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1. Introduction

The Weibull distribution [16] is often used in the modeling of lifetimes of components of engineering applications, physical

systems and many different fields. In previous years, many authors provided many extensions for the Weibull distribution and

their applications. Mudholkar and et al. [9] proposed a three parameter model by exponentiating the Weibull Distribution

and called it the exponentiated Weibull distribution. A three parameter modified Weibull extension is proposed by Xie et al.

[15]. Sarhan et al. [13] has defined a new four parameter distribution referred to as exponentiated modified Weibull extension

distribution by exponentiating the modified Weibull extension distribution which discussed by Xie et al. Bebbington et al.

[3] introduced a new two parameter distribution referred to as a flexible Weibull extension, which has a hazard function

that can be increasing, decreasing or bathtub shaped. A flexible Weibull extension distribution has cumulative distribution

function (cdf) given by

F (x) =
[
1 − e−e

αx−β/x]
, x > 0, (1)

and its probability density function (pdf) takes the following form

f(x) = (α+
β

x2
)eαx−β/xe−e

αx−β/x
, x > 0. (2)

In this paper we propose a new three parameters model by exponentiating the flexible Weibull extension distribution as was

done for the exponentiated weibull (EW) distribution by Mudholkar et al. We referred to it by the exponentiated flexible

Weibull extension (EFW) distribution.

The paper is organized as follows. In Section 2, we present the EFW distribution, and provide its cumulative distribution

function, the probability density function , the survival function and the hazard function. Some statistical properties such
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as the quantile , the median, the mode and the moments are obtained in Section 3. Section 4 discusses the distribution of

the order statistics. Section 5 obtains the parameter estimation using MLE method. In Section 6 a numerical result are

obtained by using two real data sets. Finally, a conclusion for the results is given in Section 7.

2. Exponentiated Flexible Weibull Extension Distribution

In this section, we introduce the exponentiated flexible Weibull extension distribution.

2.1. EFW Specifications

A non-negative random variable X has the EFW distribution with three parameters Ω = (α, β, θ) , say EFW(Ω) if its

cumulative distribution function is given by the following form

F (x) =
[
1 − e−e

αx−β/x]θ
, α, β, θ > 0, x > 0. (3)

The two parameters α and β are scale parameters but θ is shape parameters. Since the cdf of EFW is in closed form, we

can use it to generating simulated data by using the following formula

x =
1

2α

{[
ln(− ln(1 − U

1
θ ))
]

+

√[
ln(− ln(1 − U

1
θ ))
]2

+ 4αβ

}
,

where U is a random variable which follows a standard uniform distribution on (0, 1) interval.

The density function corresponding to (3) is

f(x) = θ(α+
β

x2
)eαx−β/xe−e

αx−β/x [
1 − e−e

αx−β/x]θ−1

, x > 0. (4)

2.2. Survival and Hazard Rate Functions

If X ∼EFW(Ω), then the survival function and the hazard rate function of X are given respectively by

S(x) = 1 − F (x) = 1 −
[
1 − e−e

αx−β/x]θ
(5)

and

h(x) =
f(x)

S(x)
=
θ(α+ β

x2
)eαx−β/xe−e

αx−β/x
[
1 − e−e

αx−β/x
]θ−1

1 −
[
1 − e−eαx−β/x

]θ . (6)

Figure 1. The pdf of the EFW distribution at different values of its parameters
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Figure 2. The hazard function of the EFW distribution at different values of its parameters.

3. Statistical Properties

In this section, we will derive some of statistical properties for the EFW, specially moments, modes, quantiles and median.

