

International Journal of Mathematics And its Applications

Super Pair Sum Labeling of *H*-graphs

Research Article

J.Venkateswari¹, R.Vasuki^{2*} and P.Sugirtha³

1 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.

2 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.

3 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.

Abstract: Let G be a graph with p vertices and q edges. The graph G is said to be a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\left\{0, \pm 1, \pm 2, \dots, \pm \left(\frac{p+q-1}{2}\right)\right\}$ when p+q is odd and from $V(G) \cup E(G)$ to $\left\{\pm 1, \pm 2, \dots, \pm \left(\frac{p+q}{2}\right)\right\}$ when p+q is even such that f(uv) = f(u) + f(v). A graph that admits a super pair sum labeling is called a super pair sum graph. In this paper, we investigate super pair sum labeling of some H-graphs.

MSC: 05C78.

Keywords: labeling, super pair sum labeling, super pair sum graph. © JS Publication.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [2]. Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . $K_{1,m}$ is called a star and it is denoted by S_m . The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the center vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. $B_{m,n}$ is often denoted by B(m). The union of two graphs G_1 and G_2 is a graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The H-graph of a path P_n , denoted by H_n is the graph obtained from two copies of P_n with vertices v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. The corona of a graph G on p vertices v_1, v_2, \ldots, v_p is the graph obtained from G by adding p new vertices u_1, u_2, \ldots, u_p and the new edges $u_i v_i$ for $1 \le i \le p$. The corona of G is denoted by $G \odot K_1$. The graph $P_n \odot K_1$ is called a comb. The 2-corona of a graph G, denoted by $G \odot S_2$ is a graph obtained from G by identifying the center vertex of the star S_2 at each vertex of G. The graceful labelings of graphs was first introduced by Rosa in 1961[1] and super vertex graceful labeling of some standard graphs was discussed in [5]. The concept of pair sum labeling was introduced and studied by R. Ponraj et al. [3, 4]. Let Gbe a (p, q) graph. A one-one map $f : V(G) \to \{\pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling if the induced edge function

^{*} E-mail: vasukisehar@gmail.com

 $f_e: E(G) \to Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, \dots, \pm k_{\frac{q}{2}}\}$ or $\{\pm k_1, \pm k_2, \dots, \pm k_{\frac{q-1}{2}}\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph.

Motivated by Ponraj and Parthiban, R. Vasuki et al. introduced the concept of super pair sum labeling [6] and discussed the super pair sum behaviour of some standard graphs like path, $K_{1,m}$, bistar $B_{m,n}$ for $m \ge 1, n \ge 1, P[2n; S_m]$ for $n \ge 1, m \ge 1$, comb, $C_{2n}, K_{1,m} \cup K_{1,n}$ and the caterpillar $S(x_1, x_2, \ldots, x_n)$. A graph G with p vertices and q edges is said to have a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\{0, \pm 1, \pm 2, \ldots, \pm \left(\frac{p+q-1}{2}\right)\}$ when p+q is odd and from $V(G) \cup E(G)$ to $\{\pm 1, \pm 2, \ldots, \pm \left(\frac{p+q}{2}\right)\}$ when p+q is even such that f(uv) = f(u) + f(v). A graph that admits a super pair sum labeling is called a super pair sum graph.

A super pair sum labeling of $P_7 \odot K_1$ is shown in Figure 1.

13	3 10 -	3 6 9	9 2 -	7 -2 4	5 -6 -1	1 -10 1	
12	8	4	0	-4	-8	-12	
• 	1 1	1 -	5 7	-	9 3	· -13	5

Figure 1.

In this paper, we prove that the graphs H-graph H_n , corona of a H-graph, 2-corona of a H-graph and the disconnected H-graph $2H_n$ for $n \ge 3$ are super pair sum graphs.

2. Super Pair Sum Graphs

Theorem 2.1. The H-graph G is a super pair sum graph.

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices of the *H*-graph *G*. The graph *G* has 2n vertices and 2n - 1 edges.

