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1. Introduction and preliminaries

Šostak introduced the fundamental concept of a fuzzy topological structure as an extension of both crisp topology and Chang

fuzzy topology [3]. It has been developed in many directions [6, 12, 13, 18]. Many separation axioms were introduced in

fuzzy topological spaces in a sense of Chang or Lowen [1, 2, 5, 10, 16, 17, 21]. Srivastava [24] introduced separation axioms

in a view of the definition of Hazra.et.al [8]. In this paper, we define r-T2 space in fuzzy topological spaces in a view of

the definition of Sostak. We investigate some properties of r-T2 spaces. In particular, we study properties of subspaces and

products of r-T2 spaces. Throughout this paper, let X be a nonempty set, I = [0, 1] and I0 = (0, 1]. For α ∈ I, ᾱ(x) = α

for all x ∈ X. A fuzzy point xt for t ∈ I0 is an element of IX such that

xt(y) =

 t, if y = x,

0, if y 6= x.

The set of all fuzzy points in X is denoted by Pt(X). A fuzzy point xt ∈ λ iff t ≤ λ(x). A fuzzy set λ is quasi-coincident

with µ, denoted by λ q µ, if there exists x ∈ X such that λ(x) + µ(x) > 1. If λ is not quasi-coincident with µ, we denote

λ q̄ µ.
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Definition 1.1 ([6, 8, 12, 20, 22]). A function τ : IX → I is called a fuzzy topology on X if it satisfies the following

conditions:

(O1) τ(0̄) = τ(1̄) = 1.

(O2) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2) for each µ1, µ2 ∈ IX .

(O3) τ(
∨
i∈Γ µi) ≥

∧
i∈Γ τ(µi) for any {µi}i∈Γ ⊂ IX . The pair (X, τ) is called a fuzzy topological space.

Let τ1 and τ2 be fuzzy topologies on X. We say τ1 is finer than τ2 (τ2 is coarser than τ1) if τ2(µ) ≤ τ1(µ) for all µ ∈ IX .

Theorem 1.2 ([8]). Let (X, τ) be a fuzzy topological space. For each r ∈ I0, λ ∈ IX , we define an operator CτI
X × I0 → IX

as follows:

Cτ (λ, r) =
∧
{µ | µ ≥ λ, τ(1̄− µ) ≥ r}.

Then it satisfies the following properties:

(1) Cτ (0̄, r) = 0̄, Cτ (1̄, r) = 1̄, for all r ∈ I0.

(2) Cτ (λ, r) ≥ λ.

(3) Cτ (λ1, r) ≤ Cτ (λ2, r), if λ1 ≤ λ2.

(4) Cτ (λ ∨ µ, r) = Cτ (λ, r) ∨ Cτ (µ, r), for all r ∈ I0.

(5) Cτ (λ, r) ≤ Cτ (λ, r′), if r ≤ r′, where r, r′ ∈ I0.

(6) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Definition 1.3 ([11]). Let 0̄ 6∈ ΘX be a subset of IX . A function β : ΘX → I is called a fuzzy topological base on X if it

satisfies the following conditions:

(B1) β(1̄) = 1.

(B2) β(µ1 ∧ µ2) ≥ β(µ1) ∧ β(µ2), for all µ1, µ2 ∈ ΘX .

A fuzzy topological base β always generates a fuzzy topology τβ on X in the following sense:

Theorem 1.4 ([11]). Let β be a fuzzy topological base on X. Define the function τβ : IX → I as follows: for each µ ∈ IX ,

τβ(µ) =


∨
{
∧
i∈J β(µi)}, if µ =

∨
i∈J µi, µj ∈ ΘX ,

1, if µ = 0̄,

0, otherwise

where the first
∨

is taken over all families {µi ∈ ΘX | µ =
∨
i∈J µi}. Then (X, τβ) is a fuzzy topological space.

Let (X, τ1) and (Y, τ2) be fuzzy topological spaces. A function f : (X, τ1) → (Y, τ2) is called fuzzy continuous if τ2(µ) ≤

τ1(f−1(µ)) for all µ ∈ IY .
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Theorem 1.5 ([11]). Let (Xi, τi)i∈Γ be fuzzy topological spaces and X a set and fi : X → Xi a function , for each i ∈ Γ. Let

ΘX = {0̄ 6= µ =
∧
i∈F f

−1
i (νi)|τi(νi) > 0, i ∈ F} be given, for every finite index set F ⊂ Γ. Define a function β : ΘX → I

on X by

β(µ) =
∨
{
∧
i∈F

τi(νi) | µ =
∧
i∈F

f−1
i (νi)}

where the first
∨

is taken over all finite index subset F of Γ. Then:

(1) β is a fuzzy topological base on X.