3.1. Quantile and Median of EFW

In this subsection, we will present the forms of the quantile, the mode and the median of EFW as closed forms. The quantile

xq of the EFW(Ω) is given by

xq =
1

2α

{[
ln(− ln(1−q

1
θ ))
]

+

√[
ln(− ln(1−q 1

θ ))
]2

+4αβ

}
, 0 < q < 1. (7)

Sitting q = 1
2

in (7), we get the median of EFW(Ω) distribution as

Med(X) =
1

2α


[
ln(− ln(1 − (

1

2
)
1
θ ))

]
+

√[
ln(− ln(1 − (

1

2
)
1
θ ))

]2
+ 4αβ

 . (8)

3.2. The Mode

In this subsection, we will derive the mode of the EFW (Ω) distribution by derivation its pdf with respect to x and equate

it to zero. The mode is the solution the following equation with respect to x

(α+
β

x2
)

[
−2β

x3(α+ β
x

)2
− eαx−β/x

(
1 − 1

eeαx−β/x − 1

)
+ 1

]
= 0. (9)

It is not possible to get an analytic solution in x to (9) in the general case. It has to be obtained numerically by using

methods such as fixed-point or bisection method.

3.3. The Moments

In this subsection, we will derive the rth moments of the EFW (Ω) distribution as infinite series expansion.

Theorem 3.1. If X ∼EFW(Ω), then the rth moment of X is given by

µ(r) = θ

∞∑
j=0

∞∑
k=0

∞∑
i=0

(
θ − 1

j

)
(−1)i+j+k(j + 1)kβi(k + 1)2i−rΓ(r − i− 1)

k! i! αr−i

×
[

(r − i)(r − i− 1)

k + 1
+ αβ(k + 1)

]
. (10)
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Proof. The rth moment of the positive random variable X with pdf f(x) is given by

µ(r) =

∞∫
0

xrf(x; Ω)dx. (11)

Substituting from(4) into (11), we get

µ(r) = θ

∞∫
0

xr(α+
β

x2
)eαx−β/xe−e

αx−β/x [
1 − e−e

αx−β/x]θ−1

dx.

= θα

∞∫
0

xreαx−β/xe−e
αx−β/x [

1 − e−e
αx−β/x]θ−1

dx

+ θβ

∞∫
0

xr−2eαx−β/xe−e
αx−β/x [

1 − e−e
αx−β/x]θ−1

dx.

Let

I1 =

∞∫
0

xreαx−β/xe−e
αx−β/x [

1 − e−e
αx−β/x]θ−1

dx

and

I2 =

∞∫
0

xr−2eαx−β/xe−e
αx−β/x [

1 − e−e
αx−β/x]θ−1

dx.

Then

µ(r) = θαI1 + θβI2 (12)

Since 0 < e−e
αx−β/x

< 1 for x > 0, we have[
1 − e−e

αx−β/x]θ−1

=

∞∑
j=0

(
θ − 1

j

)
(−1)je−je

αx−β/x
. (13)

Substituting from(13) into I1, we get

I1 =

∞∑
j=0

(
θ − 1

j

)
(−1)j

∞∫
0

xreαx−β/xe−(j+1)eαx−β/xdx.

Using the series expansion of e−(j+1)eαx−β/x , one gets

I1 =

∞∑
j=0

∞∑
k=0

(
θ − 1

j

)
(−1)j+k(j + 1)k

k!

∞∫
0

xreα(k+1)xe−
β(k+1)
x dx.

Using the series expansion of e−
β(k+1)
x , we have

I1 =
∞∑
j=0

∞∑
k=0

∞∑
i=0

(
θ − 1

j

)
(−1)j+k+i(j + 1)kβi(k + 1)i

k! i!

∞∫
0

xr−ieα(k+1)xdx.

By using the definition of gamma function in the form

Γ(z) = xz
∞∫
0

exttz−1dt, z, x > 0,

we have

I1 =

∞∑
j=0

∞∑
k=0

∞∑
i=0

(
θ − 1

j

)
(−1)j+k+i(j + 1)kβi(k + 1)2i−r−1

k! i! αr−i+1
Γ(r − i+ 1). (14)

Similary, we can obtain as follows

I2 =

∞∑
j=0

∞∑
k=0

∞∑
i=0

(
θ − 1

j

)
(−1)j+k+i(j + 1)kβi(k + 1)2i−r+1

k! i! αr−i−1
Γ(r − i− 1). (15)

Substituting from (14) and (15) into (12) ,we find (10), which completes the proof.
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4. Order Statistics

In this section, we present closed form expressions for the pdfs of the ith order statistic of the EFW distribution.