Define $f: V(G) \cup E(G) \rightarrow \{0, \pm 1, \pm 2, \dots, \pm (2n-1)\}$ as follows:

$$f(u_i) = \begin{cases} -i, & 1 \le i \le n \text{ and } i \text{ is odd} \\ 2n - i + 1, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i) = \begin{cases} n - i + 1, & \text{if } n \text{ is odd}, \ 1 \le i \le n \text{ and } i \text{ is odd} \\ -(n + i), & \text{if } n \text{ is odd}, \ 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v_i) = \begin{cases} n - i + 1, & \text{if } n \text{ is odd}, \ 1 \le i \le n \text{ and } i \text{ is odd} \\ -(n + i), & \text{if } n \text{ is odd}, \ 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(u_i u_{i+1}) = 2n - 2i, \quad 1 \le i \le n - 1$$

$$f(v_i v_{i+1}) = -2i, \quad 1 \le i \le n - 1$$

$$f\left(u_{\frac{n+1}{2}}v_{\frac{n+1}{2}}\right) = 0, \quad \text{if } n \text{ is odd and}$$

$$f\left(u_{\frac{n}{2} + 1}v_{\frac{n}{2}}\right) = 0, \quad \text{if } n \text{ is even.}$$

It can be verified that f is a super pair sum labeling and hence G is a super pair sum graph. For example, a super pair sum labeling of H_7 and H_8 are shown in Figure 2.

Figure 2.

Theorem 2.2. The graph $H_n \odot K_1$ is a super pair sum graph.

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length n - 1. Let u'_i and v'_i be the pendant vertices at u_i and v_i respectively, for $1 \le i \le n$. The graph $H_n \odot K_1$ has 4n vertices and 4n - 1 edges. Define $f: V(G) \cup E(G) \to \{0, \pm 1, \pm 2, \ldots, \pm (4n - 1)\}$ as follows:

$$f(u_{2i-1}) = 4n - 4i + 3, \quad 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor$$

$$f(u_{2i}) = 1 - 4i, \quad 1 \le i \le \left\lceil \frac{n-1}{2} \right\rceil$$

$$f(u'_{2i-1}) = 3 - 4i, \quad 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor$$

$$f(u'_{2i}) = 4n - 4i + 1, \quad 1 \le i \le \left\lceil \frac{n-1}{2} \right\rceil$$

$$f(v_{2i-1}) = \begin{cases} -2n - 4i + 3, \quad 1 \le i \le \frac{n+1}{2} \text{ and } n \text{ is odd} \\ 2n - 4i + 3, \quad 1 \le i \le \frac{n}{2} \text{ and } n \text{ is even} \end{cases}$$

$$f(v_{2i}) = \begin{cases} 2n - 4i + 1, \quad 1 \le i \le \frac{n-1}{2} \text{ and } n \text{ is odd} \\ -2n - 4i + 1, \quad 1 \le i \le \frac{n}{2} \text{ and } n \text{ is odd} \end{cases}$$

$$f(v'_{2i-1}) = \begin{cases} 2n - 4i + 3, \quad 1 \le i \le \frac{n-1}{2} \text{ and } n \text{ is odd} \\ -2n - 4i + 1, \quad 1 \le i \le \frac{n}{2} \text{ and } n \text{ is odd} \end{cases}$$

$$f(v'_{2i-1}) = \begin{cases} 2n - 4i + 3, \quad 1 \le i \le \frac{n+1}{2} \text{ and } n \text{ is odd} \\ -2n - 4i + 3, \quad 1 \le i \le \frac{n+1}{2} \text{ and } n \text{ is odd} \end{cases}$$

$$f(v'_{2i}) = \begin{cases} -2n - 4i + 1, & 1 \le i \le \frac{n-1}{2} \text{ and } n \text{ is odd} \\ 2n - 4i + 1, & 1 \le i \le \frac{n}{2} \text{ and } n \text{ is even} \end{cases}$$
$$f(u_i u_{i+1}) = 4n - 4i, \quad 1 \le i \le n - 1$$
$$f(u_i u'_i) = 4n - 4i + 2, \quad 1 \le i \le n$$
$$f(v_i v_{i+1}) = -4i, \quad 1 \le i \le n - 1$$
$$f(v_i v'_i) = 2 - 4i, \quad 1 \le i \le n$$
$$\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) = 0, \quad if \ n \ is \ odd \ \text{and}$$
$$f\left(u_{\frac{n}{2} + 1} v_{\frac{n}{2}}\right) = 0, \quad if \ n \ is \ even.$$

Thus, f is a super pair sum labeling and hence $H_n \odot K_1$ is a super pair sum graph. For example, a super pair sum labeling of $H_7 \odot K_1$ and $H_8 \odot K_1$ are shown in Figure 3.

