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1. Introduction and preliminaries

Sostak introduced the fundamental concept of a fuzzy topological structure as an extension of both crisp topology and Chang
fuzzy topology [3]. It has been developed in many directions [6, 12, 13, 18]. Many separation axioms were introduced in
fuzzy topological spaces in a sense of Chang or Lowen [1, 2, 5, 10, 16, 17, 21]. Srivastava [24] introduced separation axioms
in a view of the definition of Hazra.et.al [8]. In this paper, we define r-T> space in fuzzy topological spaces in a view of
the definition of Sostak. We investigate some properties of r-T5 spaces. In particular, we study properties of subspaces and
products of r-T5 spaces. Throughout this paper, let X be a nonempty set, I = [0,1] and Ip = (0,1]. For a € I, a&(z) = «

for all z € X. A fuzzy point x; for t € Iy is an element of I~ such that

t, ify=u,

0, if y # .

Te(y) =

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point z; € X iff ¢ < A(z). A fuzzy set A is quasi-coincident

with p, denoted by A q p, if there exists x € X such that A\(z) + u(x) > 1. If X is not quasi-coincident with p, we denote

Aqp.
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Some Properties of r-T5 Spaces

Definition 1.1 ([6, 8, 12, 20, 22]). A function 7 : I* — I is called a fuzzy topology on X if it satisfies the following

conditions:

(01) 7(0) =7(1) = 1.

(02) T(p1 A pa) > (1) AT(p2) for each pi, e € I¥.

(03) T(V;er i) = Njep 7(i) for any {pi}ier C I*. The pair (X, 7) is called a fuzzy topological space.

Let 7 and 12 be fuzzy topologies on X. We say 71 is finer than 72 (72 is coarser than 71) if 72 () < 71(u) for all p € x.

Theorem 1.2 ([8]). Let (X, ) be a fuzzy topological space. For each r € Io, A € I, we define an operator C-I* x Iy — I*

as follows:

Crnr) = Nplp>Ar1—p) >}
Then, it satisfies the following properties:
(1) C-(0,7) =0,C,(1,7) =1, for all r € L.
(2) C-(\, 1) > A
(3) Cr(A1,7) < Cr(A2,7), if A < Do
(4) C-(AV p,r) = C-(A\, 1)V Cr(p, 1), for allr € Ip.
(5) Cr(\,r) < C-(\ 1), if r < 7', where r,r" € Iy.
(6) C-(C-(A\,r),r) =Cr(\, 7).

Definition 1.3 ([11]). Let 0 ¢ Ox be a subset of IX. A function 8 : ©x — I is called a fuzzy topological base on X if it

satisfies the following conditions:

(B1) B(1) = 1.

(B2) B(pa A p2) > B(pr) A B(uz), for all pa, p2 € Ox.

A fuzzy topological base S always generates a fuzzy topology 73 on X in the following sense:

Theorem 1.4 ([11]). Let 8 be a fuzzy topological base on X. Define the function 75 : I — I as follows: for each u € I**,

V{/\ieJ ﬁ(,‘h)}v if u= VieJ Wi, My € Ox,
() =9 1, if p=0,

0, otherwise

where the first \/ is taken over all families {p; € Ox | p =\, pi}. Then (X,75) is a fuzzy topological space.

Let (X,71) and (Y, 72) be fuzzy topological spaces. A function f : (X,71) — (Y, 72) is called fuzzy continuous if m2(u) <
T1(f " (w)) for all p e I”.
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Theorem 1.5 ([11]). Let (X, 7:)icr be fuzzy topological spaces and X a set and f; : X — X; a function , for each i € T'. Let
Ox ={0#p=Ner 7 ) |m(vs) > 0, i € F} be given, for every finite index set F' C I'. Define a function B : ©x — I
on X by

Bp) = VAN mw) lw= N\ fi' )}

i€F el

where the first \/ is taken over all finite index subset F' of I'. Then:

(1) B is a fuzzy topological base on X.

(2) The fuzzy topology T generated by B is the coarsest fuzzy topology on X for which each i € T, f; is fuzzy continuous.
(3) Amap f:(Z,72) = (X,78) is fuzzy continuous iff for each i € T, f; o f is fuzzy continuous.

From Theorem 1.5, we can define the following definitions.

Definition 1.6 ([11]). Let (X,7) be a fuzzy topological space and A be a subset of X. The pair (A,7|a) is said to be a

subspace of (X, T) if T|a is the coarsest fuzzy topology on A for which the inclusion map i is fuzzy continuous.