Let X1, X2, ..., Xn be a simple random sample of size n from EFW distribution with cumulative distribution function F (x; Ω)

and probability density function f(x; Ω) given by (3) and (4), respectively. Let X1:n ≤ X2:n ≤ ...... ≤ X2:n denote the order

statistics obtained from this sample. The probability density function of Xi:n is given by

fi:n(x; Ω) =
1

B(i, n− i+ 1)
[F (x; Ω)]i−1 [1 − F (x; Ω)]n−1 f(x; Ω), i = 1, 2, .., n, (16)

where B(., .) is the beta function. Since 0 < F (x; Ω) < 1 for x > 0, by using the binomial series for [1 − F (x; Ω)]n−1 , we

can write (16) in the following form

fi:n(x; Ω) =
1

B(i, n− i+ 1)
f(x; Ω)

n−i∑
k=0

(
n− i

k

)
(−1)k [F (x; Ω)]i+k−1 . (17)

Substituting from (3) and (4) into (17), we get

fi:n(x;α, β, θ) =

n−i∑
k=0

(−1)kn!

k!(n− i− k)!(i− 1)!(i+ k)
f(x;α, β, (i+ k)θ). (18)

Thus fi:n(x;α, β, θ) defined in (18) is the weighted average of the EFW distribution with different shape parameters.

5. Estimation and Inference

In this section, we discuss the estimation of the model parameters by using the method of maximum likelihood. Also the

asymptotic confidence intervals of these parameters will be derived.

5.1. Maximum Likelihood Estimators

We will derive the maximum likelihood estimators(MLEs) of the unknown parameters α, β and θ. Assume that x1, x2, ..., xn

be a random sample of size n from EFW(Ω), then the likelihood function l of this sample is

l =

n∏
i=1

f(xi;α, β, θ). (19)

Substituting from (4) into (19), we get

l =

n∏
i=1

{
θ(α+

β

x2i
)eαxi−β/xie−e

αxi−β/xi
[
1 − e−e

αxi−β/xi
]θ−1

}
.

The log-likelihood function L = ln(l) is given by

L = n ln(θ) + α

n∑
i=1

xi − β

n∑
i=1

1

xi
−

n∑
i=1

eαxi−β/xi +

n∑
i=1

ln(α+
β

x2i
)

+(θ − 1)

n∑
i=1

ln(1 − e−e
αxi−β/xi

). (20)
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The first partial derivatives of log of the likelihood L with respect to θ, α and β are obtained as follows

∂L

∂θ
=

n

θ
+

n∑
i=1

ln(1 − e−e
αxi−β/xi

),

∂L

∂α
=

n∑
i=1

xi −
n∑
i=1

xie
αxi−β/xi +

n∑
i=1

x2i
αx2i + β

+ (θ − 1)

n∑
i=1

xie
αxi−β/xi

ee
αxi−β/xi − 1

and

∂L

∂β
= −

n∑
i=1

1

xi
+

n∑
i=1

1

xi
eαxi−β/xi +

n∑
i=1

1

αx2i + β
− (θ − 1)

n∑
i=1

1
xi
eαxi−β/xi

ee
αxi−β/xi − 1

.

The normal equations can be obtained by setting the first partial derivatives of L to zero’s. That is, the normal equations

take the following form:

n

θ
+

n∑
i=1

ln(1 − e−e
αxi−β/xi

) = 0, (21)

n∑
i=1

xi −
n∑
i=1

xie
αxi−β/xi +

n∑
i=1

x2i
αx2i + β

+ (θ − 1)

n∑
i=1

xie
αxi−β/xi

ee
αxi−β/xi − 1

= 0 (22)

and

−
n∑
i=1

1

xi
+

n∑
i=1

1

xi
eαxi−β/xi +

n∑
i=1

1

αx2i + β
− (θ − 1)

n∑
i=1

1
xi
eαxi−β/xi

ee
αxi−β/xi − 1

= 0. (23)

The normal equations do not have explicit solutions and they have to be obtained numerically. From(21) we can be obtained

the MLE of θ for a given α and β as the following form

∧
θ =

−n
n∑
i=1

ln(1 − e−e
αxi−β/xi )

. (24)

