International Journal of Mathematics And its Applications

Super Pair Sum Labeling of H-graphs

Research Article

J.Venkateswari ${ }^{1}$, R.Vasuki ${ }^{2 *}$ and P.Sugirtha ${ }^{3}$
1 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.
2 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.
3 Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India.

Abstract

Let G be a graph with p vertices and q edges. The graph G is said to be a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q-1}{2}\right)\right\}$ when $p+q$ is odd and from $V(G) \cup E(G)$ to $\left\{ \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q}{2}\right)\right\}$ when $p+q$ is even such that $f(u v)=f(u)+f(v)$. A graph that admits a super pair sum labeling is called a super pair sum graph. In this paper, we investigate super pair sum labeling of some H-graphs.

\section*{MSC: 05C78.}

Keywords: labeling, super pair sum labeling, super pair sum graph.
(C) JS Publication.

1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [2]. Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the center vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, n}$ is often denoted by $B(m)$. The union of two graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The H-graph of a path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. The corona of a graph G on p vertices $v_{1}, v_{2}, \ldots, v_{p}$ is the graph obtained from G by adding p new vertices $u_{1}, u_{2}, \ldots, u_{p}$ and the new edges $u_{i} v_{i}$ for $1 \leq i \leq p$. The corona of G is denoted by $G \odot K_{1}$. The graph $P_{n} \odot K_{1}$ is called a comb. The 2-corona of a graph G, denoted by $G \odot S_{2}$ is a graph obtained from G by identifying the center vertex of the star S_{2} at each vertex of G. The graceful labelings of graphs was first introduced by Rosa in 1961[1] and super vertex graceful labeling of some standard graphs was discussed in [5]. The concept of pair sum labeling was introduced and studied by R. Ponraj et al. [3, 4]. Let G be a (p, q) graph. A one-one map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling if the induced edge function

[^0]$f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph.

Motivated by Ponraj and Parthiban, R. Vasuki et al. introduced the concept of super pair sum labeling [6] and discussed the super pair sum behaviour of some standard graphs like path, $K_{1, m}$, bistar $B_{m, n}$ for $m \geq 1, n \geq 1, P\left[2 n ; S_{m}\right]$ for $n \geq 1, m \geq 1$, comb, $C_{2 n}, K_{1, m} \cup K_{1, n}$ and the caterpillar $S\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. A graph G with p vertices and q edges is said to have a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q-1}{2}\right)\right\}$ when $p+q$ is odd and from $V(G) \cup E(G)$ to $\left\{ \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q}{2}\right)\right\}$ when $p+q$ is even such that $f(u v)=f(u)+f(v)$. A graph that admits a super pair sum labeling is called a super pair sum graph.

A super pair sum labeling of $P_{7} \odot K_{1}$ is shown in Figure 1.

Figure 1.

In this paper, we prove that the graphs H-graph H_{n}, corona of a H-graph, 2-corona of a H-graph and the disconnected H-graph $2 H_{n}$ for $n \geq 3$ are super pair sum graphs.

2. Super Pair Sum Graphs

Theorem 2.1. The H-graph G is a super pair sum graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the H-graph G. The graph G has $2 n$ vertices and $2 n-1$ edges.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & = \begin{cases}-i, & 1 \leq i \leq n \text { and } i \text { is odd } \\
2 n-i+1, & 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
f\left(v_{i}\right) & = \begin{cases}n-i+1, & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is odd } \\
-(n+i), & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is even } \\
-(n+i), & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is odd } \\
n-i+1, & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
f\left(u_{i} u_{i+1}\right) & =2 n-2 i, \quad 1 \leq i \leq n-1
\end{aligned} f\left(v_{i} v_{i+1}\right)=-2 i, \quad 1 \leq i \leq n-110, \quad \text { if } n \text { is odd and } 1
$$

It can be verified that f is a super pair sum labeling and hence G is a super pair sum graph. For example, a super pair sum labeling of H_{7} and H_{8} are shown in Figure 2.

Figure 2.

Theorem 2.2. The graph $H_{n} \odot K_{1}$ is a super pair sum graph .
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path of length $n-1$. Let u_{i}^{\prime} and v_{i}^{\prime} be the pendant vertices at u_{i} and v_{i} respectively, for $1 \leq i \leq n$. The graph $H_{n} \odot K_{1}$ has $4 n$ vertices and $4 n-1$ edges.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(4 n-1)\}$ as follows:

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =4 n-4 i+3, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{2}\right\rfloor \\
f\left(u_{2 i}\right) & =1-4 i, \quad 1 \leq i \leq\left[\left.\frac{n-1}{2} \right\rvert\,\right. \\
f\left(u_{2 i-1}^{\prime}\right) & \left.=3-4 i, \quad 1 \leq i \leq \left\lvert\, \frac{n+1}{2}\right.\right\rceil \\
f\left(u_{2 i}^{\prime}\right) & =4 n-4 i+1, \quad 1 \leq i \leq\left\lceil\left.\frac{n-1}{2} \right\rvert\,\right. \\
f\left(v_{2 i-1}\right) & = \begin{cases}-2 n-4 i+3, & 1 \leq i \leq \frac{n+1}{2} \text { and } n \text { is odd } \\
2 n-4 i+3, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
f\left(v_{2 i}\right) & = \begin{cases}2 n-4 i+1, & 1 \leq i \leq \frac{n-1}{2} \text { and } n \text { is odd } \\
-2 n-4 i+1, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
f\left(v_{2 i-1}^{\prime}\right) & = \begin{cases}2 n-4 i+3, & 1 \leq i \leq \frac{n+1}{2} \text { and } n \text { is odd } \\
-2 n-4 i+3, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{2 i}^{\prime}\right) & = \begin{cases}-2 n-4 i+1, & 1 \leq i \leq \frac{n-1}{2} \text { and } n \text { is odd } \\
2 n-4 i+1, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
f\left(u_{i} u_{i+1}\right) & =4 n-4 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i} u_{i}^{\prime}\right) & =4 n-4 i+2, \quad 1 \leq i \leq n \\
f\left(v_{i} v_{i+1}\right) & =-4 i, \quad 1 \leq i \leq n-1 \\
f\left(v_{i} v_{i}^{\prime}\right) & =2-4 i, \quad 1 \leq i \leq n \\
f\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right) & =0, \quad \text { if } n \text { is odd and } \\
f\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right) & =0, \quad \text { if } n \text { is even. }
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence $H_{n} \odot K_{1}$ is a super pair sum graph. For example, a super pair sum labeling of $H_{7} \odot K_{1}$ and $H_{8} \odot K_{1}$ are shown in Figure 3.

Figure 3.

Theorem 2.3. The graph $H_{n} \odot S_{2}$ is a super pair sum graph.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices on the path of length $n-1$. Let $u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}$ be the path attached at u_{i} and $v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}$ be the path attached at $v_{i}, 1 \leq i \leq n$. The graph $H_{n} \odot S_{2}$ has $6 n$ vertices and $6 n-1$ edges. Define
$f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(6 n-1)\}$ as follows:

$$
\begin{aligned}
& f\left(u_{2 i-1}\right)=6 n-6 i+5, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{2}\right\rfloor \\
& f\left(u_{2 i}\right)=1-6 i, \quad 1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil \\
& f\left(u_{2 i-1}^{\prime}\right)=5-6 i, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{2}\right\rfloor \\
& f\left(u_{2 i}^{\prime}\right)=6 n-6 i+3, \quad 1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil \\
& f\left(u_{2 i-1}^{\prime \prime}\right)=3-6 i, \quad 1 \leq i \leq\left\lfloor\frac{n+1}{2}\right\rfloor \\
& f\left(u_{2 i}^{\prime \prime}\right)=6 n-6 i+1, \quad 1 \leq i \leq\left\lceil\frac{n-1}{2}\right\rceil \\
& f\left(v_{2 i-1}\right)= \begin{cases}-3 n-6 i+4, & 1 \leq i \leq \frac{n+1}{2} \text { and } n \text { is odd } \\
3 n-6 i+5, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(v_{2 i}\right)= \begin{cases}3 n-6 i+2, & 1 \leq i \leq \frac{n-1}{2} \text { and } n \text { is odd } \\
-3 n-6 i+1, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(v_{2 i-1}^{\prime}\right)= \begin{cases}3 n-6 i+6, & 1 \leq i \leq \frac{n+1}{2} \text { and } n \text { is odd } \\
-3 n-6 i+5, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(v_{2 i}^{\prime}\right)= \begin{cases}-3 n-6 i+2, & 1 \leq i \leq \frac{n-1}{2} \text { and } n \text { is odd } \\
3 n-6 i+3, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(v_{2 i-1}^{\prime \prime}\right)= \begin{cases}3 n-6 i+4, & 1 \leq i \leq \frac{n+1}{2} \text { and } n \text { is odd } \\
-3 n-6 i+3, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(v_{2 i}^{\prime \prime}\right)= \begin{cases}-3 n-6 i, & 1 \leq i \leq \frac{n-1}{2} \text { and } n \text { is odd } \\
3 n-6 i+1, & 1 \leq i \leq \frac{n}{2} \text { and } n \text { is even }\end{cases} \\
& f\left(u_{i} u_{i+1}\right)=6 n-6 i, \quad 1 \leq i \leq n-1 \\
& f\left(u_{i} u_{i}^{\prime}\right)=6 n-6 i+4, \quad 1 \leq i \leq n \\
& f\left(u_{i} u_{i}^{\prime \prime}\right)=6 n-6 i+2, \quad 1 \leq i \leq n \\
& f\left(v_{i} v_{i+1}\right)=-6 i, \quad 1 \leq i \leq n-1 \\
& f\left(v_{i} v_{i}^{\prime}\right)=-6 i+4, \quad 1 \leq i \leq n \\
& f\left(v_{i} v_{i}^{\prime \prime}\right)=-6 i+2, \quad 1 \leq i \leq n \\
& f\left(u_{\frac{n+1}{2}} v_{\frac{n+1}{2}}\right)=0 \text {, if } n \text { is odd and } \\
& f\left(u_{\frac{n}{2}+1} v_{\frac{n}{2}}\right)=0, \quad \text { if } n \text { is even. }
\end{aligned}
$$