(2) The fuzzy topology τβ generated by β is the coarsest fuzzy topology on X for which each i ∈ Γ, fi is fuzzy continuous.

(3) A map f : (Z, τZ)→ (X, τβ) is fuzzy continuous iff for each i ∈ Γ, fi ◦ f is fuzzy continuous.

From Theorem 1.5, we can define the following definitions.

Definition 1.6 ([11]). Let (X, τ) be a fuzzy topological space and A be a subset of X. The pair (A, τ |A) is said to be a

subspace of (X, τ) if τ |A is the coarsest fuzzy topology on A for which the inclusion map i is fuzzy continuous.

Definition 1.7 ([11]). Let X be the product
∏
i∈Γ Xi of the family {(Xi, τi) | i ∈ Γ} of fuzzy topological spaces. The the

coarsest fuzzy topology τ =
⊗
τi on X for which each the projections πi : X → Xi is fuzzy continuous is called the product

fuzzy topology of {τi | i ∈ Γ}, and (X, τ) is called the product fuzzy topology space.

2. The Properties of r-T2 Spaces

Definition 2.1. Let (X, τ) be a fuzzy topological space. A fuzzy set µ ∈ IX is called a r-Qτ open neighborhood of xt if

xt q µ and τ(µ) ≥ r. We denote

Qτ (xt, r) = {µ ∈ IX | xt q µ, τ(µ) ≥ r}.

Definition 2.2. A fuzzy topological space (X, τ) is said to be a r-T2-space if for each xt, ys ∈ Pt(X) such that x 6= y, there

exist λ ∈ Qτ (xt, r) and µ ∈ Qτ (ys, r) such that λ ∧ µ = 0̄.

Theorem 2.3. A fuzzy topological space (X, τ) is r-T2 iff for each xt, ys ∈ Pt(X) such that x 6= y, and t, s < 1, there exist

λ, µ ∈ IX such that xt ∈ λ, τ(λ) ≥ r , ys ∈ µ, τ(µ) ≥ r and λ ∧ µ = 0̄.

Proof. (⇒) For each xt, ys ∈ Pt(X) such that x 6= y, and t, s < 1, x1−t, y1−s ∈ Pt(X). Since (X, τ) is r-T2, there exist

λ ∈ Qτ (x1−t, r) and µ ∈ Qτ (y1−s, r) such that λ ∧ µ = 0̄. Thus, λ ∈ Qτ (x1−t, r) implies xt ∈ λ and τ(λ) ≥ r. Thus,

µ ∈ Qτ (y1−s, r) implies ys ∈ µ and τ(µ) ≥ r.

(⇐) Let xt, ys ∈ Pt(X) such that x 6= y. Let t, s < 1. For x1−t, y1−s ∈ Pt(X), there exist λ, µ ∈ IX such that

x1−t ∈ λ, τ(λ) ≥ r, y1−s ∈ µ, τ(µ) ≥ r and λ ∧ µ = 0̄. It implies λ ∈ Qτ (xt, r) and µ ∈ Qτ (ys, r).

If t = 1 or s = 1, let t = 1 and s < 1. There exists 0 < p < 1 such that xp, y1−s ∈ Pt(X). Then there exist λ, µ ∈ IX such

that xp ∈ λ τ(λ) ≥ r, y1−s ∈ µ τ(µ) ≥ r and λ ∧ µ = 0̄. Thus, xt q λ and ys q µ. Hence λ ∈ Qτ (xt, r) and µ ∈ Qτ (ys, r)

such that λ ∧ µ = 0̄. Hence (X, τ) is r-T2.
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Theorem 2.4. A fuzzy topological space (X, τ) is r-T2 iff for each xt, yt ∈ Pt(X) such that x 6= y, there exist λ ∈ Qτ (xt, r)

and µ ∈ Qτ (yt, r) such that λ ∧ µ = 0̄.

Proof. (⇒) It is trivial.