Definition 1.7 ([11]). Let X be the product [[. . Xi of the family {(X:,7:) | ¢ € T'} of fuzzy topological spaces. The the

ier
coarsest fuzzy topology 7 = @ 7: on X for which each the projections m; : X — X; is fuzzy continuous is called the product

fuzzy topology of {1 | i € T'}, and (X, 7) is called the product fuzzy topology space.

2. The Properties of r-T5 Spaces

Definition 2.1. Let (X,7) be a fuzzy topological space. A fuzzy set p € I is called a r-Q, open neighborhood of x; if

x¢ g p and T(p) > . We denote
QT(xtvr) = {,LL € IX ‘ Tt q [, T(lu) > 7"}.

Definition 2.2. A fuzzy topological space (X, T) is said to be a r-T>-space if for each x¢,ys € Pt(X) such that x # vy, there

exist A € Q- (x¢,7) and p € Q- (ys,r) such that A A p = 0.

Theorem 2.3. A fuzzy topological space (X, ) is r-T2 iff for each z¢,ys € Pt(X) such that x # y, and t,s < 1, there exist

M€ IX suchthatwe € X, T(\) > 71, wyse€p, () >r and XA p=0.

Proof. (=) For each z;,ys € Pt(X) such that = # y, and ¢,s < 1, x1_¢,y1-s € Pt(X). Since (X, 1) is r-Th, there exist
A € Qr(w1-t,7) and pu € Q- (y1—s,7) such that XA u = 0. Thus, A\ € Q-(z1-¢,7) implies x; € X and 7(\) > r. Thus,

u € Qr(yi—s,r) implies ys € p and 7(u) > r.

<= et T4, yYs € suc at x . e s < 1. or Ti—¢,Yi—s € ere exis S suc at
(<) Let x4,y Pt(X) such th £ y. Let t, 1. F Y Pt(X), th ist A\, 0 € I* such th

21—t EXNTA) > 7, y1—s € u,7() > 7 and A A p = 0. It implies A € Q- (x¢,7) and pu € Q- (ys,7)-

Ift=1ors=1,lett=1ands < 1. There exists 0 < p < 1 such that x,,y1_s € Pt(X). Then there exist \, u € I* such
that xp € A 7(A) > 7, y1-s € p 7(u) > 7 and AA p = 0. Thus, z: ¢ A and ys ¢ u. Hence A\ € Q- (z¢,7) and pu € Q- (ys,7)
such that A A p = 0. Hence (X, 1) is r-T. O
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Theorem 2.4. A fuzzy topological space (X, T) is r-T2 iff for each x+,y: € Pt(X) such that x # y, there exist X € Q(x¢,r)

and p1 € Q- (yt,7) such that A\A p =0.

Proof. (=) It is trivial.
(<) Let x4, ys € Pt(X) such that x # y and t < s. Since for each x¢,y: € Pt(X), there exist A € Q-(x¢,7) and p € Q+(y¢, )

such that A A u = 0, then y; q u implies ys g p. Hence (X, 7) is 7-T5. O
Definition 2.5 ([16]). Let D be a directed set. A function S : D — Pt(X) is called a fuzzy net.

Definition 2.6. Let (X,7) be a fuzzy topological space, u € I, x; € Pt(X) and r € In. A fuzzy point x; is called a fuzzy
r-limit point of S, denoted by S x4, if for every p € Q- (xy,7), there exists ng € D such that for each n € D with n > no,

we have S(n) q u. We denote
lim(S,r) = \/{xt € Pt(X) | z¢ is a fuzzy r-limit point of S}.

For A € I*, we denote supp(\) = { € X | A(z) > 0} and |supp())] is the cardinal number of supp(\).
Theorem 2.7. Let (X, 7) be a fuzzy topological space. Then the following statements are equivalent.
(1) (X, 1) is r-T>.

(2) For each fuzzy net S, |supp(lim-(S,r))| < 1.

Proof. (1)= (2) Suppose there exists a fuzzy net S : D — Pt(X) such that |supp(lim-(S,r))| > 2. There exist z £ y €
supp(lim-(S,r)) such that S @, ys. Since (X, ) is r-Ts, there exist A € Q- (ws,7) and p € Q(ys,r) such that A A p = 0.

