q\mathcal{I}\operatorname{Cl}(U) = \emptyset, U \times (X \land q\mathcal{I}\operatorname{Cl}(U)) \text{ is } q\text{-}\mathcal{I}\text{-open set such that } (x, y) \in U \times (X \land q\mathcal{I}\operatorname{Cl}(U)) \subset X \land \Delta.$

(4) \Rightarrow (5): If $y \neq x$, then $(x, y) \notin \triangle$ and thus there exist $U, V \in Q\mathcal{I}O(X)$ such that $(x, y) \in U \times V$ and $(U \times V) \cap \triangle = \emptyset$. Clearly, for the q- \mathcal{I} -open sets U and V we have $x \in U, y \in V$ and $U \cap V = \emptyset$.

Corollary 5.1. An ideal toological space is (X, τ, \mathcal{I}) q- \mathcal{I} - \mathcal{I}_2 if and only if each singleton subsets of X is q- \mathcal{I} -closed.

Corollary 5.2. An ideal toological space (X, τ, \mathcal{I}) is $q-\mathcal{I}-T_2$ if and only if two distinct points of X have disjoint $q-\mathcal{I}$ -closure.

Theorem 5.2. Every q- \mathcal{I} -regular T_0 -space is q- \mathcal{I} - T_2 .

Proof. Let (X, τ, \mathcal{I}) be a q- \mathcal{I} -regular T_0 space and $x, y \in X$ such that $x \neq y$. Since X is T_0 , there exists an open set V containing one of the points, say, x but not y. Then $y \in X \setminus V$, $X \setminus V$ is closed and $x \notin X \setminus V$. By q- \mathcal{I} -regularity of X, there exist q- \mathcal{I} -open sets G and H such that $x \in G, y \in X \setminus V \subset H$ and $G \cap H = \emptyset$. Hence (X, τ, \mathcal{I}) is q- \mathcal{I} - T_2 .

Theorem 5.3. Every open subspace of a q- \mathcal{I} - T_2 space is q- \mathcal{I} - T_2 .

Proof. Proof is similar to Theorem 4.2

Theorem 5.4. If $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is injective, open and q- \mathcal{I} -continuous and Y is T_2 , then (X, τ, \mathcal{I}) is q- \mathcal{I} - T_2 .

Proof. Since f is injective, $f(x) \neq f(y)$ for each $x, y \in X$ and $x \neq y$. Now Y being T_2 , there exist open sets G, H in Y such that $f(x) \in G$, $f(y) \in H$ and $G \cap H = \emptyset$. Let $U = f^{-1}(G)$ and $V = f^{-1}(H)$. Then by hypothesis, U and V are q- \mathcal{I} -open in X. Also $x \in f^{-1}(G) = U$, $y \in f^{-1}(H) = V$ and $U \cap V = f^{-1}(G) \cap f^{-1}(H) = \emptyset$. Hence (X, τ, \mathcal{I}) is q- \mathcal{I} - T_2 . \Box

Definition 5.2. A function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is called strongly q- \mathcal{I} -open if the image of every q- \mathcal{I} -open subset of (X, τ, \mathcal{I}) is q- \mathcal{J} -oen in (Y, σ, \mathcal{J}) .

Theorem 5.5. Let (X, τ, \mathcal{I}) be an ideal topological space, R an equivalence relation in X and $p : (X, \tau, \mathcal{I}) \to X | R$ the identification function. If $R \subset (X \times X)$ and p is a strongly q- \mathcal{I} -open function, then X | R is q- \mathcal{I} - \mathcal{I}_2

Proof. Let p(x) and p(y) be the distinct members of X|R. Since x and y are not related, $R \subset (X \times X)$ is q- \mathcal{I} -closed in $X \times X$. There are q- \mathcal{I} -open sets U and V such that $x \in U$ and $y \in V$ and $U \times V \subset X \setminus R$. Thus p(U) and p(V) are disjoint q- \mathcal{I} -open sets in X|R since p is strongly q- \mathcal{I} -open.

References

M.E.Abd El-Monsef, R.A.Mohmoud and A.A.Nasef, On quasi *I*-openness and quasi *I*-continuity, Tamkang J. Math., 31(1)(2000), 101-108.

^[2] J.Dontchev, On Hausdorff spaces via topological ideals and *I*-irresolute functions, Annals of the New York Academy of Sciences, Papers on General Topology and Applications, 767(1995), 28-38.

- [3] P.Kalaiselvi and N.Rajesh, Some new separation axioms in ideal topological spaces, (submitted).
- [4] K.Kuratowski, Topology, Academic Press, New York, (1966).
- [5] R.Vaidyanatahswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.