(⇐) Let xt, ys ∈ Pt(X) such that x 6= y and t < s. Since for each xt, yt ∈ Pt(X), there exist λ ∈ Qτ (xt, r) and µ ∈ Qτ (yt, r)

such that λ ∧ µ = 0̄, then yt q µ implies ys q µ. Hence (X, τ) is r-T2.

Definition 2.5 ([16]). Let D be a directed set. A function S : D → Pt(X) is called a fuzzy net.

Definition 2.6. Let (X, τ) be a fuzzy topological space, µ ∈ IX , xt ∈ Pt(X) and r ∈ I0. A fuzzy point xt is called a fuzzy

r-limit point of S, denoted by S
r→ xt, if for every µ ∈ Qτ (xt, r), there exists n0 ∈ D such that for each n ∈ D with n ≥ n0,

we have S(n) q µ. We denote

lim
τ

(S, r) =
∨
{xt ∈ Pt(X) | xt is a fuzzy r-limit point of S}.

For λ ∈ IX , we denote supp(λ) = {x ∈ X | λ(x) > 0} and |supp(λ)| is the cardinal number of supp(λ).

Theorem 2.7. Let (X, τ) be a fuzzy topological space. Then the following statements are equivalent.

(1) (X, τ) is r-T2.

(2) For each fuzzy net S, |supp(limτ (S, r))| ≤ 1.

Proof. (1)⇒ (2) Suppose there exists a fuzzy net S : D → Pt(X) such that |supp(limτ (S, r))| ≥ 2. There exist x 6= y ∈

supp(limτ (S, r)) such that S
r→ xt, ys. Since (X, τ) is r-T2, there exist λ ∈ Qτ (xt, r) and µ ∈ Qτ (ys, r) such that λ ∧ µ = 0̄.

Since S
r→ xt, ys, there exist n1, n2 such that

∀n ≥ n1, S(n) q λ,

∀n ≥ n2, S(n) q µ.

Since D is a directed set, there exists n3 ≥ n1, n2 such that

∀n ≥ n3, S(n) q λ, S(n) q µ.

It implies S(n) q λ ∧ µ, for all n ≥ n3. Since λ ∧ µ = 0̄, it is a contradiction.

(2)⇒ (1) Let (X, τ) be not r-T2. Then there exist xt, ys ∈ Pt(X) with x 6= y such that for all λ ∈ Qτ (xt, r) and for all

µ ∈ Qτ (ys, r), we have λ ∧ µ 6= 0̄. Define a relation on D = {λ ∧ µ | λ ∈ Qτ (xt, r), µ ∈ Qτ (ys, r)} by

λ1 ∧ µ1 ≺ λ2 ∧ µ2 iff λ1 ≥ λ2, µ1 ≥ µ2.

Then (D,≺) is a directed set. For each λ∧µ ∈ D, since λ∧µ 6= 0̄, there exist z ∈ X and p ∈ I0 such that (λ∧µ)(z) > 1−p > 0.

Then zp q λ ∧ µ. Thus, we can define a fuzzy net S : D → Pt(X) by

S(λ ∧ µ) = zp, that is, S(λ ∧ µ) = λ ∧ µ.

For every λ ∈ Qτ (xt, r), there exists λ = λ ∧ 1̄ ∈ D such that for all ρ ∈ D with λ ≺ ρ, we have S(ρ) q ρ. Since ρ ≤ λ, we

have S(ρ) q λ. Hence xt ∈ limτ (S, r). Similarly, ys ∈ limτ (S, r). Thus, |supp(limτ (S, r))| ≥ 2.
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Example 2.8. Let X = {x, y} be a set. We define a fuzzy topology τ : IX → I as follows:

τ(λ) =



1, if λ = 0̄ or 1̄;

1
2
, if λ = x1;

1
2
, if λ = y1;

0, otherwise.

For each xt, ys ∈ Pt(X) such that x 6= y, for 0 < r ≤ 1
2

, there exist x1 ∈ Qτ (xt, r) and y1 ∈ Qτ (ys, r) such that x1 ∧ y1 = 0̄.

Hence (X, τ) is r-T2, for 0 < r ≤ 1
2

. Moreover, we easily show that (X, τ) is not r-T2, for r > 1
2

. Let N be a natural number

set. Define a fuzzy net S : N → Pt(X) by

S(n) =

 x0.4, if n = 2m,

y0.3, if n = 2m+ 1.

We can show limτ (S, 1
2
) = Opt. Lett. 0 from (1) to (2).