Since S5 x¢,ys, there exist n,ny such that

Yn > n1, S(n) q A,

Vn > n2, S(n) q p.
Since D is a directed set, there exists ns > ni,n2 such that
Vn > ng, S(n) ¢ A, S(n) q u.

It implies S(n) g A A p, for all n > ns. Since A A u = 0, it is a contradiction.
(2)= (1) Let (X,7) be not r-T>. Then there exist z;,ys € Pt(X) with  # y such that for all A € Q-(z¢, ) and for all

u € Qr(ys,7), we have A A i # 0. Define a relation on D = {AA pu | A € Q-(zt,7), 1 € Qr(ys,7)} by
AL A p1 < A2 A pe iff A > Ag, 1 > po.

Then (D, <) is a directed set. For each AAp € D, since A # 0, there exist 2 € X and p € I such that (AAp)(z) > 1—p > 0.

Then zp ¢ A A p. Thus, we can define a fuzzy net S : D — Pt(X) by
S(AA p) = zp, that is, S(AA ) = A A p.

For every A € Q,(w,r), there exists A = A A1 € D such that for all p € D with A\ < p, we have S(p) q p. Since p < \, we

have S(p) ¢ A\. Hence z; € lim,(S,r). Similarly, ys € lim-(S,r). Thus, |supp(lim-(S,7))| > 2. O
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Example 2.8. Let X = {z,y} be a set. We define a fuzzy topology 7 : I — I as follows:

1, if A=0o0r1;

l? 7’fA = X1,
=147 '

%7 Zf)‘ =Y

0, otherwise.

For each xt,ys € Pt(X) such that x # vy, for0 <r < %, there exist x1 € Q(x+,7) and y1 € Q- (ys,r) such that z1 Ay1 = 0.
Hence (X, 1) is r-Ta, for 0 < r < % Moreover, we easily show that (X, T) is not r-Ta, for r > % Let N be a natural number

set. Define a fuzzy net S: N — Pt(X) by

To.4, ifn=2m,

S(n) =
Y0.3, if’l’L =2m + 1.

We can show lim-(S, 1) = Opt. Lett. 0 from (1) to (2).

(1) x¢ fort € Ip is not a fuzzy %—limit point of S, for x1 € Q- (x4, %) and for each n € N, there exists 2n+ 1 € N such that
2n+1>n and S2n+1) § 1.

(2) ys for s € Iy is not a fuzzy %-limit point of S, for y1 € Q-(ys, 3) and for each n € N, there exists 2n+1 € N such that
2n+1>n and S(2n) G y1. Thus, |supp(lim, (S, 1))| = 0.

Example 2.9. Let X = {z,y} be a set. We define a fuzzy topology T : I — I as follows:

1, ifx=0o0rl,

, ZfA = 20.4,

=

0, otherwise.

For z0.3,90.5 € Pt(X), since Qr(x0.3,7) = Q-(yo.5,7) = {1}, for each r € Iy, (X, 7) is not r-Ts. Let N be a natural number
set. Define a fuzzy net S : N — Pt(X) by

S(n) = zq,,, an = 0.5+ (—1)"0.2.

(1) my for t < 0.6 is a fuzzy r-limit point of S, for 1 € Q-(z¢,7) and for all n € N,we have S(n) q 1.

(2) x¢ for 0.6 <t and 0 < r < % s not a fuzzy r-limit point of S, for xo.a € Qr(xt,7) and for each n € N, there exists

2n4+1€ N such that 2n+1>n and S(2n+ 1) = 0.3 § To.4.
(8) ys for s € Iy is a fuzzy r-limit point of S, for 1 € Q-(ys,r) and for all n € N,we have S(n) q 1.

From (1) to (3), put p(z) = 0.6 and p(y) = 1, we obtain

. ifo<r<i,
lim(S,r) = w o 2

1, ifr> 1.

Thus, |supp(lim.(S,r))| = 2.
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Define Ax € I**X as follows:
1, ifx =y,
0, ifx #y.

Theorem 2.10. Let (X,7) be r-T>. Then Cro-(Ax,r) = Ax where T ® T is a product fuzzy topology on X X X.