Figure 3.

Theorem 2.3. The graph $H_n \odot S_2$ is a super pair sum graph.

f

Proof. Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length n-1. Let $u_i u'_i, u_i u''_i$ be the path attached at u_i and $v_i v'_i, v_i v''_i$ be the path attached at $v_i, 1 \le i \le n$. The graph $H_n \odot S_2$ has 6n vertices and 6n-1 edges. Define

 $f: V(G) \cup E(G) \to \{0, \pm 1, \pm 2, \dots, \pm (6n-1)\}$ as follows:

$$f(u_{2i-1}) = 6n - 6i + 5, \quad 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor$$
$$f(u_{2i}) = 1 - 6i, \quad 1 \le i \le \left\lceil \frac{n-1}{2} \right\rceil$$
$$f(u'_{2i-1}) = 5 - 6i, \quad 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor$$
$$f(u'_{2i}) = 6n - 6i + 3, \quad 1 \le i \le \left\lceil \frac{n-1}{2} \right\rceil$$
$$f(u''_{2i-1}) = 3 - 6i, \quad 1 \le i \le \left\lfloor \frac{n+1}{2} \right\rfloor$$

$$\begin{split} f(u_{2i}') &= 6n - 6i + 1, \quad 1 \leq i \leq \left\lceil \frac{n-1}{2} \right\rceil \\ f(v_{2i-1}) &= \begin{cases} -3n - 6i + 4, & 1 \leq i \leq \frac{n+1}{2} \text{ and } n \text{ is odd} \\ 3n - 6i + 5, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}) &= \begin{cases} 3n - 6i + 2, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \\ -3n - 6i + 1, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i-1}') &= \begin{cases} 3n - 6i + 6, & 1 \leq i \leq \frac{n+1}{2} \text{ and } n \text{ is oven} \\ -3n - 6i + 5, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i + 2, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \\ 3n - 6i + 3, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i-1}') &= \begin{cases} 3n - 6i + 4, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \\ 3n - 6i + 3, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \\ -3n - 6i + 3, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \\ -3n - 6i + 3, & 1 \leq i \leq \frac{n}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq \frac{n-1}{2} \text{ and } n \text{ is oven} \end{cases} \\ f(v_{2i}') &= \begin{cases} -3n - 6i, & 1 \leq i \leq n-1 \end{cases} \\ f(u_iu_{i+1}) &= 6n - 6i, & 1 \leq i \leq n-1 \end{cases} \\ f(v_iv_{i+1}') &= -6i, & 1 \leq i \leq n-1 \end{cases} \\ f(v_iv_{i+1}') &= -6i, & 1 \leq i \leq n-1 \end{cases} \\ f(v_iv_{i+1}') &= -6i + 4, & 1 \leq i \leq n \end{cases} \\ f(v_iv_{i+1}') &= -6i + 4, & 1 \leq i \leq n \end{cases} \\ f(v_iv_{i+1}') &= -6i + 2, & 1 \leq i \leq n \end{cases} \\ f(v_iv_{i+1}') &= -6i + 2, & 1 \leq i \leq n \end{cases} \\ f(u_{i+1} \cdot v_{n+1} \cdot v_{n+1}$$

It can be verified that f is a super pair sum labeling and hence $H_n \odot S_2$ is a super pair sum graph. For example, a super pair sum labeling of $H_5 \odot S_2$ and $H_6 \odot S_2$ are shown in Figure 4.

181

Figure 4.

Theorem 2.4. The disconnected graph $2H_n$ for $n \ge 3$ is a super pair sum graph.