(1) xt for t ∈ I0 is not a fuzzy 1
2

-limit point of S, for x1 ∈ Qτ (xt,
1
2
) and for each n ∈ N , there exists 2n+ 1 ∈ N such that

2n+ 1 ≥ n and S(2n+ 1) q̄ x1.

(2) ys for s ∈ I0 is not a fuzzy 1
2

-limit point of S, for y1 ∈ Qτ (ys,
1
2
) and for each n ∈ N , there exists 2n+ 1 ∈ N such that

2n+ 1 ≥ n and S(2n) q̄ y1. Thus, |supp(limτ (S, 1
2
))| = 0.

Example 2.9. Let X = {x, y} be a set. We define a fuzzy topology τ : IX → I as follows:

τ(λ) =


1, if λ = 0̄ or 1̄,

1
2
, if λ = x0.4,

0, otherwise.

For x0.3, y0.5 ∈ Pt(X), since Qτ (x0.3, r) = Qτ (y0.5, r) = {1̄}, for each r ∈ I0, (X, τ) is not r-T2. Let N be a natural number

set. Define a fuzzy net S : N → Pt(X) by

S(n) = xan , an = 0.5 + (−1)n0.2.

(1) xt for t ≤ 0.6 is a fuzzy r-limit point of S, for 1̄ ∈ Qτ (xt, r) and for all n ∈ N ,we have S(n) q 1̄.

(2) xt for 0.6 < t and 0 < r ≤ 1
2

is not a fuzzy r-limit point of S, for x0.4 ∈ Qτ (xt, r) and for each n ∈ N , there exists

2n+ 1 ∈ N such that 2n+ 1 ≥ n and S(2n+ 1) = x0.3 q x0.4.

(3) ys for s ∈ I0 is a fuzzy r-limit point of S, for 1̄ ∈ Qτ (ys, r) and for all n ∈ N ,we have S(n) q 1̄.

From (1) to (3), put µ(x) = 0.6 and µ(y) = 1, we obtain

lim
τ

(S, r) =

 µ, if 0 < r ≤ 1
2

,

1̄, if r > 1
2

.

Thus, |supp(limτ (S, r))| = 2.
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Define 4X ∈ IX×X as follows:

4X(x, y) =

 1, if x = y,

0, if x 6= y.

Theorem 2.10. Let (X, τ) be r-T2. Then Cτ⊗τ (4X , r) = 4X where τ ⊗ τ is a product fuzzy topology on X ×X.

Proof. We only show that Cτ⊗τ (4X , r) ≤ 4X from Theorem 1.2 (2). Suppose Cτ⊗τ (4X , r) 6≤ 4X . Then there exist

(x, y) ∈ X ×X and t ∈ I0 such that

Cτ⊗τ (4X , r)(x, y) > t > 4X(x, y). (1)

Since 4X(x, y) < t. Then x 6= y. Since (X, τ) is r-T2, for xt, yt ∈ Pt(X), there exist λ ∈ Qτ (xt, r) and µ ∈ Qτ (yt, r) such

that λ ∧ µ = 0̄. Put ρ = π−1
1 (λ) ∧ π−1

2 (µ). Then τ ⊗ τ(ρ) ≥ τ(λ) ∧ τ(µ) ≥ r. Moreover, since xt q λ and yt q µ, we have

(π−1
1 (λ) ∧ π−1

2 (µ))(x, y) + t = λ(x) ∧ µ(y) + t > 1.

Thus, ρ ∈ Qτ⊗τ ((x, y)t, r). Since, for all x ∈ X,

ρ(x, x) = (π−1
1 (λ) ∧ π−1

2 (µ))(x, x) = λ(x) ∧ µ(x) = 0,

we have ρ ≤ 1̄−4X . So, 4X ≤ 1̄− ρ and τ ⊗ τ(ρ) ≥ r implies

4X ≤ Cτ⊗τ (4X , r) ≤ 1̄− ρ.

Since (x, y)t q ρ,

Cτ⊗τ (4X , r)(x, y) ≤ (1̄− ρ)(x, y) < t.

It is a contradiction for the equation (1).

Theorem 2.11. Let τ ⊗ τ be a product fuzzy topology on X ×X of a fuzzy topological space (X, τ). If Cτ⊗τ (4X , r) = 4X ,

then (X, τ) is (r − ε)-T2, for arbitrary ε > 0.