AX($7 y) =

Proof. We only show that Crg-(Ax,r) < Ax from Theorem 1.2 (2). Suppose Crg-(Ax,7) £ Ax. Then there exist

(z,y) € X x X and t € Iy such that

Cror(Dx,7m)(z,y) >t > Ax(z,y). (D

Since Ax (z,y) < t. Then z # y. Since (X, 7) is r-Tb, for z¢,y: € Pt(X), there exist A € Q-(x¢,r) and u € Qr(y¢, ) such

that AAp=0. Put p =77 (A\) Amy (). Then 7 ® 7(p) > 7(\) A 7(u) > r. Moreover, since ; ¢ A and y; g i, we have

(i (W) Amy (1) (@, y) + ¢ = @) Aply) +t> 1.

Thus, p € Q-o-((x,y)t, 7). Since, for all z € X,
p(z, ) = (w1 (A) Ay (1) (@) = Ax) A p(e) =0,
we have p <1 — Ax. So, Ax <1—pand 7 ®7(p) > r implies
Ax < Crar(Dx,7) <1—p.

Since (z,9): q p,

Cror(Ox,7)(@,y) < (1 - p)(z,y) <t.
It is a contradiction for the equation (1). O
Theorem 2.11. Let 7 ® T be a product fuzzy topology on X x X of a fuzzy topological space (X, 7). If Cror(Ax,r) = Ax,
then (X, T) is (r — €)-Tz, for arbitrary € > 0.

Proof. Let z¢,y: € Pt(X) with z # y. Since Crg-(Ax,r) = Ax, by the definition Crg, of Theorem 1.2 and Definition
1.1 (03), we have T®@ 7(1— Ax) > 7. Put p=1— Ax. Then p(z,y) = 1 implies (x,y): ¢ p- Let 8 be a base for T ® 7. Since

T ® 7(p) > r, by Theorem 1.4, for € > 0, there exists a family {p; | p = /. ps} such that

T@7(p) = \ Blp:) >r—e

ier
Since (z,y)t q (p = V,cr pi), there exists 4 € T such that (z,y): ¢ p; and B(pi) > r — e. From Theorem 1.5, there exist

A, i € I* such that
pi=m (A ATy (1), Blpi) = TN AT() > 7 —e

Therefore 7(A\) > r — ¢, 7(1) > r — e. Furthermore, since (z,y): q p;, we have

(@) gm ' (N) = (10 (A (@,y) = M) +t > 1,
() q 3 () = (w3 () (,y) = ply)) +t > 1.
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Hence A € Q- (x¢,7 —€) and p € Q-(y¢,r — €). Moreover, for each x € X,

A A () =m0 (N) Amg (1) (2, 2)

= Pz(%x) S p(x7m) = 07

because p(z,z) = (Opt. Lett. 1 — Ax)(x,z) = 0. Thus, by Theorem 2.4, (X, 1) is (r — €)-T>, for arbitrary e > 0. O

Example 2.12. Let X = {a,b} and X x X be sets. We define a fuzzy topology T : I — I as follows:

1, ifx=0o0r1,

3 f N =0y,
sy =] oA

%7 if)\zal,

0, otherwise.

For each at,bs € Pt(X) and 0 <r < %, there exist a1 € Q(as, ) and b1 € Q- (bs,r) such that a1 Aby = 0. Hence (X, T) is

r-Ts, for 0 <r < % Let B be a base of product fuzzy topological space (X x X, 7 ® 7). From Theorem 1.5, since

(a,b)1 =71 '(a1) Ayt (ba),
5((047[))1) = ’T(al) /\T(bl) = 5

Since

(b,a)r =75 '(a1) Ay t(ba),

B((b,a)1) = 1(a1) A7(b1) = %

Thus, 7 @ 7((a,b)1 V (b,a)1) = 1. Since Ax =1— (a,b)1V (b,a)1, Cre-(Ax, 1) = Ax.

Theorem 2.13. Let f : (X,7) = (Y,71) and g : (X,7) = (Z,72) be fuzzy continuous. Define a function h: X —Y X Z
by h(z) = (f(x),g(x)). Then h: (X,7) = (Y X Z,71 ® T2) is fuzzy continuous where 71 ® T2 s a product fuzzy topology of
(Y, 1) and (Z,712).