It can be verified that f is a super pair sum labeling and hence $H_{n} \odot S_{2}$ is a super pair sum graph. For example, a super pair sum labeling of $H_{5} \odot S_{2}$ and $H_{6} \odot S_{2}$ are shown in Figure 4.

Figure 4.

Theorem 2.4. The disconnected graph $2 H_{n}$ for $n \geq 3$ is a super pair sum graph.

Proof. Let $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ be the vertices of the first copy of H_{n} and $u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, \ldots, u_{n}^{\prime \prime}$ and $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}$ be the vertices of the second copy of H_{n}. The graph $2 H_{n}$ has $4 n$ vertices and $4 n-2$ edges. Define $f: V\left(2 H_{n}\right) \cup E\left(2 H_{n}\right) \rightarrow$ $\{ \pm 1, \pm 2, \ldots, \pm 4 n-1\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}^{\prime}\right)= \begin{cases}i, & 1 \leq i \leq n \text { and } i \text { is odd } \\
-(4 n+1)+i, & 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
& f\left(v_{i}^{\prime}\right)= \begin{cases}-(3 n+1)+i, & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is odd } \\
n+i, & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is even } \\
n+i, & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is odd } \\
-(3 n+1)+i, & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
& f\left(u_{i}^{\prime \prime}\right)= \begin{cases}2 n+i, & 1 \leq i \leq n \text { and } i \text { is odd } \\
-(2 n+1)+i, & 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
& f\left(v_{i}^{\prime \prime}\right)= \begin{cases}-(n+1)+i, & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is odd } \\
3 n+i, & \text { if } n \text { is odd, } 1 \leq i \leq n \text { and } i \text { is even } \\
3 n+i, & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is odd } \\
-(n+1)+i, & \text { if } n \text { is even, } 1 \leq i \leq n \text { and } i \text { is even }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
f\left(u_{i}^{\prime} u_{i+1}^{\prime}\right) & =-4 n+2 i, \quad 1 \leq i \leq n-1 \\
f\left(v_{i}^{\prime} v_{i+1}^{\prime}\right) & =-2 n+2 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{i}^{\prime \prime} u_{i+1}^{\prime \prime}\right) & =2 i, \quad 1 \leq i \leq n-1 \\
f\left(v_{i}^{\prime \prime} v_{i+1}^{\prime \prime}\right) & =2 n+2 i, \quad 1 \leq i \leq n-1 \\
f\left(u_{\frac{n+1}{2}}^{\prime} v_{\frac{n+1}{2}}^{\prime}\right) & =-2 n \quad \text { if } n \text { is odd } \\
f\left(u_{\frac{n+1}{2}}^{\prime \prime} v_{\frac{n+1}{2}}^{\prime \prime}\right) & =2 n \quad \text { if } n \text { is odd } \\
f\left(u_{\frac{n}{2}+1}^{\prime} v_{\frac{n}{2}}^{\prime}\right) & =-2 n \quad \text { if } n \text { is even } \\
f\left(u_{\frac{n}{2}+1}^{\prime \prime} v_{\frac{n}{2}}^{\prime \prime}\right) & =2 n \quad \text { if } n \text { is even. }
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence $2 H_{n}$ is a super pair sum graph for $n \geq 3$. For example, a super pair sum labeling of $2 \mathrm{H}_{7}$ and $2 \mathrm{H}_{8}$ are shown in Figure 5 .

$2 \mathrm{H}_{7}$

Figure 5.

References

[1] J.A.Gallian, A dynamic survey of graph labeling, The Electronic J. Combin., (17)(2010).
[2] F.Harary, Graph Theory, Narosa publishing House, New Delhi, (1998).
[3] R.Ponraj, J.Vijaya Xavier Parthipan and R.Kala, Some results on pair sum labelings of graphs, International Journal of Mathematical Combinatorics, (4)(2010), 53-61.
[4] R.Ponraj, J.Vijaya Xavier Parthipan and R.Kala, A note on pair sum graphs, Journal of Scientific Research, (3)(2)(2011), 321-329.
[5] Sin-Min Lee, Elo leung and Ho Kuen Ng, On super vertex-graceful unicyclic graphs, Czechoslovak Math. J., (59)(134)(2009), 1-22.
[6] R.Vasuki and S.Arockiaraj, Super pair sum labeling of graphs, (communicated).

[^0]: * E-mail: vasukisehar@gmail.com