Substituting from (24) into (22) and (23), we get the MLE of α and β by solving the following system of two non-linear

equations:
n∑
i=1

xi −
n∑
i=1

xie
∧
αxi−

∧
β/xi +

n∑
i=1

x2i
∧
αx2i +

∧
β

+ (
∧
θ − 1)

n∑
i=1

xie
∧
αxi−

∧
β/xi

ee
∧
αxi−

∧
β/xi − 1

= 0, (25)

−
n∑
i=1

1

xi
+

n∑
i=1

1

xi
e
∧
αxi−

∧
β/xi +

n∑
i=1

1

∧
αx2i +

∧
β

− (
∧
θ − 1)

n∑
i=1

1
xi
e
∧
αxi−

∧
β/xi

ee
∧
αxi−

∧
β/xi − 1

= 0. (26)

5.2. Asymptotic Confidence Bounds

In this subsection, we derive the asymptotic confidence intervals of the unknown parameters α, β and θ when α > 0, β > 0

and θ > 0 [17].

The simplest large sample approach is to assume that the MLEs(
∧
α,
∧
β,
∧
θ) are approximately multivariate normal with mean

(α, β, θ) and covariance matrix I−1
0 , see[6], where I−1

0 is the inverse of the observed information matrix which defined by

I−1
0 = −


∂2L
∂α2

∂2L
∂α∂β

∂2L
∂α∂θ

∂2L
∂β∂α

∂2L
∂β2

∂2L
∂β∂θ

∂2L
∂θ∂α

∂2L
∂θ∂β

∂2L
∂θ2


−1

=


V ar(

∧
α) Cov(

∧
α, β) Cov(

∧
α,
∧
θ)

Cov(
∧
β,
∧
α) V ar(

∧
β) Cov(

∧
β,
∧
θ)

Cov(
∧
θ,
∧
α) Cov(

∧
θ,
∧
β) V ar(

∧
θ)

 . (27)
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The second partial derivatives include in I0 are given as follows

∂2L

∂θ2
= − n

θ2
,

∂2L

∂θ∂α
=

n∑
i=1

xie
αxi−β/xie−e

αxi−β/xi

1 − e−e
αxi−β/xi

,

∂2L

∂θ∂β
= −

n∑
i=1

eαxi−β/xie−e
αxi−β/xi

xi
[
1 − e−e

αxi−β/xi
] ,

∂2L

∂α2
= −

n∑
i=1

x2i e
αxi−β/xi −

n∑
i=1

x4i
(αx2i + β)2

+ (θ − 1)

×
n∑
i=1

x2i e
αxi−β/xi

[
ee
αxi−β/xi

(
1 − eαxi−β/xi

)
− 1
]

[
ee
αxi−β/xi − 1

]2 ,

∂2L

∂α∂β
=

n∑
i=1

eαxi−β/xi −
n∑
i=1

x2i
(αx2i + β)2

+ (θ − 1)

×
n∑
i=1

eαxi−β/xi
[
1 − ee

αxi−β/xi
(

1 − eαxi−β/xi
)]

x2i

[
ee
αxi−β/xi − 1

]2 ,

∂2L

∂β2
= −

n∑
i=1

1

x2i
eαxi−β/xi −

n∑
i=1

1

(αx2i + β)2
+ (θ − 1)

×
n∑
i=1

eαxi−β/xi
[
1 − ee

αxi−β/xi
(

1 − eαxi−β/xi
)]

x2i

[
ee
αxi−β/xi − 1

]2 .

We can derive the (1 − δ)100% confidence intervals of the parameters α, β and θ by using variance covariance matrix as in

the following forms

∧
α± Z δ

2

√
V ar(

∧
α) ,

∧
β ± Z δ

2

√
V ar(

∧
β) and

∧
θ ± Z δ

2

√
V ar(

∧
θ),

where Z δ
2

is the upper ( δ
2
)th percentile of the standard normal distribution.

6. Data Analysis

In this section we analyze two real data sets to illustrate that the EFW can be a good lifetime model, comparing with many

known distributions such as flexible Weibull, Weibull, linear failure rate, exponentiated Weibull, generalized linear failure

rate and generalized linear exponential distributions (FW,W,LFR,EW,GLFR,GLE). We have fitted all selected distributions

in each example, we calculated the Kolmogorov Smirnov (K S) distance test statistic and its corresponding p-value, the

log-likeihood values (L), Akaike information criterion (AIC), correct Akaike information criterion (CAIC) and Bayesian

information criterion (BIC) test statistic.