Proof. Let xt, yt ∈ Pt(X) with x 6= y. Since Cτ⊗τ (4X , r) = 4X , by the definition Cτ⊗τ of Theorem 1.2 and Definition

1.1 (O3), we have τ ⊗ τ(1̄−4X) ≥ r. Put ρ = 1̄−4X . Then ρ(x, y) = 1 implies (x, y)t q ρ. Let β be a base for τ ⊗ τ . Since

τ ⊗ τ(ρ) ≥ r, by Theorem 1.4, for ε > 0, there exists a family {ρi | ρ =
∨
i∈Γ ρi} such that

τ ⊗ τ(ρ) ≥
∧
i∈Γ

β(ρi) > r − ε.

Since (x, y)t q (ρ =
∨
i∈Γ ρi), there exists i ∈ Γ such that (x, y)t q ρi and β(ρi) > r − ε. From Theorem 1.5, there exist

λ, µ ∈ IX such that

ρi = π−1
1 (λ) ∧ π−1

2 (µ), β(ρi) ≥ τ(λ) ∧ τ(µ) ≥ r − ε.

Therefore τ(λ) ≥ r − ε, τ(µ) ≥ r − ε. Furthermore, since (x, y)t q ρi, we have

(x, y)t q π
−1
1 (λ)⇒ (π−1

1 (λ)(x, y) = λ(x)) + t > 1,

(x, y)t q π
−1
2 (µ)⇒ (π−1

2 (µ)(x, y) = µ(y)) + t > 1.
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Hence λ ∈ Qτ (xt, r − ε) and µ ∈ Qτ (yt, r − ε). Moreover, for each x ∈ X,

(λ ∧ µ)(x) = π−1
1 (λ) ∧ π−1

2 (µ)(x, x)

= ρi(x, x) ≤ ρ(x, x) = 0,

because ρ(x, x) = (Opt. Lett. 1−4X)(x, x) = 0. Thus, by Theorem 2.4, (X, τ) is (r − ε)-T2, for arbitrary ε > 0.

Example 2.12. Let X = {a, b} and X ×X be sets. We define a fuzzy topology τ : IX → I as follows:

τ(λ) =



1, if λ = 0̄ or 1̄,

3
4
, if λ = b1,

1
2
, if λ = a1,

0, otherwise.

For each at, bs ∈ Pt(X) and 0 < r ≤ 1
2

, there exist a1 ∈ Qτ (at, r) and b1 ∈ Qτ (bs, r) such that a1 ∧ b1 = 0̄. Hence (X, τ) is

r-T2, for 0 < r ≤ 1
2

. Let β be a base of product fuzzy topological space (X ×X, τ ⊗ τ). From Theorem 1.5, since

(a, b)1 = π−1
1 (a1) ∧ π−1

2 (b1),

β((a, b)1) = τ(a1) ∧ τ(b1) =
1

2
.

Since

(b, a)1 = π−1
2 (a1) ∧ π−1

1 (b1),

β((b, a)1) = τ(a1) ∧ τ(b1) =
1

2
.

Thus, τ ⊗ τ((a, b)1 ∨ (b, a)1) = 1
2

. Since 4X = 1̄− (a, b)1 ∨ (b, a)1, Cτ⊗τ (4X , 1
2
) = 4X .

Theorem 2.13. Let f : (X, τ) → (Y, τ1) and g : (X, τ) → (Z, τ2) be fuzzy continuous. Define a function h : X → Y × Z

by h(x) = (f(x), g(x)). Then h : (X, τ) → (Y × Z, τ1 ⊗ τ2) is fuzzy continuous where τ1 ⊗ τ2 is a product fuzzy topology of

(Y, τ1) and (Z, τ2).

Proof. Suppose there exists ρ ∈ IY×Z such that τ(h−1(ρ)) < τ1 ⊗ τ2(ρ). Let β be a base for τ1 ⊗ τ2. By the definition of

τ1 ⊗ τ2, there exists a family {ρi | ρ =
∨
i∈Γ ρi} such that

τ(h−1(ρ)) <
∧
i∈Γ

β(ρi) ≤ τ1 ⊗ τ2(ρ).