Proof. Let u'_1, u'_2, \ldots, u'_n and v'_1, v'_2, \ldots, v'_n be the vertices of the first copy of H_n and $u''_1, u''_2, \ldots, u''_n$ and $v''_1, v''_2, \ldots, v''_n$ be the vertices of the second copy of H_n . The graph $2H_n$ has 4n vertices and 4n - 2 edges. Define $f: V(2H_n) \cup E(2H_n) \rightarrow \{\pm 1, \pm 2, \ldots, \pm 4n - 1\}$ as follows:

$$f(u'_i) = \begin{cases} i, & 1 \le i \le n \text{ and } i \text{ is odd} \\ -(4n+1)+i, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v'_i) = \begin{cases} -(3n+1)+i, & \text{if } n \text{ is odd}, 1 \le i \le n \text{ and } i \text{ is odd} \\ n+i, & \text{if } n \text{ is odd}, 1 \le i \le n \text{ and } i \text{ is even} \\ n+i, & \text{if } n \text{ is even}, 1 \le i \le n \text{ and } i \text{ is odd} \\ -(3n+1)+i, & \text{if } n \text{ is even}, 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(u''_i) = \begin{cases} 2n+i, & 1 \le i \le n \text{ and } i \text{ is odd} \\ -(2n+1)+i, & 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v''_i) = \begin{cases} -(n+1)+i, & \text{if } n \text{ is odd}, 1 \le i \le n \text{ and } i \text{ is odd} \\ 3n+i, & \text{if } n \text{ is odd}, 1 \le i \le n \text{ and } i \text{ is even} \end{cases}$$

$$f(v''_i) = \begin{cases} -(n+1)+i, & \text{if } n \text{ is odd}, 1 \le i \le n \text{ and } i \text{ is even} \\ 3n+i, & \text{if } n \text{ is even}, 1 \le i \le n \text{ and } i \text{ is odd} \\ -(n+1)+i, & \text{if } n \text{ is even}, 1 \le i \le n \text{ and } i \text{ is odd} \end{cases}$$

$$\begin{split} f(u'_{i}u'_{i+1}) &= -4n + 2i, \quad 1 \leq i \leq n-1 \\ f(v'_{i}v'_{i+1}) &= -2n + 2i, \quad 1 \leq i \leq n-1 \\ f(u''_{i}u''_{i+1}) &= 2i, \quad 1 \leq i \leq n-1 \\ f(v''_{i}v''_{i+1}) &= 2n + 2i, \quad 1 \leq i \leq n-1 \\ f\left(u'_{\frac{n+1}{2}}v'_{\frac{n+1}{2}}\right) &= -2n \quad if \ n \ is \ odd \\ f\left(u'_{\frac{n+1}{2}}v'_{\frac{n+1}{2}}\right) &= 2n \quad if \ n \ is \ odd \\ f\left(u'_{\frac{n+1}{2}}v'_{\frac{n+1}{2}}\right) &= -2n \quad if \ n \ is \ even \\ f\left(u'_{\frac{n}{2}+1}v'_{\frac{n}{2}}\right) &= -2n \quad if \ n \ is \ even. \end{split}$$

Thus, f is a super pair sum labeling and hence $2H_n$ is a super pair sum graph for $n \ge 3$. For example, a super pair sum labeling of $2H_7$ and $2H_8$ are shown in Figure 5.

Figure 5.

References

- [1] J.A.Gallian, A dynamic survey of graph labeling, The Electronic J. Combin., (17)(2010).
- [2] F.Harary, Graph Theory, Narosa publishing House, New Delhi, (1998).
- [3] R.Ponraj, J.Vijaya Xavier Parthipan and R.Kala, Some results on pair sum labelings of graphs, International Journal of Mathematical Combinatorics, (4)(2010), 53-61.
- [4] R.Ponraj, J.Vijaya Xavier Parthipan and R.Kala, A note on pair sum graphs, Journal of Scientific Research, (3)(2)(2011), 321-329.
- [5] Sin-Min Lee, Elo leung and Ho Kuen Ng, On super vertex-graceful unicyclic graphs, Czechoslovak Math. J., (59)(134)(2009), 1-22.
- [6] R.Vasuki and S.Arockiaraj, Super pair sum labeling of graphs, (communicated).