Example 6.1. The data set in Table 1, gives the lifetimes of 50 devices that were provided by (Aarset, 1987)[1]. The

MLEs of the unknown parameters and the Kolmogorov-Smirnov (K-S) test statistic with its corresponding p-value for the

seven tested models are given in Table 2. The fitted survival and failure rate functions are shown in Fig. 3. and Fig. 4.

respectively. The K-S test statistic value for EFW model is 0.1433, and the corresponding p-value is 0.2617. We observe

that the EFW model has the lowest K-S value and the highest p-value for these data among all the models considered, which

means that the new model fits the data better than the other six models.

7
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0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18

18 21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67

72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

Table 1. Life time of 50 devices, see Aarset(1987)[1].

The model MLE of the parameters KS-value p-value

FW(α, β)
∧
α = 0.0122,

∧
β = 0.7002 0.4386 4.29 × 10−9

W(σ, c)
∧
σ = 44.913,

∧
c = 0.949 0.2397 0.0052

LFR(a, b)
∧
a = 0.014,

∧
b = 2.4 × 10−4 0.1955 0.0370

EW(σ, c, θ)
∧
σ = 91.023,

∧
c = 4.69,

∧
θ = 0.164 0.1841 0.0590

GLFR(a, b, θ)
∧
a = 0.0038,

∧
b = 3.04 × 10−4,

∧
θ = 0.533 0.1620 0.1293

GLE(a, b, c)
∧
a = 9.621 × 10−3,

∧
b = 4.52 × 10−4,

∧
c = 0.73 0.1598 0.1391

EFW(α, β, θ)
∧
α = 0.0147,

∧
β = 0.133,

∧
θ = 4.22 0.1433 0.2617

Table 2. The MLEs of the parameters, K-S test statistic and corresponding p-values for Aarset data.

The log-likeihood values (L), Akaike information criterion (AIC), correct Akaike information criterion (CAIC) and Bayesian

information criterion (BIC) test statistic for the siven tested models are given in Table 3. We observe that the EFW model

has the lowest values of L, AIC, CAIC and BIC. This means that the EFW model fits the data better than the other six

models.

Figure 3. The empirical and fitted sarvival functions of selected models for Aarset data.

The model L AIC CAIC BIC

FW(α, β) −250.81 505.620 505.88 509.448

W(σ, c) −241.002 486.004 486.26 489.828

LFR(a, b) −238.064 480.128 480.38 483.952

EW(σ, c, θ) −235.926 477.852 478.37 483.588

GLFR(a, b, θ) −233.145 472.290 472.81 478.026

GLE(a, b, c) −229.114 464.228 464.75 469.964

EFW(α, β, θ) −226.989 459.979 460.65 465.715

Table 3. The log-likelihood, AIC, CAIC and BIC values for Aarset data.

Substituting the MLEs of the unknown parameters into (27), we get estimation of the variance covariance matrix as the

8
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following:

I−1
0 =


1.365 × 10−6 1.141 × 10−5 2.85 × 10−4

1.141 × 10−5 2.64 × 10−3 −1.75 × 10−2

2.85 × 10−4 −1.75 × 10−2 0.5054


The approximate 95% two sided confidence intervals of the unknown parameters α, β and θ are given respectively as

[0.0125, 0.0170], [0.0325, 0.2339], [2.826, 5.613].

Figure 4. The fitted hazard functions of selected models for Aarset data.

In Fig. 5. we plot the profiles of the log-likelihood function of α, β and c for Aarset data. From Fig. 5. we show that the

likelihood equations have a unique solution.

(a) (b)

(c)

Figure 5. For Aarst data, (a) The profile of log-likelihood function of α. (b) The profile of log-likelihood function of β. (c) The profile of
log-likelihood function of c.
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Example 6.2. Table 4, gives the lifetimes of 40 patients of leukemia from one of the government hospitals in Saudi Arabia

that were studied by (Abuammoh et al, 1994)[2]. The fitted survival and failure rate functions are shown in Fig. 5. and Fig.