By the definition of β of Theorem 1.5, for each i ∈ Γ, there exist λi ∈ IY and µi ∈ IZ with ρi = π−1
1 (λi)∧π−1

2 (µi) such that

τ(h−1(ρ)) <
∧
i∈Γ

(τ1(λi) ∧ τ2(µi)) ≤
∧
i∈Γ

β(ρi). (2)

213



Some Properties of r-T2 Spaces

On the other hand, (π1 ◦ h)−1(λi)(x) = λi(π1(h(x))) = λi(f(x)) = f−1(λi)(x) for all x ∈ X, similarly, (π2 ◦ h)−1(µi) =

g−1(µi). Thus, we have

h−1(ρi) = h−1(π−1
1 (λi) ∧ π−1

2 (µi))

= h−1(π−1
1 (λi)) ∧ h−1(π−1

2 (µi))

= (π1 ◦ h)−1(λi) ∧ (π2 ◦ h)−1(µi)

= f−1(λi) ∧ g−1(µi).

It follows

τ(h−1(ρ)) = τ(h−1(
∨
i∈Γ

ρi))

≥
∧
i∈Γ

τ(h−1(ρi))

=
∧
i∈Γ

(τ(f−1(λi) ∧ g−1(µi)))

≥
∧
i∈Γ

(τ(f−1(λi)) ∧ τ(g−1(µi)))

( Since f and g are fuzzy continuous,)

≥
∧
i∈Γ

(τ1(λi) ∧ τ2(µi)).

It is a contradiction for the equation (2).

Theorem 2.14. Let f, g : (X, τ1)→ (Y, τ2) be fuzzy continuous. Let (Y, τ) be r-T2 and Cτ1(χA, r) = χX where A is a subset

of X, χA and χX are characteristic functions. If f(a) = g(a) for all a ∈ A, then f(x) = g(x) for all x ∈ X.

Proof. Suppose that there exists x ∈ X − A with f(x) 6= g(x). Since (Y, τ2) is r-T2, for f(x)1, g(x)1 ∈ Pt(Y ), there exist

λ ∈ Qτ2(f(x)1, r) and µ ∈ Qτ2(g(x)1, r) such that λ ∧ µ = 0̄. Since f(x)1 q λ and g(x)1 q µ, we have

(f−1(λ) ∧ g−1(µ))(x) > 0 (3)

On the other hand, let πi : Y × Y → Y be projection maps for each i ∈ {1, 2} and h : X → Y × Y defined by h(x) =

(f(x), g(x)). We have

λ ∧ µ = 0̄

⇒ π−1
1 (λ) ∧ π−1

2 (µ) ∧4Y = 0̄

⇒ h−1(π−1
1 (λ) ∧ π−1

2 (µ)) ∧ h−1(4Y ) = 0̄

⇒ f−1(λ) ∧ g−1(µ) ∧ h−1(4Y ) = 0̄

⇒ h−1(4Y ) ≤ 1̄− (f−1(λ) ∧ g−1(µ)).
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Since (Y, τ2) is r-T2, by Theorem 2.10, Cτ2⊗τ2(4Y , r) = 4Y . Since h : (X, τ1) → (Y × Y, τ2 ⊗ τ2) is fuzzy continuous, by

Theorem 1.5 (3),

Cτ1(h−1(4Y ), r) ≤ h−1(Cτ2⊗τ2(4Y , r)) = h−1(4Y ).

Hence, by Theorem 1.2 (2), Cτ1(h−1(4Y ), r) = h−1(4Y ). Furthermore, since Cτ1(χA, r) = χX and χA ≤ h−1(4Y ), we

have

χX = Cτ1(χA, r) ≤ Cτ1(h−1(4Y ), r) = h−1(4Y )

≤ 1̄− (f−1(λ) ∧ g−1(µ)).

Thus, χX(x) = 1 but 1̄(x)− (f−1(λ) ∧ g−1(µ))(x) < 1. It is a contradiction for the equation (3).

Theorem 2.15. If f : (X, τ1) → (Y, τ2) is fuzzy continuous and (Y, τ2) is r-T2, then Cτ1⊗τ2(χG(f), r) = χG(f) where

G(f) = {(x, y) ∈ X × Y | y = f(x)}.

Proof. Let idY : (Y, τ2)→ (Y, τ2) be an identity map. Since f◦π1 : (X×Y, τ1⊗τ2)→ (Y, τ2) and idY ◦π2 : (X×Y, τ1⊗τ2)→

(Y, τ2) are fuzzy continuous, by Theorem 2.13, f × idY : (X × Y, τ1 ⊗ τ2) → (Y × Y, τ2 ⊗ τ2) is fuzzy continuous. From

Theorem 1.5 (3), it implies

Cτ1⊗τ2((f × idY )−1(4Y ), r) ≤ (f × idY )−1(Cτ2⊗τ2(4Y , r)).