Proof.  Suppose there exists p € I *Z such that 7(h™!(p)) < 71 ® 72(p). Let 8 be a base for 71 ® T2. By the definition of

T1 ® T2, there exists a family {p; | p = \/,c- pi} such that

(W (p)) < \ Blpi) < 11 @ 72(p).

i€l

By the definition of 8 of Theorem 1.5, for each i € T', there exist \; € I” and u; € IZ with p; = 77 *(\;) Ay * () such that

T(h™(p) < N\ (@) Ara(ua)) < N\ Blpa)- )

i€l el
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On the other hand, (m1 o )™ () (z) = Ni(mi(h(2))) = Xi(f(2)) = 71 (Ni)(z) for all 2 € X, similarly, (72 0 )™ (1s) =

g *(i). Thus, we have

h ™ (pi) = A () A (a)
= BN () AR (g ()

= (m1 o h) " (N) A (2 0 h) " (1)

It follows

( Since f and g are fuzzy continuous,)

It is a contradiction for the equation (2).

O

Theorem 2.14. Let f,g: (X,71) — (Y, 72) be fuzzy continuous. Let (Y,T) be r-Tz and Cr,(xa,r) = xx where A is a subset

of X, xa and xx are characteristic functions. If f(a) = g(a) for all a € A, then f(z) = g(x) for all z € X.

Proof. Suppose that there exists x € X — A with f(z) # g(z). Since (Y, 12) is r-T, for f(z)1,g(x)1 € Pt(Y), there exist

A€ Qnry(f(x)1,7) and pu € Qry(g(x)1,7) such that A A p = 0. Since f(z)1 ¢ A and g(z)1 q p, we have

(F N Ag Hw)(x) >0

®3)

On the other hand, let 7; : Y XY — Y be projection maps for each ¢ € {1,2} and h : X — Y XY defined by h(x) =

(f(z),g(z)). We have

AAp=0
S A ATt (W) A Ay =0
=h N W) AT () ARTHAy) =0
= TN W AR (Ay) =0

= h7THAy) ST= () Ag™ (W)
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Since (Y, 72) is r-T5, by Theorem 2.10, Cr,@r, (Ay,7) = Ay. Since h : (X,71) = (Y X Y, 72 ® 72) is fuzzy continuous, by
Theorem 1.5 (3),
Cry (K1 (Ay),r) S h 7 (Cryam (Av, 7)) = K1 (Ay).

Hence, by Theorem 1.2 (2), C-, (h"'(Ay),r) = h™'(Ay). Furthermore, since Cr, (xa,7) = xx and xa < h™'(Ay), we

have
Xx = Cry (xa,7) < Cry (W (Ly),7) = ™ (Ay)
<T— (')A g ()
Thus, xx(z) = 1 but 1(z) — (f *(A\) Ag~ (p))(z) < 1. Tt is a contradiction for the equation (3). O

Theorem 2.15. If f : (X, 1) — (Y, 72) is fuzzy continuous and (Y, 72) is r-Ta, then Criom (Xa(r):T) = Xa(s) where
G(f) ={(z,y) e X x Y|y = f(x)}.

Proof. Letidy : (Y,72) — (Y, 72) be an identity map. Since fom; : (X XY, 71®72) — (Y, 72) and idyoms : (X XY, 71 ®@72) —
(Y, 72) are fuzzy continuous, by Theorem 2.13, f X idy : (X X Y, 71 ® 2) = (Y X Y, 72 ® 72) is fuzzy continuous. From

Theorem 1.5 (3), it implies

Criomy ((f X idy) ™ (Ay),7) < (f X idy) " (Crygr (By, 7).

Since (Y, 72) is -T2, we have Cr,gr, (Ay,r) = Ay. By Theorem 1.3 (2),

Cryom ((f xidy) " (Ay),r) = (f x idy) " (Ay).

Since (f x idy) ™" (Ay) = xa(s), we have Cr,om, (Xa(f),T) = XG(/) =
Theorem 2.16. FEvery subspace of r-T» spaces is a r-T> space.

Proof. Let (A,7|a) be a subspace of a r-Tb space (X, 7). Let a¢,bs € Pt(A) such that a # b. Then a,bs € Pt(X) such
that a # b. Since (X, 7) is r-Ts, there exists A € Q- (as, )it € Q- (bs,r) such that AAp = 0. Since 74(i7*(X)) > 7(\) > r and
ar ¢i~"(\), we have i "' (X) € Q. |, (ar, ). Similarly, i~ () € Q| (bs, 7). Moreover, i~ ' () Ai~"(u) = 0. Hence (A,T|a) is
r-Ts. O

Theorem 2.17. Let {(X;,7) | i« € T'} be a family of r-T> spaces. Let (X,7) be the product fuzzy topological space of
{(Xi,7)|i €T}, Then (X, 1) is r-Ts.