6. respectively. From Table 5 and Table 6, we find that the EFW model has the lowest K-S, L, AIC, CAIC and BIC values

for this data among all the models considered. This means that the EFW model fits the data better than the other six models.

115 181 255 418 441 461 516 739 743 789

807 865 924 983 1024 1062 1063 1165 1191 1222

1222 1251 1277 1290 1357 1369 1408 1455 1478 1549

1578 1578 1599 1603 1605 1696 1735 1799 1815 1852

Table 4. Lifetimes of 40 patients suffering from leukemia, see Abuammoh et al, (1994)[2].

The model MLE of the parameters KS-value p-value

FW(α, β)
∧
α = 8.4 × 10−4,

∧
β = 1.09 × 103 0.227 0.0275

W(σ, c)
∧
σ = 9.501 × 10−4,

∧
c = 4.229 × 10−7 0.3585 4.143 × 10−5

LFR(a, b)
∧
a = 1143.3,

∧
b = 1.055 0.2680 0.0050

EW(σ, c, θ)
∧
σ = 734.19,

∧
c = 1.265,

∧
θ = 2.973 0.1321 0.4494

GLFR(a, b, θ)
∧
a = 2.102 × 10−4,

∧
b = 1.39 × 10−6,

∧
θ = 1.55 0.1183 0.5884

GLE(a, b, c)
∧
a = 7.59 × 10−5,

∧
b = 1.13 × 10−6,

∧
c = 1.260 0.1105 0.6727

EFW(α, β, θ)
∧
α = 8.482 × 10−4,

∧
β = 33.17,

∧
θ = 8.21 0.1093 0.7373

Table 5. The MLEs of the parameters, K-S test statistic and corresponding p-values for Abuammoh et al data.

Figure 6. The empirical and fitted sarvival functions of selected models for Abuammoh et al data.

To show that the likelihood equations have a unique solution, we plot the profiles of the log-likelihood function of α, β and

c for Abuammoh et al data in Fig. 8.

The model L AIC CAIC BIC

FW(α, β) −310.18 624.358 624.68 627.74

W(σ, c) −319.87 643.747 644.06 647.12

LFR(a, b) −318.46 640.916 641.24 644.30

EW(σ, c, θ) −308.93 623.866 624.53 628.93

GLFR(a, b, θ) −305.34 616.677 617.35 621.75

GLE(a, b, c) −304.11 614.222 614.89 619.29

EFW(α, β, θ) −302.28 610.57 611.24 615.36

Table 6. The log-likelihood, AIC, CAIC and BIC values for Abuammoh et al data.
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Figure 7. The fitted hazard functions of selected models for Abuammoh et al data.

Substituting the MLEs of the unknown parameters into (27), we get estimation of the variance covariance matrix as the

following:

I−1
0 ==


3.815 × 10−9 −5.750 × 10−4 6.939 × 10−5

−5.750 × 10−4 1192.164 −48.885

6.939 × 10−5 −48.885 4.2845


The approximate 95% two sided confidence intervals of the unknown parameters α, β and θ are given respectively as

[7.271 × 10−4, 9.693 × 10−4], [0, 100.84], [4.1563, 12.270].

(a) (b)

(c)

Figure 8. For Abuammoh et al data, (a) The profile of log-likelihood function of α. (b) The profile of log-likelihood function of β. (c) The
profile of log-likelihood function of c.

7. Conclusions

In this paper, we propose a new three parameter model we called it the exponentiated flexible Weibull extension distribution.

Some statistical properties of this distribution have been derived and discussed. The quantile, median, and mode of EFW
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are derived in closed forms. The distribution of the order statistics are discussed. The maximum likelihood estimators

of the parameters are derived and we obtained the observed Fisher information matrix. Two real data sets are analyzed

using the new distribution and it is compared with the flexible Weibull, Weibull, linear failure rate, exponentiated Weibull,

generalized linear failure rate and generalized linear exponential distributions. It is evident from the comparisons that the

new distribution is the best distribution for fitting these data sets compared to other distributions considered here.
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