Since (Y, τ2) is r-T2, we have Cτ2⊗τ2(4Y , r) = 4Y . By Theorem 1.3 (2),

Cτ1⊗τ2((f × idY )−1(4Y ), r) = (f × idY )−1(4Y ).

Since (f × idY )−1(4Y ) = χG(f), we have Cτ1⊗τ2(χG(f), r) = χG(f)

Theorem 2.16. Every subspace of r-T2 spaces is a r-T2 space.

Proof. Let (A, τ |A) be a subspace of a r-T2 space (X, τ). Let at, bs ∈ Pt(A) such that a 6= b. Then at, bs ∈ Pt(X) such

that a 6= b. Since (X, τ) is r-T2, there exists λ ∈ Qτ (at, r)µ ∈ Qτ (bs, r) such that λ∧µ = 0̄. Since τA(i−1(λ)) ≥ τ(λ) ≥ r and

at q i
−1(λ), we have i−1(λ) ∈ Qτ |A(at, r). Similarly, i−1(µ) ∈ Qτ |A(bs, r). Moreover, i−1(λ) ∧ i−1(µ) = 0̄. Hence (A, τ |A) is

r-T2.

Theorem 2.17. Let {(Xi, τi) | i ∈ Γ} be a family of r-T2 spaces. Let (X, τ) be the product fuzzy topological space of

{(Xi, τi) | i ∈ Γ}. Then (X, τ) is r-T2.

Proof. Let xt, ys ∈ Pt(X) such that x 6= y. Then there exists i ∈ Γ such that (πi(x))t, (πi(y))s ∈ Pt(Xi) with πi(x) 6=

πi(y). Since (Xi, τi) is r-T2, there exist λ ∈ Qτi((πi(x))t, r) and µ ∈ Qτi((πi(y))s, r) with λ ∧ µ = 0̄. Since πi(xt) =

(πi(x))t q λ iff xt q π
−1
i (λ), we have

π−1
i (λ) ∈ Qτ (xt, r).

Similarly, π−1
i (µ) ∈ Qτ (ys, r). Moreover, π−1

i (λ) ∧ π−1
i (µ) = 0̄. Therefore, (X, τ) is a r − T2 space.
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Theorem 2.18. Let {(Xi, τi) | i ∈ Γ} be a family of fuzzy topological spaces. Let (X, τ) be their product fuzzy topological

space. If (X, τ) is a r-T2 space, then (Xj , τj) is a (r − ε)-T2 space for each ε > 0 and for each j ∈ Γ.

Proof. Let (xj)t, (y
j)s ∈ Pt(Xj) such that xj 6= yj . Then there exist xi ∈ Xi for all i ∈ Γ−{j} such that x 6= y ∈ X with

πi(x) =

 xi, if i ∈ Γ− {j},

xj , if i = j,

πi(y) =

 xi, if i ∈ Γ− {j},

yj , if i = j.

Since (X, τ) is r-T2 space, there exist

ρ ∈ Qτ (xt, r), ω ∈ Qτ (ys, r), ρ ∧ ω = 0̄

Let β be a base for τ . Since τ(ρ) ≥ r and τ(ω) ≥ r, for ε > 0, there exists two families {ρk | ρ =
∨
k∈K ρk} and

{ωm | ω =
∨
m∈M ωm} such that

τ(ρ) ≥
∧
k∈K

β(ρk) > r − ε,

τ(ω) ≥
∧
m∈M

β(ωm) > r − ε.

Since xt q (ρ =
∨
k∈K ρk) and ys q (ω =

∨
m∈M ωm), there exist k ∈ K and m ∈M such that

xt q ρk, β(ρk) > r − ε,

ys q ωm, β(ωm) > r − ε,

ρk ∧ ωm = 0̄. (4)

Then there exist two family: {λi | ρk =
∧
i∈F1

π−1
i (λi)} and {µl | ωm =

∧
l∈F2

π−1
l (µl)}, where F1 and F2 are finite subsets

of Γ such that

β(ρk) ≥
∧
i∈F1

τi(λi) > r − ε,

β(ωm) ≥
∧
l∈F2

τl(µl) > r − ε.