Proof. Let x,ys € Pt(X) such that # # y. Then there exists ¢ € " such that (m;(z))¢, (m:(y))s € Pt(X;) with m;(x) #
M), Since (Xi,m) is 7T, there exist A € Qn,((ra(@))isr) and i € Qry(m(y))osr) with A Ap = 0. Since () =
(mi(z))e g X iff 2 g ;1 (N), we have

T (N € Qr(ae, 7).

—1
2

Similarly, 7, * (1) € Q- (ys, 7). Moreover, 7; *(A) A ;' (u) = 0. Therefore, (X,7) is a 7 — T space. O
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Theorem 2.18. Let {(X;, 1) | i € I'} be a family of fuzzy topological spaces. Let (X, T) be their product fuzzy topological

space. If (X, 7) is a r-T> space, then (X;,7;) is a (r — €)-T> space for each € > 0 and for each j € T.

Proof. Let (27):, (y7)s € Pt(X;) such that 27 # y7. Then there exist z* € X; for all i € I' — {j} such that z # y € X with

zt, ifi e T — {45},
mi(z) =9

o, ifi =7,

zt, ifi € T — {j},

yl, if i =j.
Since (X, 7) is r-T> space, there exist

P E Qr(we,7), w€ Qr(ys,m), pAw =0

Let 8 be a base for 7. Since 7(p) > 7 and 7(w) > 7, for € > 0, there exists two families {pr | p = Vcx pr} and

{wm | w =V ,,car wm} such that

() = N\ Blox) >r—¢,

keEK

7(w) > /\ Blwm) >r —e.

meM

Since x¢ q (p = Ve pr) and ys q¢ (w =/, ,cps Wm), there exist k € K and m € M such that

Tt q Pk, B(pk) > T —¢€

Ys 4 Wm, /B(wm) >r—¢

Pk AN Wm = 6 (4)

Then there exist two family: {\i | px = Ajep, 77 ()} and {p | wim = Nier, 7, ()}, where Fy and Fs are finite subsets

of I" such that

Blor) > N\ m(n) >r—e

i€ Fq

Blwm) > /\ Ti() >r—e

leFy

Without loss of generality, we may assume j € F = F} = F» because, if necessary, we can take F' = Fy U F> U {j} such that
i Zi, ViEFQU{j}andul :i, VZ€F1U{j}.
Hence we have

Blor) = N\ m(N) > 71— €, Blwm) > N\ mi(w) >r—e

i€EF i€F
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Since x+ q pr and ys q¢ wm, for each j € F,
zeqmy (N ys a5 (1)-

Hence

)‘j € Q—rj(l’{ﬂ" - 6)7 JUAS Q‘Q‘(ygvr - 6)'
We only show that A\; A u; = 0. Suppose there exists z/ € X7 such that
(A A pg)(27) > 0. (5)
Then there exist 2* € X; for all i € T' — {5} and z € X with

@ zt, ifi e T — {5},
Ti\2) =
2, ifi=j.

Since x+ q pr and ys q wm, we have

ieF—{j}
s>\ (- p)m@) V(I -um)y)
i€F—{j}
It implies
t> \/ (1=X)(m(@), (6)
i€F—{j}
s> V0 m)m@) ()
ieF—{j}
Moreover, from (5),
(T=2) V(I —p))E") <1 (8)

Hence, by (6), (7) and (8), we have

ieF—{j}
T-wn)z)=( V T-p)a)vI-m) )<t
ieF—{j}
Therefore (pr A wm)(z) > 0. It is a contradiction for the equation (4). Hence (X, 7;) is (r — €)-T5. O

Example 2.19. Let X ={a}, Y = {b,c} and X xY = {(a,b), (a,c)} be sets. We define fuzzy topologies 1,72 as follows:

1, ifx=0o0r1,
m1(A) =
0, otherwise,
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1, ifx=0o0rl,
3 ey

ny= & T
L ifa=0,

0, otherwise.

Then (X, 1) is v — Ta-space for all v € Iy and (Y, 72) is r-Tz-space for all 0 < r < 5. We obtain the product fuzzy topology

71 X 19 IXXY 5 T as follows:
1, ifx=0o0r1,
3 .
1 ZfA:(a,C)h
T1 ®T2(A) = 4
%7 if/\:(aﬂb)l:
0, otherwise.

Hence (X X Y, 11 ® 72) is r-T> for 0 <r < 3.
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