Without loss of generality, we may assume j ∈ F = F1 = F2 because, if necessary, we can take F = F1 ∪ F2 ∪ {j} such that

λi = 1̄, ∀ i ∈ F2 ∪ {j} and µl = 1̄, ∀ l ∈ F1 ∪ {j}.

Hence we have

β(ρk) ≥
∧
i∈F

τi(λi) > r − ε, β(ωm) ≥
∧
i∈F

τi(µi) > r − ε.
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Since xt q ρk and ys q ωm, for each j ∈ F ,

xt q π
−1
j (λj), ys q π

−1
j (µj).

Hence

λj ∈ Qτj (xjt , r − ε), µj ∈ Qτj (yjs, r − ε).

We only show that λj ∧ µj = 0̄. Suppose there exists zj ∈ Xj such that

(λj ∧ µj)(zj) > 0. (5)

Then there exist xi ∈ Xi for all i ∈ Γ− {j} and z ∈ X with

πi(z) =

 xi, if i ∈ Γ− {j},

zj , if i = j.

Since xt q ρk and ys q ωm, we have

t > (
∨

i∈F−{j}

(1̄− λi)(πi(x))) ∨ (1̄− λj)(xj)

s > (
∨

i∈F−{j}

(1̄− µi)(πi(x)) ∨ (1̄− µj)(yj).

It implies

t >
∨

i∈F−{j}

(1̄− λi)(πi(x)), (6)

s >
∨

i∈F−{j}

(1̄− µi)(πi(x)). (7)

Moreover, from (5),

((1̄− λj) ∨ (1̄− µj))(zj) < 1. (8)

Hence, by (6), (7) and (8), we have

(1̄− ρk)(z) = (
∨

i∈F−{j}

(1̄− λi)(xi)) ∨ (1̄− λj)(zj) < 1

(1̄− ωm)(z) = (
∨

i∈F−{j}

(1̄− µi)(xi)) ∨ (1̄− µj)(zj) < 1.

Therefore (ρk ∧ ωm)(z) > 0. It is a contradiction for the equation (4). Hence (Xj , τj) is (r − ε)-T2.

Example 2.19. Let X = {a}, Y = {b, c} and X × Y = {(a, b), (a, c)} be sets. We define fuzzy topologies τ1, τ2 as follows:

τ1(λ) =

 1, if λ = 0̄ or 1̄,

0, otherwise,
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τ2(λ) =



1, if λ = 0̄ or 1̄,

3
4
, if λ = c1,

1
2
, if λ = b1,

0, otherwise.

Then (X, τ1) is r − T2-space for all r ∈ I0 and (Y, τ2) is r-T2-space for all 0 < r ≤ 1
2

. We obtain the product fuzzy topology

τ1 × τ2 : IX×Y → I as follows:

τ1 ⊗ τ2(λ) =



1, if λ = 0̄ or 1̄,

3
4
, if λ = (a, c)1,

1
2
, if λ = (a, b)1,

0, otherwise.

Hence (X × Y, τ1 ⊗ τ2) is r-T2 for 0 < r ≤ 1
2

.

References

[1] D.M. Ali, A note on some FT2 concepts, Fuzzy sets and Systems, 42(1991), 381-386.

[2] S.S.Benchalli and G.P.Siddapur, On level spaces of fuzzy topological spaces, Bull. of Math. Anal. Appl., 1(2)(2009),

57-65.

[3] C.L.Chang, Fuzzy topological spaces, J. Math. Anal. Appl.,24(1968), 182-190.

[4] S.L.Chen and J.S.Cheng, On convergence of nets of L-fuzzy sets, J. Fuzzy Math., 2(1994), 517-524.

[5] J.S. Cheng, On separation axioms in L- fuzzy toplogical spaces, Proceedings of Int.Conf. on Machine Learning and

Cyberneties,(2005), 2534-2539.

[6] M.Demirci, Neighborhood structures in smooth topological spaces, Fuzzy sets and Systems, 92(1997), 123-128.

[7] S.Ganguly and S.Saha, On separation axioms and Ti-fuzzy continuity, Fuzzy sets and Systems, 16(1985), 265-275.

[8] R.N.Hazra, S.K.Samanta and K.C.Chattopadhyay, Gradation of openness: Fuzzy topology, Fuzzy sets and Systems,

49(2)(1992), 237-242.
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